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R E C E N T PROGRESS W I T H T H E 
D I R I C H L E T PROBLEM* 

BY O. D. KELLOGG 

1. The Classical Problem of Dirichlet, and its Status at 
the Beginning of the Twentieth Century. Let T denote an 
open continuum in a euclidean space of n dimensions, and 
let / denote the set of its boundary points. A function, 
F(p), defined on t, will be said to be continuous, if to every 
point, p, of t, and every e > 0 , there corresponds a ô>0 , 
such that \F(p) — F(q)\ <e for every point, q, of /, for which 
the distance pq<8. The classical problem of Dirichlet 
is then the following. Given T and F(p), to find a function 
continuous in T+t, reducing to F(p) on t, and having in T 
continuous partial derivatives of second order which satisfy 
Laplace's differential equation 

d2u d2u d2u 
V2u = —- + —- + . • • + — - = 0. 

dxf ox? dx2 

We shall limit ourselves to the cases n^3. 
We shall be concerned rather with the existence of the 

solution than with its actual construction. A domain, T> 
for which a solution exists corresponding to each continuous 
F{p), will be called a normal domain. 

In one dimension, the problem is always possible, for 
it amounts merely to finding a straight line through two 
points. In two and three dimensions, the most extensive 
results at the close of the last century were due to Poincaré 
and his method of balayage.^ The contribution of Poin-

* An address delivered at the meeting of the Society on January 2, 
1926, in New York City, by invitation of the Program Committee. 

f Sur les équations aux dérivées partielles de la physique mathématique, 
AMERICAN JOURNAL, vol. 12 (1890), pp. 211-294, and Théorie du Potentiel 
Newtonien, Paris, 1899. Carried out in two dimensions by A. Paraf, Sur 
le problème de Dirichlet, ANNALES DE TOULOUSE, vol. 6 (1892), pp. H. 
1-H. 75. 
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caré consisted in three elements: first, a recognition of the 
fact that if the problem was solvable when F(p) represented 
the boundary values of any polynomial, it was solvable for 
any continuous F{p)* secondly, a method for establishing 
a harmonic function (solution of Laplace's equation) cor­
responding to given boundary values, F(p), and thirdly, 
a method of proof that this harmonic function assumed the 
assigned boundary values by means of certain dominant 
functions which we shall call, following Lebesgue, barriers, 
and consider later (§5). The result was that the exis­
tence of the solution of the Dirichlet problem was estab­
lished for domains bounded by surfaces with finite 
principal curvatures at all but a finite number of ordinary 
conical points. 

The method of integral equations, developed by Fred-
holm, f because of its powerful character, gave great impetus 
to the study of the Dirichlet problem. It emphasized the 
independence of the existence theorem of the general shape 
of the boundary of T, and proved most useful in many 
problems of potential theory. But it was hindered in aiding 
substantially the progress of the Dirichlet problem by its 
use of the double distribution, which carried with it the 
demand for a fairly smooth boundary. 

The solution of a certain fundamental case of the Dirichlet 
problem was brought to a successful conclusion by Osgood J 
in his proof that Green's function existed for the most 
general simply connected domain of the plane with more 

* The reasoning was not complete, for it involved the assumption that 
corresponding to continuous F(p) there always existed a function F(P), 
continuous throughout T-\-t and coinciding with F(p) on t, a fact which had 
not been established at tha t time. 

t Sur une nouvelle méthode pour la résolution du problème de Dirichlet, 
OFVERSIGT AF KONGL. V E T . A K . F Ö R H . , vol. 57 (1900), pp. 39 ff. Sur une 

classe d'équations fonctionnelles, ACTA MATHEMATICA, vol. 27 (1903), pp. 
365-390. 

% On the existence of the Green's function for the most general simply 
connected plane region, TRANSACTIONS OF THIS SOCIETY, vol. 1 (1900), 
pp. 310-314. 
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than one boundary point. That this result implied the 
fact that such a domain was normal was recognized only 
sixteen years later, when Lichtenstein* proved that from the 
existence of Green's function for a domain, T, followed the 
possibility of the Dirichlet problem for any continuous 
F(p) for that domain. 

But in the mean time, Lebesgue, using the methods of 
the calculus of variations as refounded by Hubert,f had 
attained results including this. J He showed that a domain T 
in two dimensions was normal provided no boundary point 
could be enclosed by a curve lying in T and an arbitrarily 
small neighborhood of the point. In three dimensions, 
Zaremba§ proved that T was normal, provided that each 
boundary point was the vertex of a right circular cone 
lying outside of T except at the vertex. 

2. Limitations on the Dirichlet Problem, Thus far, 
writers on the subject had regarded the Dirichlet problem 
as always possible, and their endeavors had been to find 
methods of proof powerful enough to establish its possibility. 
A new chapter begins with the recognition of the fact that 
domains exist, for n^2, which are not normal. In 1903, 
Bôcher| | had proved that a singularity of a bounded har­
monic function at an isolated point can only be a removable 
one. ZarembaTf pointed out that this meant that a domain 
whose boundary contained an isolated point could not be 
normal. An even more striking example was given for a 

* Ueber dieerste Randwertaufgabe der Potentialtheorie,SITZUNGSBERICHTE, 
BERLINER MATHEMATISCHE GESELLSCHAFT; ARCHIV FÜR MATHEMATIK 

UND PHYSIK (3), vol. 25 (1916-17), pp. 92-96. 
t Über das Dirichletsche Prinzip, JAHRESBERICHT DER VEREINIGUNG, vol. 

8 (1900), p. 184 et seq. 
% Sur le problème de Dirichlet, RENDICONTI DI PALERMO, vol. 24 (1907), 

pp.371-402. 
§ Sur le principe de Dirichlet, ACTA MATHEMATICA, vol. 34 (1911), 

pp. 293-316. 
|| Singular points oj f unctions which satisfy partial differential equations 

of the elliptic type, this BULLETIN, vol. 9 (1903), pp. 455-465. 
1f ACTA MATHEMATICA, vol. 34, p. 310. 
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three-dimensional domain by Lebesgue*; the domain was 
simply connected, but its boundary contained a sharp inward 
projecting spine, and a certain harmonic function assuming 
preassigned continuous boundary values everywhere else 
failed to assume the given value at the point of the spine. 
With the emergence of facts of this character, the study of 
the Dirichlet problem was forced into new channels, and 
later researches may be fairly characterized as falling under 
two heads: the recognition and characterization of excep­
tional boundary points, and the suitable extension of the 
meaning of the Dirichlet problem, so that it shall admit 
of one, and just one, solution, no matter what the domain. 

3. The Extended Function of Green. Given a domain Z1, 
there exists a sequence of domains [Tn] with these properties: 
each is a part of all the succeeding ones, and each point of T 
is in all of the domains of the sequence from a given one on. 
For instance, Tn might be the interior points of the set of all the 
closed cubes of the lattice x = a/2n , y = b/2n, z = c/2n, (a, b, 
and c being integers) which lay in ÜH. Such domains would 
be normal, as shown by Zaremba. If desired, these domains 
could also be so rounded off as to have continuous principal 
curvatures at all points. Also, it could be arranged that 
the boundary of each was also interior to those following. 
We shall speak of such a sequence as a set of nested domains 
with T as limit, not necessarily requiring, however, that they 
be rounded off. We shall always suppose them normal. 

Then, T being a domain, and Q any point of T, Green's 
function Gn(P, Q) exists for each domain Tn of a nested 
set as soon as Tn contains Q. The sequence [Gn(P, Q)] is 
monotone increasing, and, by the reasoning of Harnack,f 
approaches a limit, uniformly in any closed sub-region of T 

* Sur des cas d'impossibilité du problème de Dirichlet, COMPTES RENDUS 
DE LA SOCIÉTÉ DE FRANCE, 1913, p. 17 et seq. See 6, below. 

f Grundlagen der Theorie des logarithmischen Potentials, Leipzig, 1887, 
§39. 
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which omits Q. This limit function, G(P, Q), is harmonic 
in the sub-region. We call it Green's function for P, 
leaving open the question as to its behavior on the boundary, 
/.* I t has these properties: G(P, Q) — 1/PQ, is harmonic 
in T save for a removable singularity at Q; this difference 
is never positive; if T extends to infinity, G(P, Q) vanishes 
regularly at infinity; and G(P, Q) =G(Q, P). 

The points p of / at which G(P, Q) approaches 0 are called 
regular boundary points. All other points of t are called 
exceptional. If there are no exceptional boundary points, 
T is normal.f But if there are exceptional points, the 
domain is not normal, as may be seen as follows. The 
Dirichlet problem for boundary values 1/PQ is not pos­
sible. For, if it were, there would exist a function of Green 
approaching 0 at every boundary point. Such a function 
would dominate all the Gn{P, Q) of our sequence, and hence 
their limit, G(P> Q) The Green function formed in this 
way would then also approach 0 at every boundary point, 
and exceptional boundary points would then not exist. 

The above definition of regular and exceptional boundary 
points is easily shown to be independent of the pole, Q, 
of Green's function. In fact, if Q and Qf be two points of T, 
and R is a closed region containing them in its interior, a 
certain constant multiple of G(P, Q') dominates G(P, Q) 
in T — R, so that G(P, Q) approaches 0 at every boundary 
point at which G(P, Q') does, and vice versa. J 

4. Wiener's Sequence Solution of the Dirichlet Problem. 
Given a domain T, and a function, F(p), continuous on 
its boundary, /, it is always possible to find a function P(P) , 
defined and continuous throughout T-\-t, and coinciding 

* Kellogg, On the general solution of the classical Dirichlet problem,, 
PROCEEDINGS OF THE NATIONAL ACADEMY, vol. 12 (1926), pp. 397-406. 

Referred to later as I. 

f Lichtenstein, loc. cit. In three dimensions, Kellogg, loc. cit., I. 

X Kellogg, loc. cit., I. 
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with F(p) on t.* This fact permits the establishment of 
a function, harmonic in /, and corresponding to any contin­
uous boundary values F(p), in the same manner as that 
in which Harnack established Green's function.f Thus, 
given T and the continuous boundary values F(p), we 
determine any continuous extension, F(P), of F(p) to the 
points of T, and any nested set [Tn] of normal domains. 
For each of these, we determine the function un(P), harmonic 
in Tn, and approaching on the boundary, tn, the values 
which F(P) there assumes. If T is normal, the sequence 
[un(P)} converges uniformly to a function, harmonic in T, 
which assumes the boundary values F(p).% I t is the great 
merit of Wiener to have established the facts that this 
sequence always converges, no matter what the domain 7" 
or the continuous boundary values, F(p), and that its limit, 
u(P), is harmonic in T, and is independent of both the con­
tinuous extension of F(p) to the points of T, and of the 
nested set [JHW].§ This function u(P) also approaches the 
boundary values F(p) at all regular boundary points. 
I t is thus, in an extended sense, a solution of the Dirichlet 
problem which exists no matter what the domain T or 
the continuous boundary values F(p). We call it the 
sequence solution. We shall see later (§9) in what 
sense it may as yet be regarded as a final solution of the 
Dirichlet problem. 

5. The Character of Boundary Points. Barriers. The 
method of balayage, the methods of the calculus of varia­
tions, and the above extended method of Harnack, all 
produce harmonic functions as limits of sequences corres­
ponding to assigned boundary values, and all require sup-

* Lebesgue, RENDICONTI DI PALERMO, vol. 24, p. 379; Carathéodory, 
Vorlesungen iiber réelle Funktionen, Leipzig, 1918, pp. 617-20. 

t Kellogg, An example in potential theory, PROCEEDINGS OF THE AMERI­
CAN ACADEMY, vol. 58 (1923), pp. 527-533. Referred to later as I I . 

X Ibid. 
§ Certain notions in potential theory, JOURNAL OF MATHEMATICS AND 

PHYSICS, Mass. Inst, of Tech., vol. 3 (1924), pp. 24-51. A simplified treat­
ment of these theorems will be found in the writer's paper I, cited above. 
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plementary investigation of the behavior of this harmonic 
function on the boundary.* I t was Lebesgue who first 
explicitly separated the two problems, and it was Lebesguef 
who first generalized the barrier concept so effectively used 
by Poincaré. We shall define barrier in its simplest aspect; 
essentially the generality of other definitions is only apparent, 
as we shall see. Let T be a bounded domain, and p one 
of its boundary points. The function Z7(P, p) is a barrier 
for T at p if it is harmonic in T, never less than Pp, and if 
it approaches 0 at p. Using this concept, we may state the 
theorem: A necessary and sufficient condition that T be 
normal is that there exist a barrier for T at every boundary 
point of T.% 

We can go farther than this, however, and find in the 
barrier a criterion for the regularity of the individual 
boundary points. But it is first desirable to consider the 
notions of subharmonic and superharmonic functions. Ac­
cording to F. Riesz,§ a function W(P)1 defined and con­
tinuous in T (or upper semicontinuous—and it may even 
become negatively infinite at isolated points), is subharmonic 
when it possesses the following property: given any sub-
domain, T', of T, every function which is harmonic in T' 
and continuous in T'+t' and which dominates W(p) on t', 
does so also throughout T'. Here / ' denotes the boundary 
of T'. A superharmonic function may be defined simply 
as the negative of a subharmonic function. A harmonic 
function belongs to both classes. The following are a few 
of the properties of subharmonic functions given by Riesz, 
and which are of importance for our present purposes. 
Let AaW denote the arithmetic mean of the values of W 

* Loc. cit., RENDICONTI DI PALERMO, vol. 24. 

f Sur le problème de Dirichlet, COMPTES RENDUS, vol. 154 (1912), 
p. 335. 

% Kellogg, loc. cit., I I . 
§ Ueber subharmonische Funktionen und ihre Rolle in der Funktionen-

theorie und in der Potentialtheorie, ACTA, FRANZ-JOSEPH UNIVERSITY, 

SZEGED, vol. 2 (1925), pp. 87-100. 
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on the sphere cr with center at C, and lying in a domain 
in which W is continuous. Then W is subharmonic in this 
domain if for every such sphere, W(C) ^ Aa W, and conversely. 
If W has continuous second partial derivatives, \/2W^0 
is a necessary and sufficient condition that W be sub-
harmonic. Finally, if [W] denote a set (which, for our 
purposes, may be finite) of functions subharmonic in T, 
and if W(P) has at each point P of P the greatest of the 
values which the functions of the set assume at P , then 
W(P) is also subharmonic. 

I t is now easy to show that a necessary and sufficient 
condition that p be a regular boundary point of P is that 
a barrier exist for P at p. We first consider the case in 
which T is bounded. Let us assume that a barrier U(P, p) 
exists. Then G(P, Q)—» 0 as P—»ƒ>, and p is regular. 
For if a be a sphere, of radius a about Q, lying in P, and if 
m be the minimum distance of the points of a from t, 
then on cr, 

1 1 1 1 
— U(P,p)*—Pp*- = — . 
ma ma a PQ 

Hence in Tn — a, 

Gn(P,Q)^ U(P,p), 
ma 

and hence in T — a} 

G(P,Q) ^ U(P,p), 
ma 

so that G(P, 0)-»0 as P->p. On the other hand, if p 
is regular, a barrier U(P, p) exists. I t is the sequence solu­
tion of the Dirichlet problem corresponding to the boundary 
values which F{P)—Pp assumes. For if we denote Pp 
by r, V2P(P) = VV = 2 / r > 0 , and P(P) is subharmonic in P. 
Hence the sequence functions, un(P), dominate F(P), and 
so, therefore, does their limit, U(P, p). But p is a regular 
point, and hence at £ the sequence solution U(P, p) ap­
proaches the assigned boundary value, 0. 
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So much for bounded domains. A simple expedient 
shows that if a barrier U(P, p) exists for only so much of 
T as is contained in a sphere, a, about p, p is regular, and 
conversely. Let a denote the radius of a. We define a 
continuous superharmonic function W(P, p) as follows: 
within a", W(P, p) is at P the smaller of the numbers a 
and U(P, p), or is their common value if equal; in the rest 
of r , W{P, p) = a. Thus the existence of a barrier at p 
for merely a neighborhood of p in T implies the existence of 
the function W(P, p) which function is superharmonic in T, 
not less than Pp in a neighborhood of p, and approaches 0 
at p. A slight modification of the previous reasoning shows 
that G(P, Q) must approach 0 at p. On the other hand, 
if p is a regular boundary point of T, it is also a regular 
boundary point of any sub-domain T' of which it is a 
boundary point, since Green's function for T dominates 
that for T'. Hence U(P, p) exists at p for a neighborhood 
of p in T, and the superharmonic function W(P, p) ex­
ists in T. 

Incidentally, the fact has emerged that the regularity 
of a boundary point is dependent purely on the im Kleinen 
character of the boundary at that point.* 

The function W(P, p) is a special case of the more general 
type of barrier defined by Lebesgue.f While the existence 
of either implies that of the other, the latter type is often 
more convenient to apply. W(P, p) is said to be a barrier 
for T at p if W(P, p) is continuous and superharmonic in T 
and if it approaches 0 at p and has a positive lower bound 
at every other boundary point. If p is regular, such a 
function exists in the more special function established 
above. On the other hand, if W(P, p) exists, the more 
special barrier U(P, p) exists for as much of T as lies in 

* Lebesgue, Sur le principe de Dirichlet, COMPTES RENDUS, vol. 155 
(1912), pp. 699-701. Kellogg, loc. cit., IL 

f Conditions de régularité, conditions d'irrégularité, conditions d'im­
possibilité dans le problème de Dirichlet, COMPTES RENDUS, vol. 178 (1924), 
p. 349. 
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a sphere of radius R about p. For, outside a sphere a' 
of radius a about p, and in the part T' of T within the sphere 
of radius R, W{P, p) has a positive lower bound, 5. This 
follows for boundary points, by definition, and for interior 
points because a superharmonic function can have no interior 
minima, since for them W(C) ^AaW. Hence, in T'— or', 

Pp - a 

R — a 
so that 

W'(P,p) =-^--W(P,p) + a 
o 

dominates Pp in T'. But this function is continuous and 
superharmonic in T', and hence dominates the sequence 
functions un(P) corresponding to F(P)=Pp1 and therefore 
their limit, U(P, p). But W(P, p)-*a as P-> p. Hence 
the upper limit of U(P, p) at p is not greater than a. But 
it is independent of a, which number may be any small 
positive quantity, and hence this upper limit is 0. That 
is, Z7(P, p) is a barrier for T' in the narrower sense. 

6. Types of Regular and Exceptional Boundary Points. 
In the plane, a simply connected region with more than 
one boundary point has no exceptional points, as we have 
seen (p. 603). I t follows from the im Kleinen character 
of regularity that any boundary point is regular if it belongs 
to a connected set of boundary points, containing other 
points. Hence if a plane domain is to have exceptional 
points, either its boundary must contain isolated points, 
or the domain must have infinite connectivity. As instances 
of possibilities, we give the following two examples. The 
first exhibits a domain of infinite connectivity whose 
boundary is a linear set of Borel measure 0, yet all of whose 
points are regular.* In fact, the boundary set in question 
is Cantor's nowhere dense perfect set, being the points 
left of a closed segment after the removal of its open middle 

* Kellogg, loc. cit., II. 
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third, the removal of the open middle thirds of the two re­
maining segments, the removal of the middle thirds of the 
four remaining segments, and so on, ad infinitum. 

The second example* is, in a way, an antithesis to the 
first. Here a boundary point is exceptional although it is 
a point of condensation of the boundary. One forms first 
the function 

U(x,y)= E — l o g [ ( * - l / 2 - ) 2 + ^ ] - i / 2 ? 
o 2n 

harmonic except at the points ( l /2 n , 0). I t is not difficult 
to show that if (x, y) is any regular point of U(x, y), 

lim U[—, — ) = 2 log 2, 
n-oo \2n 2V 

and that the locus U(x, y) = 5 consists of closed oval curves 
each enclosing one and but one of the points ( l / 2 n , 0). 
The domain, T, in question, consists of the points interior 
to a simple closed equipotential, U(x, y) = —C (C a suffi­
ciently large positive constant), except for the ovals 
U(xy y)=5, their interiors, and their single new limit point, 
0, the origin. A function harmonic in T and approaching 
the boundary values — C on the outer boundary, and 5 
on the ovals and at 0, does not exist. For, if it did, it 
would differ from U(x, y) by a function harmonic in T, 
bounded, and approaching the boundary values 0 at every 
point but 0. The difference would then vanish, being 
dominated (as well as its negative) by — e log[(#2+;y2)/jR2] 
for every positive e, where R is the maximum diameter of T. 
But U(x, y) does not assume the required boundary value 
at 0 . Hence the Dirichlet problem in question has no 
solution, and T is not normal. But as all other boundary 
points are regular, 0 must be exceptional. 

Thus points of condensation of the boundary may be ex­
ceptional. But a point cannot be regular unless it is a 
point of condensation of the boundary (see p. 620). 

* The underlying idea in the construction of this example, I owe to a 
conversation with Professor Wiener. A somewhat similar example is given 
by Lebesgue, loc. cit., RENDICONTI DI PALERMO, vol. 24. 
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An isolated boundary point, and the point 0 of the above 
example, are exceptional points of essentially different 
characters. The isolated point can be the seat of no sin­
gularities of bounded harmonic functions other than re­
movable ones, and it therefore has no influence on the 
determination of a harmonic function by its boundary 
values. Such points may therefore be removed from the 
boundary without essential alteration of the Dirichlet 
problem. On the other hand, the point O of the example 
given, cannot be removed without impairing the essential 
quality of the domain T of being an open set, or else removing 
regular points at the same time. Bouligand* has made 
the distinction between the two kinds of exceptional 
boundary points on the basis of the generalized Green 
function. A set of points at which lim G(P, Q) >0,(and 
such are all isolated points), he calls an improper set. At 
each point of an improper set, not only is lim G(P, Q) >0 , 
but lim G(P, Q) exists and is positive.f 

In a space of three dimensions, arcs of regular curves 
of finite length which are isolated from the rest of the 
boundary, contain only exceptional points—in fact, they 
are improper sets.J The first example of an exceptional 
point which is not of the improper type was given by 
Lebesgue,§ and it is to be noted that in distinction to the 
possibilities in the plane, this point belongs to the boundary 
of a simply connected domain. Consider the potential 
of a spread on a straight line segment whose density varies 
with the distance from one end: 

rl Hi 
V= , PQ = ( ( £ - x)2 + y ' + s2)1 '*. 

Jo PQ 

* Sur le problème de Dirichlet, ANNALES DE LA SOCIÉTÉ POLONAISE, 
1925, pp.59-112. 

t Kellogg, loc. cit., I. 
% Lebesgue, Sur les singularités des fonctions harmoniques, COMPTES 

RENDUS, vol. 176 (1923), pp. 1097-99. 
§ Loc. cit., p. 604, footnote 1. 
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The integral may be evaluated, and gives 

(1 - 2x + r2)V2+ 1 - x 
V = (1 - 2x + r*ytz - r+ x log - , 

r — x 
where 

r = ( x 2 + ; y 2 + 0 2 ) l / 2 # 

This relation is equivalent to 

1 - V + v 
r = X + £ M , fJL = ; 

2# 

where 77 vanishes with r. For a meridian curve of the 
equipotential surface V = const., we find 

y = ± e*t(2x + e")1'2. 

These meridian curves, for V> 1, enclose the loaded segment, 
except near the origin, 0, where they have contact with it 
of infinite order. 

The equipotential surface V = 2, together with the point 
0, bounds an infinite domain, T. The Dirichlet problem 
for T and the boundary value 2 is impossible. The function 
V, which fulfills every other requirement, fails to approach 2 
at 0. In fact at this point V approaches 1 along every ray 
terminating at 0 other than the loaded segment. 

Lebesgue* has inferred from this example that p is ex­
ceptional for a domain T if all the boundary near p lies 
inside a surface of revolution whose meridian curve is of 
the form y = e~A/x, (x>0, A >0) , p being at the vertex. 

On the other hand, by means of superharmonic barriers 
of the form U=(xa+ya-z)112, a = 2/(2n + l), he shows that 
p is regular if it is the vertex of a surface of revolution of 
the form z = ArP, (A>0, 0 < j 3 < l , r = (x2+;y2)1/2), which lies 
outside of T in a neighborhood of p, except at p itself. 
The results are extended to the case of certain spines which 
are not surfaces of revolution. 

* COMPTES R E N D U S , vol. 178 (1924), p . 349. 
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Bouligand* has constructed barriers for regions with a 
general type of reentrant conical point as follows. U = 
r a ^(0 , 6) is harmonic in the interior of any cone in which 
\[/ (0, 0) is a continuous differentiable solution of the equa­
tion A2\l/+a(a +1)^ = 0, where A2\f/ is the second differential 
parameter of Beltrami for the surface of the unit sphere. 
Let 5 denote a simply connected domain of this sphere 
with more than one boundary point. Green's function, 
g(P, Q), exists for 5 and the differential equation A2g = 0, 
and any solution of the differential equation for x// which 
vanishes everywhere on the boundary of S satisfies the 
integral equation 

a(a + 1 ) r r 

*{P) = 2T J J g{P>Q)mdSQ> 
and conversely. There exists a solution ^o(<£, 0), of this 
equation, positive in 5, approaching 0 on the boundary, 
and corresponding to a positive characteristic number, X0. 
Accordingly, if a is the positive root of a(a + l) =2ir\o, 
U(P) =r a ^o(0, 0) is a barrier for the origin for any domain 
which admits as strictly exterior (save at the origin), as 
much of the cone subtended at the origin by the complement 
on the unit sphere of S as lies in some neighborhood of the 
origin. For U will be harmonic in T in a neighborhood 
of the origin, and will approach 0 there but at no other bound­
ary point of T in this neighborhood. 

In particular, the domain S may consist of the whole 
surface of the unit sphere save for an arc of a great circle, 
or other curve, so that p is regular for T if it is the vertex 
of a triangle, either flat, or conical and bounded by two 
elements and a third geodesic, which lies outside T except at p. 

Raynorf obtained the following condition. The point 
p is regular for T provided there is a number ?7 > 0 , such 

* Application de la notion du prolongement des fonctionnelles à Vétude 
de Vexistence de la solution du problème de Dirichlet harmonique, BULLETIN 
DES SCIENCES MATHÉMATIQUES, (2), vol. 48 (1924), pp. 1-19. 

t Dirichlet's problem, ANNALS OF MATHEMATICS, (2), vol. 23 (1923), 
pp .183-197. 
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that on an infinite number of spheres about p with radii 
approaching 0, the ratio of the Lebesgue measure of the 
set of points of each sphere exterior to T to the whole 
area of that sphere, is greater than rj. 

Bouligand* has given special attention to the character 
of the infinite point as a boundary point. I t is not difficult 
to show that an inversion which carries a finite boundary 
point into a finite point does not alter the regularity or 
exceptional character of this boundary point. Accordingly, 
it is natural to define the infinite point as regular or ex­
ceptional according to the character of the point into 
which it is transformed by an inversion. If p is a finite 
exceptional boundary point for a domain T, there exists 
a sequence of points of T, [Pk] with p as limit, such that 
GÇPk, Q)-+r)>0, a sP ->£ . Accordingly, uv{P) =lim G(P,Pk) 
is a never negative, not identically vanishing function, 
harmonic in T, approaching 0 at all regular boundary 
points, and dominated by 1/Pp. An inversion in p leads 
to this result: a necessary condition that the infinite point 
be exceptional for a domain T' is the existence of a function 
positive, bounded, and harmonic in T' and vanishing at 
all finite regular boundary points. The converse can also 
be proved, provided the exceptional points of T' are not 
too numerous. From this Bouligand also inferred in­
dependently the result of Raynor. 

The above particular criteria for the character of boundary 
points have been given in some detail to illustrate methods 
of investigation. I t should be added, however, that Wienerf 
has shown how they may be derived from a general criterion 
of his in terms of the capacity of point sets, a topic to which 
we devote the next section. We close the present section 
with a remarkable result of Bouligand's:$ If p is an ex-

* Sur les principes de la théorie du potentiel, BULLETIN DES SCIENCES 
MATHÉMATIQUES, (2), vol. 48 (1924), pp. 1-12. 

t The Dirichlet problem, JOURNAL OF MATHEMATICS AND PHYSICS, 
Mass. Inst. Tech., vol. 3 (1924), pp. 127-146. 

X Loc. cit., ANNALES DE LA SOCIÉTÉ POLONAISE. 
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ceptional point of 7", and if U(P) is the sequence solution 
of the Dirichlet problem corresponding to boundary values 
which are 0 in the neighborhood of p, and nowhere negative, 
then the arithmetic mean of the values of U(P) on a sphere 
about p approaches, as the radius approaches 0, the upper 
limit of U(P) at p. As the limit of the ratio of the measure 
of the set of points outside T and on the sphere to the whole 
area is 0 as the radius approaches 0, the fact that U(P) 
may not be denned at all points of the spheres causes no 
difficulty in interpreting this arithmetic mean. 

7. Capacity. The electrostatic capacity of a conductor 
may be defined as the charge necessary to raise it to unit 
potential, when isolated. The concept may be applied 
to any bounded point set (and we need it for no others) 
as follows. Let B be such a set, and B' the set obtained 
by adjoining to B its limit points. Now B' may bound 
various domains, but B' will certainly contain the complete 
boundary t, of a domain T, extending to infinity. The 
sequence solution of the Dirichlet problem for T and the 
boundary values 1 on ^ (and vanishing at infinity) is called 
the conductor potential of the set B. If v(P) denote this 
conductor potential, Gauss' integral, 

1 r r dv 
— —dS, 
4TT J J dn 

taken over any smooth simple surface containing B in 
its interior, gives the capacity of B. A number of pro­
perties of the capacities of sets have been derived by 
Wiener, Bouligand, and the author.* But the outstanding 
service which the concept has rendered lies in Wiener's 
necessary and sufficient condition for the regularity of 
a boundary point: Let p denote a boundary point of T, 
and let yn denote the capacity of the set of points not in 
T whose distances from p lie in the closed interval (Xw+1, 
Xn), where X is a number between 0 and 1. Then p is re-

Loc. cit., I. 
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gular or exceptional according as the series Z i (yn/Xn) 
diverges or converges. 

Wiener has given the corresponding theorem for 2 and 
n>3 dimensions. 

A proof of the above theorem, somewhat modified, and 
free from the use of Stieltjes integrals, follows. We first 
assume the series Z i (yn/^

n) divergent, and show how it 
follows that a barrier for T at p can be constructed. From 
our assumptions, it follows that one of the three series 
Z r (WA3«), I T (73n+iA3n+1), E r (Y3n+2A3w+2),must diverge. 
To fix ideas, suppose it is the first—the notation, not the 
reasoning, would have to be altered to meet the other two 
cases. Let Bn denote the point set of the theorem, whose 
capacity is yn, and let Vm(P) denote the conductor potential 
of the set containing all the points of B3m, B3m+3, B3m+6, • • • . 
The heart of the argument is to show that Vm(P)~»1 as 
P->p. 

This is done by building up a sequence of harmonic func­
tions which are dominated by Vm(P). The first is harmonic 
in the region within the sphere o"3m-i, with center a t p 
and radius X3m~\ except for the set B3m (and also except 
for any domains which B3m may completely bound, if 
there are any). I t is the sequence solution, fli(P), corres­
ponding to values 0 on <r3m-i and 1 on B3m. Then we 
have Vm (P)^fli(P) at the points at which both are har­
monic. We seek a lower bound for Vi(P) on (r3m+2. 

By definition, vi(P) is the limit of a sequence of functions 
[un(P)]} un(P) being harmonic in a normal region Tn, bounded 
by (Tzm-i and by a smooth surface, tn, interior to Vzm-i and 
enclosing P3m, the domains Tn having the domain of V\(P) as 
limit, and the boundary values of un(P) being 0 on o^ - i 
and 1 elsewhere. Then 

Un{P) = — [G— "Un— )dSQ, 

where G is Green's function for o-3m-i, and the integral is 
taken over the boundary of Tn\ or, since un and G vanish 
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on (izm-u over tn. The positive sense of the normal n is 
the outward one. Accordingly, 

G r r dun 

47T J J dn 

where G is a mean value of G. Now dun/dn is never less 
than the corresponding derivative of the conductor po­
tential of tn, and hence* than that of BZm) and therefore 
un(P) ^ Gy3m. We conclude that in the limit Vi(P) ^minG73m, 
where P is on o"3m+2, and Q on Bzm, i. e., pP=\Zm+2 and pQ = 
^X3m. We find for the minimum of Green's function for 
a sphere of radius c, when the distances from the center 
of P and Q do not exceed a and b, respectively, the value 

1 c 

a + b c2 + ab 

or, in our present case, 

1 (1 - X)(l - X3) 
mm G > = ) 

X3m ( ! + X2)( 1 + X4) X3m 

where a is independent of m. Hence, for P on or within 
<T3m+2, Vl{P)'^ayzm/\Zm^ 

Next, consider the sequence solution v2(P) corresponding 
to the points within the same sphere, <r3m_i, except for the 
two sets, Bzm and Bzm+z, and corresponding to boundary 
values 0 on <rzm-i, and 1 elsewhere. This function again 
is dominated by Fm(P), and it dominates Vi(P). Hence 
v2(P) — aY3m/X3m^0 on (73m+2 and corresponds to values 
1— ayzm/\Zm on Bzm+z, and so, on o-3m+5, is not less than 
1— «73w/X3m times the function corresponding to Vi(P) with 
3m replaced by 3m+3. That is, on and within ö"3m+5, 

V2(P) - <*73m/X3m à (1 ~ «73^/X3m)o:73m+3/X3w+3, 
or 

V*(P) è 1 - (1 - «73W/X3W)(1 - a73W+3/X3w+3). 

* Kellogg, loc. cit., I. 
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Proceeding in this way, with vr(P) the sequence solution 
corresponding to values 0 on o^m-i and 1 on B3m, BZm+z, • • • , 
•B8(m+r-i), we find that within <r3(m+r)-i, 

Vm(P) ^ Vr{P) à 1 - I I (1 - aT,(m+0/X«<«+«). 

But since, by hypothesis, the infinite series 22 t (Y3«/X3n) 
diverges, the infinite product JJi (1 ~«T3n/X3n) diverges 
to 0, and hence there is a sphere about p within which Vm(P) 
is arbitrarily close to 1. 

This property of Vm(P) being established, it is seen that 

UV{P) = £ ^ (i - r-CP)) 
i 2 m 

is a barrier for T at £, for the series is in T a uniformly 
convergent series of harmonic functions approaching 0 at p, 
and elsewhere positive, with positive boundary values. 

Suppose now that 22i (Tn/^n) converges. We shall see 
that the assumption that p is regular leads to a contradiction. 
Let m be chosen so that 22m (7n/Xw) <X/4. Then, if £ 
is regular, the conductor potential, Vm(P), of the points 
within am but not in T, approaches 1 at p, since the sequence 
solution approaches the assigned values at regular boundary 
points. Hence there is a sphere, a', about p, within which 
Vm(P)>3/4:. On the other hand, for sufficiently large k, 
Vm+k(P), being the conductor potential of a set within <rm+k, 
cannot exceed 1/4 on a''. Now the conductor potential 
of the sum of two point sets never exceeds the sum of the 
conductor potentials.* Hence, if Vm,m+k denotes the con­
ductor potential of the set of points not in T and whose 
distances from p lie in the closed interval (Xm+A;+1, Xw), 
Vm^Vm+k+Vm,m+jc, and hence, in particular, on a', 

that is Vm > l / 2 . 

On the other hand, Vm%m+k ^ 22m+^ vn, where vn is the 
conductor potential of Bn. But the value of a conductor 

* Kellogg, loc. cit., I. 



620 O. D. KELLOGG [Nov.-Dec, 

potential is never decreased at an external point, p, by 
moving the whole charge to the point of the set nearest p, 
and hence Vm,m+k^^2Z+ (Tn/Xn+1) < 1/4. Thus a contra­
diction has been arrived at, and p must be exceptional. 

8. Removable Singularities. Another problem which is 
illuminated by the notion of capacity is that of the removable 
singularities of bounded harmonic functions. We have seen 
that in the plane, isolated points, and in space of three 
dimensions, arcs of curves, can be the seats of no singularities 
of bounded harmonic functions other than removable ones. 
The following is the complete generalization of these facts. 

Let T denote a domain, and let B denote a sub-set of 
its boundary with the properties a) the set T' = T+B is 
a domain (open continuum), and b) B has capacity 0. 
Then any function, bounded and harmonic in T, may be 
so denned on B as to be harmonic in T'. Conversely, 
if B is a set with the property a, and if no bounded harmonic 
function in T can have singularities at the points of B 
other than removable ones, then B must have 0 capacity.* 

There exists also a certain maximal set B, such that no 
further boundary points can be added to it without im­
pairing one of the above properties. This is the complete 
improper set of Bouligand, consisting of all points at which 
lim G(P, <?)>0. 

We have stated (p. 611) that a regular boundary point of a 
plane domain must be a point of condensation of the boundary, 
and the assertion is based upon the fact that a closed de-
numerable set has capacity 0. This is included in a theorem 
of Bouligandrf A necessary and sufficient condition that 
B have capacity 0 is that given any distribution of positive 
masses on B such that any sphere containing points of B 
contains a positive total mass, the potential of this distribu­
tion shall have the upper limit +oo at each point of B. 

* Kellogg, loc. cit., I. 
t ANNALES DE LA SOCIÉTÉ POLONAISE, loc. cit. p. 103, 
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For if to each point, Pn, of the denumerable set we assign 
a mass l/n2, the potential will have the required property. 

9. Uniqueness. If at any boundary point a harmonic 
function fails to approach a boundary value continuously, 
then boundary values no longer determine it uniquely, as 
Schwarz* first observed. The situation whose existence 
he pointed out is present in the case of every domain which 
is not normal. For, as we have seen, there exist functions, 
positive in such a domain, and approaching 0 at every 
regular boundary point (p. 615). But these functions may 
not be bounded. In many cases, the additional requirement 
that the function be bounded is sufficient to insure unique­
ness. The question of the unique determination of harmonic 
functions by continuous boundary values for non-normal 
domains has not yet attained a satisfactory solution. The 
following is a partial result in this direction. 

If the exceptional points of a domain T with bounded 
boundary form a set of capacity 0, then there is one and 
only one function, bounded and harmonic in T, which 
assumes preassigned continuous values at every regular 
boundary point. This is obvious, since the difference of 
two such functions would be dominated by a constant times 
the conductor potential of any set enclosing the exceptional 
points of the boundary of T, i. e., of a set of arbitrarily 
small capacity. Such a conductor potential, however, can 
be made arbitrarily small at any given point of T by suffi­
ciently shrinking up the set of which it is the conductor 
potential. For domains of this character, then, the sequence 
solution comes as near to solving the Dirichlet problem as any 
bounded function can. 

10. Discontinuous Boundary Values. We are primarily 
concerned in this review with the Dirichlet problem for 
continuous boundary values. But generalizations in the 
direction of discontinuous boundary values have been at­
tained which are too significant not to receive attention. 

* GESAMMELTE W E R K E ? vol. 2, p. 194, 
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The investigations in question started with simple do­
mains. Studying the circle, Fatou* showed that if ƒ(#) is 
periodic, bounded and summable, Poisson's integral formed 
with ƒ(0) approaches ƒ(0) along radii at all points of the cir­
cumference with possible exception of a set of measure 0. 
Moreover, no other bounded harmonic function approaches 
the same boundary values in the same way. These results 
were extended by the authorj to domains of finite con­
nectivity the coordinates of whose boundary as functions 
of the arc length have second derivatives satisfying uni­
formly a generalized Lipschitz condition; it was shown 
also that for approach along a radius may be substituted 
approach along any curve meeting the boundary orthogon­
ally with finite curvature. 

Evansf carried the generalization to any domain whose 
boundary consists of a finite number of connected sets. 
If h(P, Q) is a conjugate of Green's function, there is, for 
fixed Q, a one to one correspondence between the accessible 
boundary points and the values of h between 0 and 27r, 
with exceptions which do not affect the Lebesgue integral. 
If the boundary values constitute a bounded summable 
function of h (and if they do so for one position of the pole, Q, 
they will for all positions), then there is one and only one 
function, bounded and harmonic in T with first partial 
derivatives which are summable in T, which takes on the 
given values on the boundary for all values of h except for 
a set of measure 0. This function is given by Green's 
integral. 

* Séries trigonométriqués et series de Taylor, ACTA MATHEMATICA, 
vol. 30 (1906), p. 339 et seq. 

t Harmonic functions and Green's integral, TRANSACTIONS OF THIS 
SOCIETY, vol. 13 (1912), pp. 109-132. 

X Fundamental points of potential theory, RICE INSTITUTE PAMPHLET, 
vol. 7 (1920), pp. 252-329, especially p. 327; Problems of potential theory, 
PROCEEDINGS OF THE NATIONAL ACADEMY, vol. 7 (1921), pp. 89-98; The 
Dirichlet problem for the general finitely connected region, PROCEEDINGS OF 
THE TORONTO CONGRESS. 
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Evans and Bray* have studied Poisson's integral and 
Green's integral for plane domains of finite connectivity 
when expressed as Stieltjes integrals with respect to the 
boundary values, obtaining necessary and sufficient con­
ditions on a harmonic function that it be so expressible. 
They have announced similar results for the sphere, f 

The Dirichlet problem for a general domain and for any 
bounded boundary values has been treated by PerronJ 
and Remak§ in essentially the following way. Let F(p) 
and F(P) be the upper and lower limit functions of the 
assigned boundary values, F(p). A function is called an 
upper function for these boundary values if it is continuous 
in T+t and superharmonic, and is not less than F(p) on 
the boundary, t. I t is a lower function if continuous in T+t 
and subharmonic and not greater than F{p) on /. The lower 
limit, u, of the set of all upper functions for F{p), and the 
upper limit, v, of the set of all lower functions for F(p) are 
harmonic in T. By means of barriers, it is shown that if 
T satisfies a condition employed by Lebesguelf (the con­
clusion holds if T is any normal domain), u(p)^F(p) and 
ü(p)^F(p). Hence, in particular, if T is normal and F(p) 
continuous, u is the solution of the Dirichlet problem. 

Furthermore, whether T is normal or not, F(p) being 
continuous, u and v coincide, and are identical with the 

* Sur l'intégral de Poisson généralisée, COMPTES RENDUS, vol. 176 
(1923), p . 1042; La formule de Poisson et le problème de Dirichlet, COMPTES 
RENDUS, vol. 176 (1923), p . 1368; also Evans, Sur l'intégral de Poisson, 
COMPTES RENDUS, vol. 177 (1923), p . 241; Evans, The Dirichlet problem 
for the general finitely connected region, PROCEEDINGS OF THE TORONTO 
CONGRESS. 

t This BULLETIN, vol. 29 (1923), p . 210. 

t Eine neue Behandlung der er sten Randwertaufgabe für àu — 0, M A T H E ­
MATISCHE ZEITSCHRIFT, vol. 18 (1923), pp. 42-54. See also Radó and F_ 
Riesz, Vber die erste Randwertaufgabe für Aw = 0, MATHEMATISCHE ZEIT 
SCHRIFT, vol. 22 (1925), pp. 41-44. 

§ Vber potentialkonvexe Funktionen, MATHEMATISCHE ZEITSCHRIFT, 
vol. 20 (1924), pp. 126-130. 

1f Loc. cit., RENDICONTI DI PALERMO. 
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sequence solution.* Thus the sequence solution appears 
stripped of the unessential elements involved in the nested 
set of domains and the continuous extension to T of the 
boundary values. 

In very simple cases, however, u and v need not coincide; 
for instance, in the case of the circle for boundary values 
which are 1 at points corresponding to rational values of 
the angular coordinate, and 0 elsewhere. Wienerf has 
considerably extended the class of boundary functions to 
which a harmonic function can be assigned, in a paper in 
which a harmonic function is regarded as a homogeneous 
linear functional of its boundary values. The analytic 
expression employed for the harmonic function is a form of 
generalized integral due to Daniell.f Broad conditions for 
the existence of this integral are set up in terms of capacity. 
If it exists, the harmonic function it represents has upper 
and lower limits at a boundary point, p, which lie in the 
closed interval determined by the corresponding limits of 
the boundary function. 

11. Conclusion. From the above account, it should ap­
pear that the Dirichlet problem has recently been through 
a period of remarkable development. But it is character­
istic of scientific progress that each advance raises new 
questions. I t may not be out of place to indicate here 
some connected with the Dirichlet problem. 

With respect to general domains, there is the question 
of the frequency of possible exceptional points. Can they 
form a set of positive capacity? Must every sub-set of a 
boundary contain regular points, if the sub-set is closed 
and has positive capacity? Are there domains admitting 

* Wiener, Note on a paper of 0. Perron, JOURNAL OF MATHEMATICS 
AND PHYSICS, Mass. Inst, of Tech., vol. 4 (1925), pp. 21-32. 

t Discontinuous boundary conditions and the Dirichlet problem, TRANS­
ACTIONS OF THIS SOCIETY, vol. 23 (1925), pp. 307-314. 

t A general form of integral, ANNALS OF MATHEMATICS, (2), vol. 19 
(1917-18), pp. 279-294. 
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a bounded harmonic function other than 0 which approaches 
0 at every regular boundary point? 

Further questions arise in the study of boundary values 
which may be different for the different possible sets of 
curves of approach to a multiple boundary point, yet which 
are continuous in the sense that the difference in the 
boundary values at p and q approaches 0 with the lower 
limit of the length of the curves lying in T except for their 
end points, and connecting p and q (these points being 
accessible). I t should not be difficult to study the existence 
and properties of the sequence solution in this case. To be 
sure, Evans' results hold for such boundary values. But 
the domains he has treated so far are normal ones save for 
possible isolated boundary points. 

There are also interesting problems connected with 
capacity. Particularly needed are further inequalities con­
necting the capacity of a set with the capacities of its sub­
sets. Is it possible to express conditions for regularity in 
some even more purely geometric form than those in terms 
of capacity?* 

For the most part, recent investigations have been con­
cerned with non-overlapping domains, f Generalizations in 
this respect should be considered. Finally, a number of 
questions suggest themselves in connection with the theory 
of functions of a complex variable, and the extension of 
the results gained for Laplace's equation to other differential 
equations of elliptic type has scarcely begun.J 

HARVARD UNIVERSITY 

* In this connection, see the interesting note of Bouligand, Dimension, 
étendu, et densité, COMPTES RENDUS, vol. 180 (1925), pp. 246-48. 

f But Perron (loc. cit.) admits overlapping, provided the domain con­
tains no branch points. See also Hurwitz-Courant, Funktionentheorie, 
2d éd., Berlin, 1925. 

t The reader desiring references to the literature besides those given 
above, will find an excellent bibliography in Bouligand's Fonctions 
harmoniques. Principes de Picard et de Dirichlet, MÉMORIAL DES SCIENCES 
MATHÉMATIQUES, Paris, Gauthier-Villars, 1926. 


