A POINT SET WHICH HAS NO TRUE QUASI-COMPONENTS, AND WHICH BECOMES CONNECTED UPON THE ADDITION OF A SINGLE POINT*

BY R. L. WILDER

If M is a set of points, and P is a point of M, then the quasi-component of M determined by P is the set of points common to all possible sets M_1 , where $M = M_1 + M_2$, M_1 contains P, and M_1 and M_2 are mutually separated sets. † If M is a connected set, then the quasi-component of Mdetermined by P is M itself. If M is not connected, then it can be considered as the sum of its quasi-components. If a quasi-component consists of more than one point, it is called a true quasi-component. If all the quasi-components of M reduce to single points, that is, if M contains no true quasi-components, then M is totally disconnected (i. e., has no connected subset consisting of more than one point). However, the quasi-components of a totally disconnected set do not necessarily reduce to single points. Sierpinski has given \ddagger an example of a set of points N and a point Pnot in N, such that N has no true quasi-components, and such that the set N+P, although totally disconnected, contains a true quasi-component consisting of P and a certain point of N.

Knaster and Kuratowski have given § an example of a totally disconnected set of points S, which becomes connected upon the addition of a certain point a; i. e., S+a

^{*} Presented to the Society, February 26, 1927.

[†] See F. Hausdorff, Grundzüge der Mengenlehre, Leipzig, 1914, p. 248. Two sets are called mutually separated if they have no point in common, and if neither contains a limit point of the other.

[‡] Sur les ensembles connexes et non connexes, Fundamenta Mathematicae, vol. 2 (1921), pp. 81-95.

[§] Sur les ensembles connexes, Fundamenta Mathematicae, vol. 2 (1921), pp. 206-255. See especially pp. 240 ff.

is a connected set. In this example, one notices that the point set S has uncountably many true quasi-components, each of which has a as a limit point.

The properties of the point sets N and S just mentioned suggest the following question: Does there exist a point set M and a point P not in M, such that M has no true quasicomponents but such that M+P is connected? It is the purpose of the present note to answer this question in the affirmative.

Consider a point set M constructed in the following manner: In the ordinary number plane, denote the points (0,0), (2,0) and (1,1) by A, B, and P, respectively. The interval AB of the x-axis is the sum of c (where c is the cardinal number of the continuum) mutually exclusive sets each of which is dense in AB.* Call the class of these sets X. Let C(X) be a one-to-one correspondence between the elements of the class X and the real numbers $\{t\}$, $0 \le t \le 1$. Consider now the class, K, of all continua contained in triangle PAB and its interior, which have points in common with both AP^{\dagger} and PB, but do not contain P. Since \ddagger this class has the cardinal number c, there exists a one-to-one correspondence C(K) between its elements and the set of real numbers $\{t\}$, $0 \le t \le 1$.

If t is any real number such that $0 \le t \le 1$, let that element of class X which corresponds to t under the correspondence C(X) be denoted by X_t . Similarly, denote that element of K which corresponds to t under the correspondence C(K) by K_t . Then if K_{t_1} is an element of K and X_{t_2} is an

^{*} See Knaster and Kuratowski, loc. cit., p. 252. I wish to acknowledge here my indebtedness to this noteworthy work. It will be noticed that the suggestion for the method of attack which I employ in the present problem is contained in the construction of Knaster and Kuratowski's example (β) (pp. 245 ff.), of a connected punctiform set which is irreducible between two points.

 $[\]dagger$ Hereafter in this paper, if U and V are two points, UV will denote that interval from U to V on the straight line through these two points.

[‡] Cf. Knaster and Kuratowski, loc. cit., p. 253.

element of X, these two sets will be said to correspond to one another if and only if $t_1 = t_2$.

If T is any point of the interval AB, whose abscissa is x, denote the interval PT by l_x . For every real number t, $0 \le t \le 1$, there corresponds a set of points M_t defined as follows: For every interval l_x , where x is the abscissa of a point of X_t , let m_x be the point of minimum ordinate of the set of points common to K_t (the set which corresponds to X_t) and l_x ; the set of all points $\{m_x\}$ constitutes the set M_t . For every real number t, $0 \le t \le 1$, there corresponds a definite set M_t , and no two of these sets have a point in common.

Denote by M' the set of all points p, such that p is contained in some set M_t . Denote by M the set $M'-M_0$.

- 1. The set of points M is totally disconnected, and, moreover, has no true quasi-components. For let a and b be two points of M. Let l_{x_1} and l_{x_2} be those intervals of the set $\{l_x\}$ that contain a and b, respectively. Since no l_x contains more than one point of M, x_1 and x_2 are unequal, say $x_1 < x_2$. As X_0 is dense in AB, there exists a point of X_0 whose abscissa, x_3 , satisfies the relation $x_1 < x_3 < x_2$. The interval l_{x_3} contains no point of M, by definition. Let the set of all points of M which lie on intervals l_x for which $x < x_3$ be denoted by M_1 , and the set of all points of M which lie on lines l_x for which $x > x_3$ be denoted by M_2 . Clearly M_1 and M_2 are mutually separated sets containing a and b, respectively. Hence M is totally disconnected and has no true quasi-components.
- 2. The set of points M+P is connected. For suppose it is not connected. Then

$$M+P = M_1 + M_2,$$

where M_1 contains P and M_1 and M_2 are mutually separated non-vacuous sets. Let Q be a point of M_2 . By a theorem due to Knaster and Kuratowski,* there exists a continuum

^{*} Loc. cit., Theorem 37.

 H^* which separates the plane between P and Q, and contains no point of M+P.

Let that interval of the set $\{l_x\}$ which contains O be denoted by PF, where F is the intersection of this interval with AB. Then the arc PAFO = PA + AF + FO, together with PO, forms a simple closed curve J. Denote the interior of J by R. By Lemma 2 of my paper A connected and regular point set which has no subcontinuum,† there exists a subcontinuum H' of H which is a subset of J+R and has at least one point in common with each of the arcs PAFO and PQ. Since neither P nor Q is a point of H', it is clear that H' cannot lie wholly on PF. Let g be the smallest number such that l_q contains a point of H'. Clearly $0 \le g < f$, where f is the abscissa of F. Denote the point of AB whose abscissa is g by G. Let D and E be points of H' on PGand PF, respectively. Then AD+H'+EB forms a continuum of class K, say K_{t_1} . If $t_1 = 0$, let B' be an interior point of the interval PB, and let K_t , be the continuum AD+H'+EB'. Then $t_1 \neq 0$, and the set M_t , is a subset of M+P. As g < f, and X_t , is dense on AB, there exists a number e such that g < e < f and that point of AB whose abscissa is e belongs to X_{t_1} . Then that point of M_{t_1} determined by the intersection of l_e and K_t , is necessarily a point of H'. That is, H' and M have points in common. This is impossible, since H' is a subset of H and the latter set has no point in common with M. Hence the supposition that M+Pis not connected leads to a contradiction.

Thus by 1. and 2. the set of points M+P is an example furnishing an affirmative answer to the question raised at the beginning of this note.

^{*} A continuum is a closed and connected set which contains more than one point. A continuum H is said to separate the plane between two points P and Q if P and Q do not lie in the same domain complementary to H, and neither lies in H.

[†] See Transactions of this Society, vol. 29(1927), pp. 332-340.

I shall close with one further observation as to the properties of the set M. Mazurkiewicz calls* a set M quasi-connected if for every point m of M there corresponds a positive number λ such that there does not exist any division of M into two mutually separated sets M_1 and M_2 such that M_1 contains m and the diameter of M_1 is less than λ . He gives† an example of a quasi-connected set which contains no true quasi-components. That the set M constructed above is another example of such a set is easily shown; indeed, the value of λ may be taken uniformly equal to unity for all points of M.

THE UNIVERSITY OF MICHIGAN

A SIMPLE METHOD FOR NORMALIZING TCHEBY-CHEFF POLYNOMIALS AND EVALUATING THE ELEMENTS OF THE ALLIED CONTINUED FRACTIONS;

BY J. A. SHOHAT [J. CHOKHATE]

1. Introduction. Consider a system

(1)
$$P_n(x), \qquad (n = 0, 1, 2, \cdots),$$

of orthogonal, but not normal, Tchebycheff polynomials corresponding to a given (finite or infinite) interval (a, b) with the characteristic function p(x). The corresponding normalized system of polynomials will be denoted by

(2)
$$\phi_n(p; x) \equiv \phi_n(x) = a_n(p) [x^n - S_n(p) x^{n-1} + \cdots],$$

 $(n = 0, 1, \dots, a_n > 0).$

We have, then,

(3)
$$\int_a^b p(x)\phi_m(x)\phi_n(x)dx = \begin{cases} 0, m \neq n, \\ 1, m = n. \end{cases}$$

^{*} Sur les ensembles quasi-connexes, Fundamenta Mathematicae, vol. 2 (1921), pp. 201-205.

[†] Loc. cit.

[‡] Presented to the Society, April 16, 1927.