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T H E ASYMPTOTIC OSCULATING QUADRICS OF A 
CURVE ON A SURFACE 

BY E. P. LANE 

1. Definition, Let us consider a surface S, a curve C on 
5, and three neighboring points P , Pi, P2 , on C. The three 
tangents at these points to the asymptotic curves of one 
family determine a quadric whose limit, as Pi, P 2 indepen­
dently approach P along C, is a quadric called* by Bompiani 
an asymptotic osculating quadric of C at P . A second asymp­
totic osculating quadric is obtained by using the other family 
of asymptotics. We shall now derive the equations of these 
quadrics, using Wilczynski's notation, and shall deduce 
some of their fundamental properties. 

2. Equations. Let the four homogeneous coordinates y 
of a point P on a non-degenerate non-developable surface 
5 be given as analytic functions of two independent variables 
u} V] and let the curves u = const., v = const, be the asymp­
totics. Then the functions y, when multiplied by a suitably 
chosen proportionality factor, are solutions of Wilczynski's 
canonical system of differential equations, 

(1) yuu + 2byv + fy = 0, yvv + 2a'yu + gy = 0. 

The one-parameter family of curves on 5 represented by 
the equation 

(2) dv - \du = 0 

contains one curve C through P . The coordinates Y of any 
point Pi on C near P are given by an expansion of the form 

dy 1 d2y 
y = y + -L Au -| ±Au2 + . . . < 

du 2 du2 

* Bompiani, Geometria dette superficie considerate nello spazio rigato, 
Rendiconti dei Lincei, 1926. 



196 E. P. LANE [March-April, 

If the points y, yu, yv, yuv are used as the vertices of a local 
tetrahedron of reference with a suitably chosen unit point, 
the local coordinates x% of Pi are represented by the series 

xx = 1 - ;(ƒ + g\2)Au* + [ - \fu + \{2bg - fv)\ 
2 L o 2 

+ \(2a'f - gu)\2 - -g^ - -gW' IAM3 + • • • , 
2 6 2 J 

x2 = A^ - a'X2Aw2 + ~ ~ ƒ + 2a'JX 

(3) 

0:3 

Xi 

1 1 1 
- -(g + 2aw')X2 - -a/X3 - aw'XX' A**3 + • • - , 

z 0 «j 

= XAw - ( 6 - -X'jAw2 + - -bu 

1 1 1 1 
- -(ƒ + 2JW)X + 2a'6X2 - -gX3 + - X" \Auz + • 

2 6 6 J 

= XA^2 - -U'X3 + b - -X' JA# + • • • , 

where X', X" are total derivatives of X. The derivatives of 
these series with respect to Au are the coordinates a\-„ of a 
point on the tangent of the asymptotic z/ = const, through 
Pi. And any point on this tangent is given by a linear 
combination of the form 

If now the algebraic equation of a quadric surface is 
subjected to the condition that it be satisfied by the functions 
77 identically in h, k and in Au up to and including terms in 
Au2, the result is 

f (2a'b\* - 2&„X2 - bu\ + 2b2 + b\')x? + 2b\xzx* 
(4) { 

[ + X3(#i#4 —" #2#3) ~ 2b\2X2X4 = 0. 

This is the equation of the first asymptotic osculating quadric 
<2(M) of C at P . The equation of the second asymptotic osculating 
quadric Q(v) of C at P is 
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ƒ (2a'b - 2att'X - G/X2 + 2a'2X3 - a'X')*4
2 - 2a,X*i*4 

i + (^1^4 — X2X3) + 2a'X2#2#4 = 0. 

3. Properties. Some simple properties of the quadrics 
Qiu) and Q{v) will now be deduced. First of all, it is clear 
that the tangent plane x4 = 0 of S at P cuts each of these 
quadrics in the asymptotic tangents x2X3 = 0. And Q(u) 

becomes the quadric Q of Lie, whose equation is 

(6) %ix± — X2%z + 2a! 0x4? = 0, 

in case X—>oo, while Q(v) becomes the quadric of Lie in 
case X = 0. The quadrics Q(u) and Qiv) coincide only for a 
curve C which is tangent to a curve of Darboux, arX3 + & = 0, 
on a surface for which 

a'l— loga'2&l = b\ — loga 'ô 2 ! -

We shall suppose from now on that Q, Q(u\ Q(v) ave distinct, 
and that 5 is unrestricted. 

The result of eliminating X' from equations (4) and (5) is 

f (a'X3 + &)(#i#4 — 0C2X3 + 2a'bx£) 

(7) 
r à 

+ a'b\ 2(VX3 + b) - X loga'2& 
L du 
à 1 

X2 loga'ô2 M = 0. 
dv J 

This is a quadric of Darboux through the intersection of 
Q(u) and Ç (v). For a curve C which passes through P tangent 
to a curve of Darboux this quadric becomes the tangent 
plane counted twice, so that the intersection of Q(u) and 
Q{v) is the asymptotic tangents each counted twice; in 
this case Q(u) and Q{v) are tangent to each other at every 
point of each asymptotic tangent. 

We have found here a new characterization of the di­
rections of Darboux : the directions of Darboux are the di-
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rections of curves whose asymptotic osculating quadrics intersect 
only in the asymptotic tangents.* 

The quadrics <2(w) and Q(v) intersect, besides in the asymp­
totic tangents, also in a residual conic which lies in the plane 
whose equation is 

( 2X(<z'X3 + b)(x9 - A*2) + [A'(a'A3 + b) - 2(a'2\6 - b2) 
(8) \ 

I + X(2aM'X3 - bu) + \ 2 0 ; \ 3 - 2bv)] x4 = 0, 
obtained by eliminating xi from equations (4) and (5). This 
plane cuts the tangent plane x4 = 0 in the line X3— A#2 = 0, 
which is tangent to C a t P ; and the residual conic has this 
line for tangent a t P. 

The equation of the osculating plane of C at P is 

(9) 2X(x3 ~ \x2) - (X' + 2a'X3 - 2ô)x4 = 0. 

This plane coincides with the plane (8) in case C is such that 

(10) 2(a'X3 + b)\' + X(2att
,X3 - bu) + X2(a/X3 - 2bv) - 0. 

But this is the differential equationf of the pangeodesics. 
Thus we have found a new characterization of the pangeo­
desics: a curve is a pangeodesic in case its osculating plane 
contains the residual conic of intersection of its asymptotic 
osculating quadrics. 

The quadric of Lie intersects QM in the asymptotic 
tangents and in a conic which lies in the plane 

(11) 2b\{xz ~ Xx2) + (b\' + 2b2 - bu\ - 2M2)*4 = 0. 

This plane coincides with the osculating plane of C in case 
C is such that 

(12) 2b\' + 2a'b\z - 2bv\
2 ~ bu\ = 0. 

The importance of the pole-polar correspondence with 
respect to the quadric of Lie in the projective differential 
geometry of surfaces suggests that the polar relation with 
respect to the quadrics Qiu) and Q(v) would be of interest. 

* This theorem was also found by Bompiani. See Fubini and Cech, 
Geometria Proiettivo Differentiate, vol. 2, Appendix 2. 

t Fubini and Cech, Geometria Proiettiva Differenziale, p. 147. 
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We shall merely mention here that a curve C defines by 
means of these quadrics a collineation in the tangent plane 
such that to any point x corresponds that point x' which has 
the same polar plane with respect to Q{v) as the point x has 
with respect to Q(u). The equations of this collineation are 

I pxi = X2^2, pxi = X2^3. 

This collineation is an elation, with the tangent of C for 
axis and with the point P for center. It is the identity if C 
is tangent to a curve of Darboux. 

4. Conjugate Asymptotic Osculating Quadrics. The family 
of curves 

(14) dv + \du = 0 

is conjugate to the family (2). The curve C_\ of this family 
through P is conjugate to the curve C\ of the family (2) 
through P , so that the corresponding quadrics Q\iu), Q~\iu) 

and Q\(v), Q-\(v) may be called conjugate. The equations 
of conjugate quadrics differ only in the sign of X. 

It is easy to verify that Q\ ( M ) and Q~\(u\ intersecting in 
the asymptotic tangents, are tangent to each other along 
the line X2 = x4 = 0. The remainder of their intersection is 
the straight line 

( 1 Xv bv b \ 
1 j x -. 0 

2 X b X 2 / 

( 1 \v bv b \ 
\x 

2 X b X 2 / 
(15) 

/ bu Xu \ 
+ ( Wb + b la* = 0, 

\ X2 X 3 / 
which intersects the asymptotic tangent X2 = X4 = 0 in the 
point 

/ b 1 Xv bv \ 
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Similarly, the quadrics Q\iv) and Q~\iv) define the point 

/ 1 XM du \ 

(.*..--._,„,,) 
on the other asymptotic tangent. The line joining these 
two points coincides with the ray of the conjugate net X, 
which joins the points 

/ 1 \v b \ / l \u , \ 

in case 
XM au Xv bv 

1 = o, = 0. 
X a' X b 

Then the surface S has the property 

loga'6 = 0, 
dudv 

so that, after a change of parameters, arb — \, A = const, b. 
For such surfaces Wilczynski's canonical form (1) of the 
differential equations coincides with Fubini's canonical 
form.* The line y, yUv is therefore the projective normal. 
The curvature of Fubini's fundamental form fa^Üa'b du dv 
is zero, and the mean projective curvaturef is —2. 

We reach thus the following conclusion. A surface has 
mean projective curvature equal to —2 if, and only if, there 
exists on it a conjugate net whose ray, for each surface point, 
coincides with the line joining the points on the asymptotic 
tangents where each of these tangents is met by the residual 
line of intersection of a pair of conjugate asymptotic osculating 
quadrics of the curves of the conjugate net through the surface 
point. 

UNIVERSITY OF BOLOGNA 

* Lane, Wilczynski's and Fubini's canonical systems of differential equa­
tions, this Bulletin, vol. 32 (1926), p. 365. 

t Fubini and Cech/loc. cit., p . 146. 


