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ON SOME THEOREMS OF BÓCHER CONCERNING 
ISOLATED SINGULAR POINTS OF 

HARMONIC FUNCTIONS* 

BY O. D. KELLOGG 

In a note entitled Deux théorèmes élémentaires sur les 
singularités des fonctions harmoniques,\ Picard gave proofs 
of the following theorems. 

I. If u{x, y) is single-valued and harmonic in the neighbor­
hood of a point A, except at A, and is bounded, then u(x, y) 
becomes harmonic at A also when its definition at this point 
is properly adjusted. 

II. If u(x, y) is single-valued and harmonic in the neigh­
borhood of Ay except at A, and becomes positively infinite 
at A, then u(x, y)— h log (1/r) is harmonic at A, where h 
is a properly chosen constant, and r is the distance of (x, y) 
from A. 

As credit for these results was not assigned in the note 
cited, the author must have been unaware of a paper by 
Bôcher,| in which were proved the above theorems, and 
several others, not only for the plane, but for n dimensions, 
and for other differential equations of the elliptic type as 
well as Laplace's. 

In addition to calling attention to the above matter of 
authorship, the object of this paper is to give an elementary 
proof of a theorem from which follow at once the results 
given by Bôcher, as far as solutions of Laplace's equation 

* Presented to the Society, September 9, 1926. See the concluding 
footnote. 

t COMPTES RENDUS, vol. 176 (1923), pp. 933-35. 
% Singular points of f unctions which satisfy partial differential equations 

of the elliptic type, this BULLETIN, vol. 9 (1903), pp. 455-465. 
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are concerned. We shall reason in three dimensions; the 
same argument is available for the corresponding theorems 
in any space of two or more dimensions. 

We first derive a result of which a special case has been 
given by Lebesgue.* Here, and in the following, we shall 
use N to denote a neighborhood of the point 0 from which 0 
has been removed. The harmonic functions are all assumed to 
be one-valued. 

THEOREM I. Let U(P) be harmonic in N, and such that 
there exists a positive integer, m, for which 

limrmU(P)=*0, 
f—» 00 

uniformly. Then in N, 

(1) U(P) - V(P) + - ^ I i J L + - ^ + . . . + ^LZ, 

where f*Si(0, 0) is the usual spherical harmonic of order i, 
and V(P) is harmonic throughout a neighborhood of 0. 

The existence of the infinite development for U(P) 
corresponding to (1) is well known; also the uniform con­
vergence of this development on all spheres about 0 of 
sufficiently small positive radius : 

(2) U(P) - e*(r)/f» - V(P) + - ^ - i + - ^ + • • • . 
r r2 

Our hypothesis is contained in this formula if it is understood 
that | 6 | ^ 1 , and that 5(r)->0 with r. 

The coordinates of P are (r, 0, 0). Let both members of 
the equation (2) be multiplied by Pn(cos 7) sin 0, and 
integrated from 0 to T with respect to 0, and from 0 to 

* Sur les singularités des fonctions harmoniques, COMPTES RENDUS, 
vol. 176 (1923), pp. 1270-71. 
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2w with respect to 0, where cos 7 = cos 0 cos 0'+sin 0 sin 0' 
cos (0 —0')- The result is 

ö(r) c C 
(3) -—• I I e(r,0,0)Pn( cos 7) sin edQd<t> 

V(r94>,<f)Pn( cos 7) sin 6d6d<t> + — — • ' • 
J J 2 ^ + 1 rn+x 

If, now, we multiply the terms of this equation by rn+1, 
and allow r to approach 0, we see that if # —m+1^0, 
n^O, Sn(0', 0')=O. Thus the equation (1) is established. 

THEOREM IL Let U(P) be harmonic in N, and be either 
bounded above, or bounded below. Then in N 

U(P) - c/r + V(P) , 

where V(P) is harmonic throughout a neighborhood of 0.* 

The proof is based on inequalities of Harnackf for positive 
harmonic functions, which, in three-dimensional space, take 
the form 

(R-r)R (R + r)R 
(4) i i_ u(c) £ U(P) g V{C) 
K {R + rY W W {R-rY K 

where U(P) is harmonic and not negative throughout the 
sphere of radius R and with C as center, and where r = CP. 

We may reduce our problem to one in which U(P)}£0 
in N by a change of sign and the addition of a constant, 
if necessary. Now let a be a positive number such that a 
sphere of radius 2a about O contains, with the exception of 
0, only points of N, and let M be the maximum of U(P) on 
a sphere of radius a about O. Let 6 be a constant between 
0 and 1. We apply the second inequality (4) to U(P),C 

* This theorem is a direct consequence of the theorems of Bôcher, 
V and II, loc. cit., pp. 461 and 456. 

t Theorie des logarithmischen Potentials, Leipzig, 1887, p. 62. 
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being on the sphere of radius a about 0, R being 0a, and 
r being BR} or 02a. The result is 

1 + 0 
U(P) ^ M, for Ö(1 - 02) g OP g a. 

With this bound for U(P) on the sphere of radius a(l — 02) 
about 0, we again apply the inequality of (4), taking C 
on this sphere, and replacing a by a(l—02). After a re­
petition of this process, we obtain the general result 

r i + 0 T 
C/(P) g M, for a(l-02)» g OP S a(l-02)n-1

è 

Let us now replace n by a continuous variable, 5, and 
write r = a(l—02)*. Our result then yields the inequality 

r 1 + 0 T+1 

(5) U(P) g M, for n- 1 £s £n, 

since the bound for Z7(P) is an increasing function of s. 
But as this bound is independent of n, (5) holds for all 
5 ^ 1 . If, now, we replace 5 by its value in terms of r, we 
arrive at the result 

1 + 0 M 
W (1 - 0)2 a 

where 
= log (1 + 0) - 2 log (1 - 0) 

P~ log (1 + 0) + log (1 - 0) 

As 0—>1, p approaches —2 from below. It follows that 
U(P) is subject to an inequality of the type U{P) g Mr*2-1*, 
where rj may be any fixed positive number. 

Such a function, as we have seen in Theorem I, is of the 
form 

U(P) = V(P) + c/r + 5i(0, 0)A2. 

But if 5i(0, 0) were not identically 0, it would have both 
positive and negative values, and hence for small enough 
r, U(P) would have to assume arbitrarily great positive 
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and negative values. But this contradicts our hypothesis. 
Therefore Si(0, 0)=O, and U(P) has the stated form. 

We close with some consequences of the above two 
theorems. In the first place, the theorem on isolated sin­
gularities of bounded harmonic functions (the first one 
quoted at the outset) is included in Theorem I.* 

The second theorem quoted is a consequence of Theorem 
II,* for a function, harmonic in N, which becomes positively 
infinite at 0 must be positive in some neighborhood of O 
(with 0 omitted). 

Finally, we may also infer the theorem of Bôcherf : If a 
function U(P) of two or more variables, harmonic in iV, be-
comes infinite for some but not for all modes of approach of P 
to 0, then it can be made to become both positively and nega­
tively infinite (and therefore also to take on every real value 
an infinite number of times) by suitable choice of the mode 
of approach of P to 0. For if U(P) did not become both 
positively and negatively infinite in the neighborhood of 0, 
it would, by Theorem II, become positively infinite for 
every mode of approach, since the fact that it becomes in­
finite for some mode of approach assures us that c is not 0 
in that theorem.^ 

HARVARD UNIVERSITY 

* It being understood that the wording is suitably altered to meet the 
two-dimensional case. 

t Loc. cit., footnote 3, p. 664. 
t At the time of writing this note, the author was unaware of a paper 

on the same subject read before the Society October 31, 1925, by G. E. 
Raynor, and published in the last number of the BULLETIN. An earlier 
knowledge of Raynor's paper would have resulted in modifications of the 
above, but under the circumstances it seemed best to publish it unaltered 
and this has been done. 

Although the papers are written, one for two and the other for three 
dimensions, the methods used are all available for any space w^2. 
Theorem II of the present note is implied by Raynor's IV (Böcher's V, 
loc. cit.), while Theorem II, above, is independent, and involves an ad­
ditional hypothesis. 


