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ON A FUNDAMENTAL FORMULA IN T H E THEORY 
OF CLASS-NUMBER RELATIONS* 

BY E. T. BELL 

1. The Fundamental Formula. In a series of memoirs 
Sur les relations entre les nombres des classes des formes 
quadratiques et positives written about seven years ago but 
only now in course of publication,! Professor J. Ouspensky, 
perfecting Liouville's unpublished method for class-number 
relations (Liouville stated only his results), obtains by 
simple, uniform processes applied to a single formula "not 
only all the relations hitherto known, with the possible 
exception of the very general results of Hurwitz, but also 
many others which appear to be new." The formula in 
question is (loc. cit., p. 604), 

£[ƒ(<* + à9v9d - Ô) - 2/(8 - 2v,d + v%2d - t + 2v)} 

(1) - c(m) Z [f(2wm, mlt2-j, 2mx'» - 2/) 

- 2/(2m1'2 - j , w1 '2, 2m1'2 - j ) ] , 

where ^ o n t r i e left refers to all integers *>^0, d > 0 , S>0 
such that, for m an arbitrary constant integer > 0, 

(2) m**p* + dB; 

e(t) = 1 or 0 according as / is or is not the square of an in­
teger > 0 , and ƒ(#, y, z) is a single-valued function whenever 
its arguments are simultaneously integers < 0, subject 
to the parity conditions 

(3) \ ^ "" X>y^ " ^^x>y,z^ f(°>y>*) - °> 
I ƒ(», - y, - * ) - / ( * , y , s ) , 

beyond which ƒ is entirely arbitrary. 

* Presented to the Society, San Francisco Section, June 12, 1926. 
t BULLETIN DE L'ACADÉMIE DES SCIENCES DE RUSSIE, 1925, pp. 

599-620, 763-784; ibid., 1926, pp. 25-38,175-196, 327-348. 
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It is truly remarkable that an identity so simple as (1) 
should unite a great body of heterogeneous theorems, many 
of which were first found by abstruse analysis, and reveal 
their common origin in a matter of elementary arithmetic. 
In a further Note sur le nombre des représentations des 
nombres par une somme d'un nombre de carrés,* the author 
announces that the same "formule vraiment fondamentale" 
yields also the general expression of Boulyguinef for the 
number of representations of a given integer by any even 
number of squares, and he gives the extremely simple de­
velopments for 2, 4, 6, 8, 10, 12 squares. Further, as 
remarked by the author, it is evident to anyone conversant 
with this field that the applications of (1) to class-number 
formulas and to representations as sums of squares are 
but a small part of the specific arithmetic facts implicit 
in the general identity. 

Professor Ouspensky's proof of (1) is purely arithmetic 
and leaves nothing to be desired in the way of elementary 
simplicity. Believing however that even an elementary 
proof by strictly arithmetic methods is of a far higher order 
of difficulty, because such a proof is in general a thing in 
itself with but slight indications of possible generalizations, 
than is an algebraic proof employing more advanced analysis, 
I shall offer in § 2 a proof of (1) of the latter kind.J This 
proof, equally as elementary from the algebraic point of 
view as is the author's from the arithmetic, refers the theorem 
to membership in an infinite class of allied results, all of 

* Ibid., 1925, pp. 647-662. 
t BULLETIN DE L'ACADÉMIE DES SCIENCES DE ST. PÉTERSBOURG, April, 

1914. 
Î It is not here a question of rigor, but of practicability, in agreement 

with the following remarks by H. J. S. Smith (COLLECTED PAPERS, vol. 1, 
p. lxxiv) on the formal perfection of Gauss' synthetic proofs: "Every 
assertion that is made is fully proved; • • • but when we have finished 
the perusal, we soon begin to feel that our work is but begun • • •. No 
vestige appears of the process by which the result itself was obtained, 
perhaps not even a trace of the considerations which suggested the suc­
cessive steps of the demonstration." 
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which are immediate consequences of Jacobi's formula 
for the multiplication of four elliptic theta functions or, 
if preferred, of the equation of three terms in elliptic func­
tions, combined with the arithmetic expansions of the 
doubly periodic functions of the second kind (Hermite's 
terminology). I t is a striking fact that Ouspensky's far-
reaching theorem is one of the very simplest of all those 
concerning arbitrary odd or even functions in more than two 
variables which are implied by Jacobi's theta formula, 
and which may be elicited from it by the most elementary 
algebraic considerations. 

In a paper not yet published concerning what may be 
called the inverse method of paraphrases* I have shown 
that any theorem whatever relating to arbitrary odd or 
even functions in any number of variables of the same general 
character as (1), in which the variables are linear functions 
of the indeterminates representing a set of integers in a 
system of quadratic forms, is implied by Jacobi's theta 
formula and the expansions of the doubly periodic functions 
of the second kind. The doubly periodic functions of 
the rt\\ kind, r>l, also lead to similar results; r determines 
the type of arithmetic functions occurring as coefficients 
of the arbitrary functions; for any r the theorems are of 
essentially one kind, viz., they relate to functions of in­
tegers arbitrary except as to parity. I have further shown, 
in the paper mentioned, how any given result of this kind 
can be traced immediately by a straightforward, uniform 
method to its simplest equivalent identity in theta functions. 
The proof in § 2 was constructed in this way; it will be 
sufficient here to give the proof directly. Having obtained 
such an algebraic proof of any theorem we can then extend 
the theorem indefinitely by multiplying its generating 
theta identity by functions of theta functions or of circular 
functions, and reducing, or by numerous other devices of 

* For the direct method, used below in §2, see TRANSACTIONS OF THIS 
SOCIETY, vol. 22 (1921), p. 1. 
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elementary algebra that at once suggest themselves. This 
is the principal advantage of the inverse method; from the 
proof by its means of a known theorem the given result 
can be extended at will. I t thus appears that any such 
result as (1) is included as a special case in each of an in­
finity of similar theorems relating to functions of 4, 5, 6, • • • 
variables. Conversely, starting from any theta identity 
we can paraphrase it directly, and by specializing the ar­
bitrary functions in the result, deduce an indefinite number 
of specific arithmetic theorems. Thus the two methods 
of paraphrase, the inverse and the direct, are comple­
mentary. 

Algebraic Proof of (1). In 

#3 ^8 Cz 

#3 bz Cz 

#2 ^2 Ci 

the identity 

= 0, (4) 

take 

a; = 0,(2* + y + 2z), bj = 0,(2* - y - 2»), c,- = #,(y), 

and use 

&i(u)âi(v) = ûz(u + v, q2)Ô2(u — v, q2) — #2(^ + fl> q2)#z(u—v} q2) 

to reduce the result. Then, dividing throughout by 

tfiO + s, q112)#i(x-z, q1/2)#i(y + 2z, q1'2), 

and introducing the doubly periodic function of the second 
kind indicated by the resulting identity, namely 

0in(«,tO 
*i(«)*iW 

we 

(5) 

find 

acs 

011l(# 

<t>iu(x ~* z, 

+ <l>iii(x + 

+ 
y 

*, 

z, x 

+ 2z, 
— y 

• *, qm)My) 

gl/2)t?3(2z - y - 2s) 

- 2 z , g l ' « )# i (2*+y + 2*), 

where it is necessary (as in the theta functions) to indicate 
that the parameter in <j>m is g1/2 not q as it is in #m («, v) 
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and âz(y). This is the simplest identity which is formally 
equivalent to (1), in the sense that each of (1), (5) implies 
the other. As stated in §1, (4) and the proper theta sub­
stitution for a,-, 6,-, Cj to yield this formal equivalent of 
(1) are indicated immediately by the inverse method of 
paraphrase by simple inspection of (1). In a complete 
exposition of the theory it would be unnecessary to proceed 
beyond (5) in order to have the proof of (1). Here, how­
ever, we must apply the direct method and verify that (5) 
actually does imply (1). I t remains then to substitute 
in (5) the series for ê*, 

$z(u) = XV* c o s Ivx, 

where ] £ refers to all integers v 10, 

<Êiii(w,ï>, <Z1/2) = ctn u + ctn v + 4 ]C(Zn[ ]C s^n 2(du + àv)] 

where the outer ]T) refers to all integers n>0 and the inner 
to all pairs (d, d) of conjugate divisors d, 5 > 0 of n such 
that db — n} in order to reach (1) by paraphrasing the re­
sulting trigonometric identity obtained on equating coeffi­
cients of q . 

With 2 , m, d} ô as in (1), (2), we find at once 

2 X)[ sin 2{(d + Ô)x + (d - ô)z} cos 2vy 

- sin 2{dx + dy - (d - 2b)z) cos 2v(2a — y - 2%) 

- sin 2{dx - Ôy + (d - 26)z} cos 2*>(2# + y + 20)] 

(6) { « e(m) [ctn (x + z) { cos 2mll2(2x + y + 2z) - cos 2ml,2y\ 

+ ctn O - z){ cos 2tn1/2(2x-y - 2z)~ cos 2mll2y) 

+ ctn (y + 2z) { cos 2mll2{2x - y - 2z) 

- cos 2m1/2(2x + y + 2z)}]. 

By directly paraphrasing reduced forms of (6), we can 
derive immediately seven theorems similar to (1), one of 
which is (1), for functions of the respective parities* £ ( l 2 | l ) 

* For the p(|) notation, see TRANSACTIONS OF THIS SOCIETY, loc. cit., 
p. 2. 
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(three theorems), £(0|l3) (one theorem), p(2\l) (three 
theorems), all of which are contained as special cases in the 
result for parity £(0| l3) , which thus appears as the simplest 
generalization of (1). Our object here being merely 
the proof of (1), we note that in order to reach (1) all 
trigonometric products in (6) must be reduced to the type 
sin ax cos (by+cz), since this is the circular function of 
x, y, z having the same parity with respect to x, y, z as 
f(x, y, z) in (1). As all details of the necessary reduction 
are common routine in the method of paraphrase, we need 
give only an outline of the successive steps. 

On the left of (6) trigonometric products are separated 
into sums and recombined. Thus the first line becomes 

2 Y, sin 2{(d + ô)x + (d - ö)z} cos Ivy 

= Y,[sm2{(d + ô)x + vy + (d-ô)z} 

+ sin2{(d + ô)x- vy - ( J - «)*}], 

since d, ô may be interchanged under X), a n ^ this 

= 2 X) sin 2(d + d)x cos 2{vy + (d - ô)z}, 

which is in the required form. After similar separation 
of the second and third lines the sines whose arguments 
are the respective sums of the given arguments are recom­
bined, and so for the differences. The result is the sum of 

- 2 X) sin 2{d + 2v)x cos 2{(ô - v)y + (25 - d - 2v)z), 

- 2 X) sin 2(d - 2v)x cos 2{(Ô + v)y + (2d - d + 2v)z), 

and hence it is twice either, since v may be replaced by — v 
under ]T). To reduce the right of (6) we must first eliminate 
the cotangents, as always in paraphrasing. For this we 
combine the differences of cosines into products of sines, 
obtaining three products of the type ctn u sin 2au sin 2bv 
where a, b are integers > 0 , after changing the limits of 
summation f or v ( — oo to oo ) to 0 to oo, by combining terms 
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equidistant from v = 0 in the usual way. To these products 
we apply 

2 a - 1 

ctn u sin 2au = 2^ cos 2(a — j)u, 

separate products cos 2(a—j)u sin bv into sums, and pro­
ceed as above in reducing the left. Finally, replacing 
x, y, z by their halves, and noting that the lower limit j = 0 
may be changed to j = 1 since j = 0 causes the summand 
to vanish identically, we find 

X)[ sin (d + ô)x cos {vy + (d — 8)z} 

— 2 sin (d + 2v)x cos {(5 - v)y + (26 - d - 2P)S}] 

2 m 1 / 2 - l 

= e(m) ^ [ sin 2m1/2# cos {(ml/2 - j)y + (2m112 - 2j)z\ 
/ - i 

- 2 sin (2m1/2 - ƒ)* cos {w1/2y + (2mm - ƒ)«}]. 

Noticing that v may be replaced by —v and that d, 5 may 
be interchanged in the second term on the left we see that 
the last identity paraphrases directly into (1). 

By bringing to bear on (5) all of the powerful machinery 
of the theta functions, including the theory of transforma­
tion, we can obtain from it an inexhaustible supply of 
theorems similar to (1), some of which, it is likely, it would 
be difficult to find by strictly arithmetic methods al­
though all, no doubt, could be proved by such means with 
the exercise of sufficient ingenuity. 
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