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SOME R E C E N T WORK IN T H E CALCULUS OF 
VARIATIONS* 

BY ARNOLD DRESDEN 

I. T H E SIMPLEST PROBLEM. 

1. First Order Conditions. The simplest problem of the 
calculus of variations is concerned with an integral of the 
form 

(1) I f(x,y,y')dx, 

in which ƒ is a function of class C,n\ in a region R\ of 3-
space, determined by the conditions that (x, y) be in some 
region R of the x;y-plane and y' be finite. The problem 
may then be formulated as follows. 

To determine among all functions y = y(x), X i ^ x ^ x 2 , 
which (1) are of class C' ; (2) satisfy the conditions y(xi) =y^ 
z = 1, 2 ; and (3) are such that the points (x, y(x)) for xi^x^x^ 
lie in the region R, a function yo(x) for which there exists 
a positive number d, such that all functions F(x), xi 5^x^X2, 
which satisfy conditions (1), (2), and (3), and the further 
condition that | F(x) —yo(x)\ Sd for x i^x^X2, give to the 
integral (1) a value not less (not greater) than the value 
which this integral has for yo(x). Here it is understood that 
y' denotes the derivative dy/dx. A function which satis­
fies the conditions (1), (2), and (3) is called an admissible 
function. 

The classical procedure in solving this problem is as 
follows. We suppose that we have found a solution y — yo(x), 

* An address presented at the request of the program committee at 
the Western Meeting of the Society, Chicago, April 2, 1926. 

t A function is said to be of class CM if it possesses continuous deriva­
tives of orders 1, 2, • • • , n; a function is said to be of class Z>(n), if it is 
continuous, and consists of a finite number of parts of class C(n). 
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XiSx^x2l of the problem. We then set up a family of 
admissible functions 

(2) y = y0(x) + er](x), 

in which 77 (x) and e are so restricted as to make every func­
tion of the family (2) admissible (i. e., (i) 77 is of class C', 
(ii) rj(xi) =77(^2) = 0 , (iii) € sufficiently small).* The integral 
determined for the functions (2) will then become a function 
of e, 

(3) f(%i,yo + erj.yi + er]')dx, 

which must possess a minimum for e = 0. Hence we obtain, 
as necessary conditions, 

(4) J ' ( 0 ) = 0 , / " ( O ) è O , ( : g 0 ) . 

Conditions on the function yo(x) derived from (4i) are called 
first-order conditions; those derived from (42) are called 
second-order conditions. I t is readily foundf that 

(5) 

in which fy — df/dy, fy> =df/dy' and in which the arguments 
of fy and of fv> are x, yo(x), yó (x). The second term in (5) 
is now integrated by par ts ; thus we obtain by making use 
of condition (ii) on the admissible variation 77, the condition 
that the function yo(x) must be such that 

(6) f\(fv~—fv)dx = 0, 
Jxx ax 

for every admissible variation 77. 
At this stage enters the fundamental lemma of the calculus 

of variations : 

* Functions 97 (x) which satisfy conditions (i) and (ii) are called admissible 
variations. 

f See, e. g., Bolza, Lehrbuch der Variationsrechnung, p. 21. 
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FUNDAMENTAL LEMMA. If M is a continuous function 
of x, and if f or every function rj of class C'for which 77 (xi) = 
7?(#2)=0, we have fl] rjMdx==0, then ikf=0 on (#i, x2). 

This lemma, which appears to have been proved for the 
first time by Stegemann in 1854, and the need for which 
does not seem to have been felt by earlier writers, is then 
applied to equation (6). Thus is obtained the first necessary 
condition, which a solution of the problem must satisfy, viz., 

d 
(I) fv(x,yo>y{) - —fv'(%,yo,yo) = o. 

dx 
This equation is known as the Euler equation. A function 

which satisfies it is called an extremal. 

2. Second order conditions Proceeding now to condition 
(42), we shall consider only the conditions for a minimum* 
It is then found that the condition 

J'» #2 

(fwV2 + 2f„.tn' + f„W2)dx ^ 0 

must hold for every admissible variation, the arguments 
of fyy, etc., being x, yo(x)> and y{ (x). The classical methods 
for the further study of this condition are based upon a 
transformation of the integrand which shall make it pos­
sible to state conditions which will insure for it constancy 
of sign for all admissible variations 77. We must refer the 
reader to the literaturef for an account of the way in 
which (7) leads to the following two conditions: 

(II) fv'v'(%9yo(x)9yo(x)) è 0, xi ^ x ^ x2; 

(Legendre's condition) ; 

* Throughout this paper the minimum problems only will be considered ; 
obvious modifications are necessary for the case of a maximum. 

t See, e.g., Bolza, loc. cit., Chap. I I ; Kneser, Lehrbuchder Variations^ 
rechnung, 2d éd., §21; Hadamard, Leçons sur le Calcul des Variations, 
p. 313-359. 
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( I l l ) *2 Û X{ , 
(Jacobi's condition). 

Here X\ designates the first vanishing point after X\ 
of a solution of the ordinary linear differential equation 

(8) (fw - y?-\u - i- (fvW) = 0, 
\ ax J ax 

which vanishes at Xi. Equation (8) in which fyy, fyy> and 
fy'y* have the arguments x, yo(x), y o (x) and are therefore 
functions of x, is known as Jacobi's differential equation. 
The condition (III) can be stated in different ways. Leaving 
aside the purely geometrical formulation, due to Kneser,* 
we shall state condition (III) in a form which introduces 
the important concept of a field of extremals. A field of 
extremals is a region 5 of the :ry-plane such that through 
every one of its points (with the possible exception of a 
finite number of points') there passes a unique extremal. 
With this definition we can now replace (III) by the equiva­
lent condition 

( I I I ' ) : y = yo(x), Xi^x^Xî, must be such that there 
exists a field of extremals S which contains the curve deter­
mined by y=:yo(x)i Xi^x^x2, in its interior. 

The slope of the unique extremal which passes through 
the point (x, y) of a field 5 is denoted by the symbol p(x, y) 
called the slope function of the field. If a one-parameter 
family of extremals y = <p(x, a), a i ^ a ^ a 2 , furnishes a field 5, 
it follows that the defining equation can be solved for a, 
whenever (x, y) is in 5 ; the condition is usually imposed 
that this function a(x, y) shall be of class C' in S. In this 
case it follows that the function p(x, y) is given by the 
formula 

p(x, y) = (px(x} a{x} y)) 

and that this function is then also of class C'. 

* See Bolza, loc. cit., § 13 ; Bliss, Calculus of Variations, p. 140 et seq. ; 
Kneser, loc. cit., § 19. 
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3. Weierstrass Condition. Weierstrass showed that con­
ditions (I), (II) , (HI) are not sufficient for a solution of 
the problem and obtained a further necessary condition. 
I t will suit our purpose best to relate this condition to 
other results which were secured later. 

Hubert showed* that the integral 

(9) ƒ* = I {f(x,y,p(x,y)) + ( / - p(x,y))fy>(x,y,p(x,y))}dx 
Ja 

taken along curves which lie entirely in a field S is in­
dependent of the path. I t should be noticed that the integral 
(9) taken along an extremal is identical with the integral (1) 
along that extremal. 

From this fact it now follows readily that if an extremal 
Coly^yoix)] and an arbitrary admissible curve C[y = y(x)] 
both lie in a field 5, then 

E(x,y(x),p(x!y(x))>y'(x))dx, 

in which E is a function of four arguments introduced by 
Weierstrass and related to the function ƒ of the problem by 
the formula 

(11) E(x,y,u,v)= f(x,y9v) - f(x,y,u) - (v - u)fy>(x,y,u). 

Formula (10), which expresses the Weierstrass Theorem, 
leads now to the Weierstrass necessary condition.^ 

(IV) : If y=*yo(x), xi^x^x2 is a solution of our problem, 
then we must have E(x, yo, y£, £ ) ^ 0 , for every finite value 
of P^ 

I t should be observed here that condition (IV) is not 
derived from (42) ; it is in fact entirely independent of the 
mode of reasoning upon which conditions (4) were based. 
BolzaJ has shown that conditions (I), (II), (III) , and (IV) 

* See Bolza, loc. cit., p. 108. 
t Bolza, loc. cit., §18. 
% Loc. cit., pp. 116-119. 
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are not sufficient, and he derived a fifth necessary condition ; 
this we shall not discuss here. 

The theory proceeds at this point to set up sufficient 
conditions, chiefly by means of Weierstrass's theorem as 
expressed by (10). An important distinction should be 
introduced in the formulation of these conditions. 

A solution of the problem stated in the beginning is 
said to furnish a strong extremum for the integral (1). 
If the admissible functions Y(x) for which the value of 
the integral is compared with that along a solution yo(x) 
are restricted not merely by the condition 
(12) \Y{x)-y,{x)\^d, 

but also by 
\Y'(x)-yé(x)\£d, 

the solution is said to furnish a weak minimum. Sets of 
necessary and of sufficient conditions can now be formulated 
for a strong and for a weak minimum.* 

4. Various Extensions. We consider now some modifi­
cations of the problem. 

(a) The condition (2) on admissible functions may be 
replaced by the condition (2a), that the point (xi, y(xi)), or 
the point (x2, 3>(#2)), or both, lie on given curves. In this 
case we obtain as an additional first-order condition the 
requirement that the equation 

ƒ(#, y> y') + {s- y']f*(x, y, y') = 0 
hold at the point in which the extremal meets the given 
curve, where 5 denotes the slope of the given curve at 
this point. This condition is known as the transver sality 
condition^ for the case that f(x, y, y') ^g(x, y)Vl+y'2> 
transversality reduces to orthogonality. 

(b) If condition (1) on admissible functions be replaced by 
the condition (la) that these functions be of class D'', we 
obtain the first-order condition that at every point where 
a discontinuity in the derivative occurs (at such points 

* See, e. g., Bolza, loc. cit., p. 127; Hadamard, loc. cit., p. 389, p. 397. 
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progressive and regressive derivatives yf+ and y'~ will exist), 
the following equations must hold : 

f A», y, y'+) = f A», y> ƒ - ) , and ƒ - ƒƒ„>!+ = ƒ - y'fy>\-. 
This condition, known as the corner-point condition, is due 
to Erdmann (1877).* 

(c) Weierstrass considered the problem of determining 
a curve, x = x(i), y=y(t), ti^t^t2f which will minimize 
the integral 

(13) f V(*,y,*',/)<», 

where now the symbol ' denotes differentiation with respect 
to the parameter /. Leaving it to the reader to set up for 
the curve-problem an exact formulation analogous to the 
one given above for the function-problem, we may say 
that the Weierstrass form of the simplest problem of the 
calculus of variations (usually referred to as the parametric 
form) consists in the determination of a curve x = x(t)y 

y~y(t)> kStSk, which will furnish the extreme values 
of the integral (13). Conditions analogous to those men­
tioned for the function problem are arrived at in this case 
and we shall refer to these conditions freely, without ex­
plicitly stating them. It must be observed, however, that 
if this problem is to have any meaning at all, the integrand F 
must be such that the integral (13) shall depend on the 
curve only, and shall be independent of the particular para­
meter used for its representation by means of the function 
x{t) and y(t). This leads to the homogeneity condition,! 
according to which we must have 

(14) F(x, y, kx', ky')=kF(x, y, %', yf), 

whenever k>0. From this condition on the function F 
follow important consequences, among which we mention 
that there must exist a function Fi such that 

F*,. = y'2Fh Fx>v> = - x'y'Fi, Fv>v> = xPFi. 

* See, e. g., Bolza, loc. cit., p. 367. 
f See, Bolza, loc. cit., p . 193-195; Kneser, loc. cit., p . 11. 
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This function Fi plays a role in the curve problem analogous 
to that played by fv>y> in the function problem. 

5. Recent Developments. We are in a position now to 
mention some of the recent advances made in connection 
with the theory of the simplest problem. 

(a) It was observed by Dubois-Reymond* in 1879 that 
the fundamental lemma of the calculus of variations 
(see §1, above) as applied to the integral (6), presupposes 
that yn(x) exists and is continuous, which was not among 
the hypotheses laid down for the admissible curves. To 
meet the difficulty suggested by this remark, he proved 
the following generalization of the fundamental lemma. 
If M is continuous and if f or every function rj of class C' for 
which rj(xi) = 77(̂ 2) =0, we have fx

x\ q'M dx = 0, then M is 
constant throughout (xu #2). 

To apply this lemma, he integrated the first term in (5), 
so as to derive from (4i) the condition that 

(15) /V( / w ' -f'****)**= °> 
for every admissible variation 77; the Lemma of Dubois-
Reymond then gives the condition 

(16) fy> — I fydx = const. 

The conditions on the admissible functions and on the 
function ƒ are sufficient to enable us to conclude from this 
that the derivative of f y exists and is continuous on (xi, x2), 
and thus to obtain the Euler equation (I). It follows from 
this work that an admissible function which solves our 
problem must be of class C". 

Various further generalizations of the fundamental lemma 
in the direction suggested by Dubois-Reymond have since 
been made by others.f The most inclusive generalization 

* See Bolza, loc. cit., p. 27. 
t See Zermelo, MATHEMATISCHE ANNALEN, vol. 59 (1904), p. 558; 

Jacobstahl, ARCHIV DER MATHEMATIK UND PHYSIK, vol. 16 (1910), p. 82. 
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has been made recently by A. Haar,* who showed that if 
v(x) is continuous, and such that for every function u(x) 
of class C<*> for which u™(a) =u™(b) = 0, (i = 0, • • • , * - l ) , 
we have favL(u)dx = 0, L being a linear homogeneous 
differential form of &th order whose coefficients are functions 
of x possessing derivatives of all orders and whose leading 
coefficient is unity, then v(x) will be of class C(k) on (ab) 
and A ( U ) = 0 , where A is the adjoint of L. The proof is 
simple enough to be substituted for the usual proof of the 
fundamental lemma and of Dubois-Reymond's Lemma; 
these it contains as special cases for L{u)—u and L(u)=u' 
respectively. 

Another way of dealing with the difficulty pointed out 
by Dubois-Reymond has been suggested by Razmadze,f 
who proved the following theorem. If Mix) and Nix) 
are continuous on (a, b), and if for every function rjix) of 
class C' such that 77(a) = t)(&) = 0 , we have faiMr) + Nri')dx = 01 

then N' exists at every interior point of (a, b), and N' = M. 
This theorem enables us to pass directly from equation (5) 
to the Euler equation, without integration by parts either 
of the second term or of the first term. This result of Raz-
madze has been further extended in an interesting paper 
by Krylofff in such a way as to provide also for the case 
in which higher derivatives are involved. He proved that, 
if for every function rj of class C(n) for which 

,yC0(a)=i7<*> ( & ) = 0 , i = l , • • ' . « - l , 

we have 

(17) f jjMjriMdx = 0, 
J a ƒ—0 

then we can conclude that 

* See ACTA LITTERARUM AC SCIENTIARUM R. U. H. FRANCIS-JOSEPHINAE, 

vol. 1 (1922), p . 33. 
t See MATHEMATISCHE ANNALEN, vol. 84 (1921), p . 115. 

% See BULLETIN DE L'ACADÉMIE DES SCIENCES DE L'OUARAÏNE (Classe 

des sciences physiques et mathématiques), vol. 1 (1923), p . 8. 
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did d r d / d \ 1 

TÂT;---71TÂT,M--M-')+M-'\ 
- Mn_3 +• • • + ( - l ) - 1 ^ } + ( - l)nM0 = 0, 

provided the functions M3- are such that the successive 
derivatives which appear in this formula exist. If we sup­
pose that the functions Mj are of class Cu), then the last 
conclusion may be written in the form 

n 

]T)(-i)'Af,-<'> = o. 
3=0 

It is this result which I have had in my possession for a 
number of years, with the intention of using it in the study 
of a generalization of the simplest problem to which reference 
will be made in the sequel. In this result, the equation (17) 
is supposed to hold for every function rj of class C(n) which 
satisfies two general linear homogeneous boundary condi­
tions of the form 

n 

HoLi^Ka) + / W > ( * ) = 0, (Î = 1, - - • , 2»), 
j = 0 

an and /S*/ being constants. 
(b) We have seen that conditions (II) and (III) are 

obtained in the classical theory of the simplest problem 
from the condition (42). I t has also been mentioned that 
Kneser has developed a geometrical formulation of (III) . 
In the study of more complicated problems, and even in 
connection with the simplest problem in parametric form, 
it was found that the transformation of the second varia­
tion, analogous to the one referred to under §2, became very 
complicated. The tendency has been therefore to follow 
Kneser's geometric method, which indeed is capable of 
extension to such problems in a very elegant manner. 
This, however, has the drawback of leaving unsettled 
exceptional cases, arising out of possible singularities of 
the curves involved. To meet the difficulty which arises 
in this way, Bliss has developed within recent years a new 
method of obtaining the second-order conditions from the 
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second variation. This method has been applied by him 
and by several of his pupils to a number of problems.* 
I t is easy to explain its essential features in connection 
with the problem with which we have thus far been con­
cerned. The condition (42) has been said to lead to con­
dition (7). If we denote the integrand in (7) by 20(77, V)> i-e-> 

(18) 20(77, 77') =^77 2 + 2/^777/ + AvT?'2, 

condition (7) may be interpreted as requiring that 0 shall 
be the minimum value of the integral fx

x[ 0(77, rj')dx. 
Hence any admissible variation 77(x) which gives this latter 
integral the value 0 must satisfy the conditions necessary 
for an extremal of this integral, looked upon as an integral 
in the xrj-space. By applying to the integral of (18) the 
necessary conditions for a minimum which do not depend 
on (42), the second-order conditions may be obtained. 
I t is seen that the Euler equation obtained from the function 
(18) is identical with the Jacobi equation (8). By applying 
the Weierstrass condition to the function 77 = 0, which gives 
the integral of (18) its minimum value and hence must 
satisfy the necessary conditions, one obtains the Legendre 
condition for the original integral. Bliss shows furthermore 
that if the Jacobi equation (8) possesses an integral which 
vanishes at xi and again at a point x i '<x 2 , then it is possible 
to construct a function of class D' which gives the integral 
f&dx its minimum value 0, but which fails to satisfy the 
corner-point condition; it would therefore be possible to 
render this integral negative. Thus the necessity of condi­
tion (III) is established. 

(c) We turn next to another extension of the simplest 
problem. In a recent paper, Razmadzef has investigated 

* See Bliss, this BULLETIN, vol. 26 (1920), p. 343, and TRANSACTIONS 
OF THIS SOCIETY, vol. 17 (1916), p. 195. Also D. M. Smith, TRANSACTIONS, 
vol. 17 (1916), p. 459; M. B. White, TRANSACTIONS, vol. 13 (1912), p. 175; 
G. A. Larew, TRANSACTIONS, vol. 20 (1919), p. 1; F. LeStourgeon, TRANS­
ACTIONS, vol. 21 (1920), p. 357. 

t See MATHEMATISCHE ANNALEN, vol. 94 (1925), p. 1. 
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the conditions which must be satisfied by a discontinuous 
curve which furnishes a minimum for the integral (1). 
He supposes that a solution for this problem is given by 
a curve which is of class C' throughout the interval (xu x2) 
except at one point x0, where it has a finite discontinuity. 

The importance of this question becomes clear when one 
considers the problem of Weierstrass, in which it is required 
to minimize the integral J^x^y'Hx by a function y(x), 
for which y( — l)=a, y(l)=b, a^b.* The Euler equation 
for this problem becomes x2y' = const, which has, besides 
the singular integral x = 0, the general integral y — Ci/x+c^. 
Hence it is clear that there exists no continuous extremal 
joining the given points. On the other hand, it is readily 
seen that the greatest lower bound of the values of the 
integral for the continuous functions joining the given 
points is 0, when one considers the family of functions Ce 

given by the equation 

a + b (b — a) arc tan (x/e) 
y s- 1 , 

2 2 arc tan (1/e) 
for which the value of the integral becomes 

e(b - ay 
J(e) < — - ; 

2 arc tan (1/e) 
so that J(e) —>0, when e—>0. When e—*0, the function Ce 

tends toward the discontinuous function given by the 
equations 

y = a for — 1 ^ # < 0, 

y = (a + b)/2 for x= 0, 

y = b for 0 < x ^ 1 ; 

for this the integral does indeed take its minimum value 0. 
What are the conditions which a curve with a finite 

discontinuity must satisfy if it is to minimize the integral (1)? 
The first-order conditions are found to be, besides the 

* See Bolza, loc. cit., p. 420. 
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requirement that the continuous parts of the curve should 
be extremals, the equations 

f(%o,yo,yo)= f(*o,yo,yi), fy>(x0,y0,y<!) = fv>(x0,yo,yo) = 0, 

where (x0, 3>o) and (x0, yo) are the two points between which 
the finite discontinuity takes place, and yl and y£ are the 
slopes of the parts of the curve at these points. These 
conditions are necessary in the general case, in which 
discontinuous comparison curves can be admitted whose 
break need not occur for the same value of x as gives the 
cut-point for the solution. In the exceptional case in which 
the cut-points of all admissible discontinuous comparison 
curves have the same abscissa, the first of the above con­
ditions is replaced by a condition which determines the 
abscissa of the cut-point. A further necessary condition is 
that if yjc lies between y0 and y0, and yl is arbitrary, we 
must have f(x0, yk, yk)^f(x0i y0, y I) and f(x0, ykt yi) è 

f(xo, yo, Jo')-
Assuming further that the two continuous parts of the 

curve satisfy the conditions of Legendre, Jacobi, and 
Weierstrass for continuous solutions of the problem, Raz-
madze obtains a theory of conjugate points, further neces­
sary conditions, and also sufficient conditions. For the 
detailed results the reader is referred to Razmadze's paper. 

(d) In 1907, Bliss introduced a new form for the simplest 
problem of the calculus of variations, by asking for a curve 
such that 

Ç%F{x,y,e)dt 

becomes a minimum, in which 6 is defined by the equations* 
x' y' 

cos 0 = —• • -> a n d s in 6 = —• • 

\/x'2 + yn VV2 + y'2 

The theory is in some respects simpler than in the ordinary 
Weierstrass formulation, inasmuch as the quantities x, y, 6 
are independent of the choice of parameter. 

* See TRANSACTIONS OF THIS SOCIETY, vol. 8 (1907), p. 405. 
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This method of treatment has since been extended to 
spaces of three and more dimensions by Rider* and Sakel-
lariou,f who have also developed the theory of the Hubert 
independent integral and the Weierstrass .E-function for 
integrals of such form. 

(e) For some years I have had under consideration a 
modification of the simplest problem of the calculus of 
variations, obtained by the consideration of more general 
boundary conditions. The problem may roughly be formu­
lated as follows: 

To minimize the integral (1) by a function which satis­
fies two linear boundary conditions of the form 

otnyifl) + ai2y(b) + Pay" (a) + / W W = d> * = 1,2. 

It is for the purpose of this problem that the extension 
of the fundamental lemma mentioned in §5(a) was developed. 

I I . T H E GENERAL LAGRANGE PROBLEM 

AND THE MAYER PROBLEM 

1. Introduction. A variety of problems of the calculus 
of variations is included in the Lagrange problem,, which 
is concerned with an integral of the form 

r%Xt 

(19) I f(x,yu • • • , yn,y{ , • • • , yn')dx, 

where ƒ is a function of class C,n with respect to its 2n + l 
arguments in a region Ri of (2?z + l)-space, determined by 
the conditions that (x, yi, • • • , yn) be in a certain region R 
of (^ + l)-space and thatf yi, i = l, • • • , n be finite. The 
problem consists in determining among all sets of n functions 

* See TÔHOKU MATHEMATICAL JOURNAL, vol. 13 (1918), p. 165; 

WASHINGTON UNIVERSITY STUDIES, vol. 5 (1918), p . 97; AMERICAN 

JOURNAL OF MATHEMATICS, vol. 39 (1917), p . 241. 

t See TÔHOKU MATHEMATICAL JOURNAL, vol. 13 (1918), p . 15; ANNALI 

DI MATEMATICA, vol. 28 (1919), p . 169; PALERMO RENDICONTI, vol. 44 

(1920), p . 53. 
% The indices i, j , and k will be understood to run over the range 

! , • • • , « throughout the sequel, unless differently indicated. 
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yi(x), Xi^x^x2, which (1) consist of functions of class 
C', (2) satisfy the conditions yi(xi)=yn, yi(x2)=yi2f (3) 
are such that the points (x, yu • * • , yn) for x\Sx^x2 lie 
in the region R, (4) satisfy the differential equations. 

(20) <p*(x,yi, • • • , yn, yiy • • • , yn')dx = 0 , 

for JU = 1, • • • , m<n, a set of functions y^{x) for which 
there exists a positive number d, such that for all sets of func­
tions Yi(x), XiSxSx2y which satisfy conditions (1) to (4), 
and the further conditions that | F»-(#)— yio(x) \ <d for 
Xi^x^x2l the integral (19) has a value not less than (not 
greater than) the value which it has for ym(x). A set of 
functions which fulfils conditions (1) to (4) is said to deter­
mine an admissible curve in (^ + l)-space for this problem. 

A second general formulation which includes a large 
number of problems of the calculus of variations is given 
by the problem of Mayer, which may be stated as follows. 
To determine among all sets of functions y%{x)% Xi^x^x2i 

which (1) consist of functions of class C' ; (2) satisfy the 
conditions y%{x\) =3Yi, yv(x2) = yv2} v~2, • • • , n ; (3) are such 
that the points (x, yi, - - - , yn) for xx^x^x2 lie in a given 
region R of the x^-plane; (4) satisfy the differential equa­
tions pM(#, 3>i, • • • , yn; y!, • • • , yn ) =0 , /x = l, • • - , m<n, 
a set of n functions yio(x) for which there exists a positive 
number d, such that, if Yi(x) be any other set of functions, 
which satisfies conditions (1) to (4), and the further condi­
tion that \Yi(x)—yio(x)\<d for Xi^x^x2, then Yi(x2) shall 
be not less than (not greater than) yio(x2). The theory of 
these problems, their interrelations and their importance 
in the study of general problems of the calculus of varia­
tions have formed the subject of many studies.* The first 
step in those studies consists in establishing a problem in 
which the admissible curves are restricted by conditions 
(1), (2), and (3) only, and which is, at least as far as first-

*See, e.g., Bolza, loc. cit., p. 543 and p . 573; Hadamard, loc. cit., p . 217-
224, p. 176; Kneser, loc. cit., Chap. 6. 
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order conditions are concerned, equivalent to the given 
problem. This is accomplished by means of the Euler-
Lagrange multiplier rule* which for the Lagrange problem 
may be stated as follows. If yi — ywix) furnish a solution 
for the general Lagrange problem, then there must exist 
m functions \{x) such that y^ and \ satisfy the first 
order conditions for a minimum of the integral 

(21) Ç 'FtefVityl ,K)dx, 

the class of admissible functions being determined by 
conditions (1), (2), (3), and where 

(22) F « / + E X ^ M . 

For the Mayer problem a similar theorem has been proved. 
This multiplier-rule has been established also for problems 
in which to the condition (4) is adjoined a condition re­
quiring that the unknown functions yi(x) also satisfy a 
number of finite equations. Difficulties of a particular 
kind, clearly recognized by Hahn,f had to be overcome in 
such cases. Other difficulties arise when the conditions (2) 
are replaced by more general conditions as to the end-points. 
These circumstances have given rise to a thorough working 
over of the subject, in the course of which further extensions 
and other valuable results have been secured. Mention 
must be made of a very elegant and complete treatment of 
this subject given by Bliss in a course of lectures at the 
University of Chicago, during the summer of 1925.J 

2. Extensions and Generalizations. We proceed to report 
briefly on some of the recent treatments of the Euler-
Lagrange rule. 

* See Bolza, loc. cit., § 66-72. 
f MATHEMATISCHE ANNALEN, vol. 58 (1903), p. 152; see also Bolza, 

loc. cit., p. 564, where further references are given. 
% I acknowledge with thanks the opportunity which Professor Bliss 

has given me to see a mimeographed copy of these lectures, prepared by 
Mr. O. E. Brown, Northwestern University. 
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(a) In the second of two papers, devoted to this subject, 
Bolza* has considered the following parametric problem.f 
To minimize the expression 

tf - P 7 ( y i , •• • > y»>yi, • • • , y»')# 

+ G(yi0, • • • , y»o,yn, • • • > ym), 

when the admissible curves are determined by functions 

Ji = y*00> h^t S h, 

which satisfy the differential equations 

<pa(yi,y/) = 0 , a = 1, 

and the finite equations 
My<) = 0 , j8= 1, 

while the end-points y^, yn satisfy the equations 

X*(y*o,y«) = 0, 7 = 1 , 

it is moreover stipulated that along the minimizing curve 
yiz=:yio(x)j the determinant 

0<Pa d(pa 

> q , 

(23) 
àyi àym' 

typ #/s 

dyi dym 

and also that the matrix 

^ 0 , p + q < n, 

(24) 

â  

o 

dyio 

**/ 

ly<o d j n 

0 

dXi 

^ n 

y*o ' 

dyn 

^XY 

^ .... 
o dyn 

o, 

y a 

0 

# 0 1 

dyn \yn 

dyn\ 
* See MATHEMATISCHE ANNALEN, vol. 64 (190/), p . 3 /0 ; ibid., vol. 

74 (1913), p . 430; see also Hilbert, MATHEMATISCHE ANNALEN, vol. 62 
(1906), p . 351. 

t To save space, I shall only give a rough statement of the different 
problems tha t are discussed ; by comparing with the more complete state­
ments given on pages 475 and 484, the reader will have little difficulty in 
supplying exact formulations. 
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of 2q+r rows and 2n columns shall be of rank 2q+r for 
the arguments furnished by the end-points of the minimiz­
ing curve. 

I t is clear that this problem reduces to the most general 
Lagrange problem with general boundary conditions, if 
G = 0, and to the Mayer problem with general boundary 
conditions if / = ^ ^ = 0, and G = yu. 

Bolza proved that if yi = Ft-(/), i = l, • • • , n, furnishes a 
solution for this problem, then there exist p+q functions 
Xa(0 and JA/S(0> and also 2q+r + l constants Z0, 1$, // , lq+y 

such that the functions Yi, Xa and /x̂  satisfy the system 
of n differential equations 

d ÖQ, 

dt dji 

and the 2n boundary conditions 

= 0, 

0. 

Here 

and 

Q = l0f+ Z Xa<P<* + 2 jU/3̂ /S, 

Ht = ( - 1) 
€+1 ÔQ 

dy/ 

+ £* 9+7 
dXy 

dyu 
6 = 0 , 1 , 

and the constants Z0, Zg+7 and Ip^ljj+lp+fhflpdt do not 
all vanish. 

This result holds both for the normal and for the abnormal 
cases; these are obtained for Zo^O and Zo = 0, respectively. 
Furthermore, the usual theorems as to uniqueness of the 
constant and of the functional multipliers are established 
for the normal case ; and the abnormal case receives a simple 
characterization. The difficulties hinted at as arising from 
the finite conditions fo(yi) = 0 are obviated by means of the 
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condition on the matrix (24), which insures against re­
dundancy in the conditions arising from the finite equations 
and from the end-point equations. 

(b) Another general form of the Euler-Lagrange rule 
has been given by Bliss,* who treated the following problem : 

To determine a set of functions of class C", yi — yi(x), 
# i ^ # ^ # 2 , which satisfy the differential equations (20), and 
the boundary conditions 

f7'(xi9ya,%2,yi2) = 0, y' = 2, • • • , r, 

while the function fi(%i,yn,%2,yi2) is minimized. 
It is an important feature of this formulation that the 

condition (23) is replaced by the less restrictive one that 
the matrix ||d<£>M/d;y/1| shall everywhere be of rank m. 
By proving that a matrix of mn continuous functions and 
of rank m at every point of (xi, x2), can always be extended 
into a determinant of order n, which vanishes nowhere on 
(xi, #2), Bliss succeeds in accomplishing with this more 
general condition the same purpose for which a condition 
like (23) had always been introduced, viz., that of setting 
up a family of admissible comparison curves. The further 
requirement is made that the matrix 

II dfy dfy dfy dfy II 
I y = 1, . . . > f , 

II 0X1 ay a dx2 dy^ I' 

of r rows and In+ 2 columns shall be of rank r at the end-
points of the minimizing curve ; this is seen to be analogous 
to the earlier condition on the matrix (24). This general 
problem, like the one mentioned under (a), includes most 
of the problems of the calculus of variations, which are 
concerned with simple integrals, and the interrelations are 
pointed out, although not completely. For the present 
problem, the following result is obtained : 

* See TRANSACTIONS OF THIS SOCIETY, vol. 19 (1918), p. 305» 



4 9 4 ARNOLD DRESDEN [Sept.-Oct., 

If the functions Yi(x) furnish a solution, then there exist 
m functions \ of class C , not all identically 0 on (#1, #2), 
such that the functions F»« and XM satisfy the differential 
equations 

dO d dO 

dji dx dji 

and the boundary conditions, which are expressed by the 
requirement that the rank of the matrix 

àfy 

dyi> 

dti 
Ö(*i) 

dfy 

dx\ 

• T i , 

dfy 

dyn 

dQ 

~d~yï 

dfy 

dx2' 

- 0(^2) + T 2 , ~ 
*1 dyi 1*2 

of r + 1 rows and 2n + 2 columns shall be less than r + 1 ; 
here Q = 2XM<pM, and 

ao 
Ti = E y( —— > T2 = E yl 

dyi 

dû 

1*2 • xx d yi 

(c) An apparently very wide generalization of the Euler-
Lagrange rule has recently been given by Hahn,* who con­
siders the following problem. Suppose given r functional 
operators 

Wy(yiya,b), y = 1, • • • , r, 

each of which associates a real number with every set of 
n functions y%(x) of class C\ a^x^b, which satisfies the 
conditions 

(25) I yi{x) - yiQ(x) \ < h, \ yl(x) - y'i0(x) \ < h, 

I a — a0\ < h, J b — b0\ < h, 

where y^ytoix), Ö O ^ ^ ^ & O , is some particular set of func­
tions of class C', and where h is a positive constant. Further­
more, let 

<£„(?<,a,M, /* = 1, • • • , m, 

* See WIENER BERICHTE, vol. 131 (1922), p. 531. 
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define a similar operator for every / on (/i, fe). I t is supposed 
that 

(1) If 
* 

(26) yi(x) = yiQ(x) + ^ e^i^x) + (€) > 

8 

y/(x) = y'io{%) + Y^e^iM + W» 

0 = 00 + X) ^«r + (€), 

b = b0+ Z e ^ + O), 
< r = l 

where (e) represents a function of the parameters ei, • • • , e8 

which tends to zero with these parameters, and where 77 ,̂ 
aff, and $9 are so chosen that the conditions (25) are satis­
fied, then 

Wy(yi,a,b) = Wy(yio,a0,bo) + X effVy(rn9,<*,,&,) + («) , 

and 

$n(y<> f l>M) = *M(y<o,»o,6o,0 +Y,e(&ll(rii0}a0,p<r9t) + (e), 

in which F7(T7;, ce, /3) and ^(77;, ce, /3, /) are linear continuous 
functional operators* with respect to rji and 77/, and linear 
continuous functions of a, /3 and of a, /3, t, respectively. 

(2) If 5 sets of functions rii<r(x) of class C" on (a0, &o) 
and 5 sets of constants aff, fia are given which satisfy the 
linear functional equations ^(77*, a, /3, /) = 0 , then there exists 
for every set of values of the parameters ei, • • • , es, suffi­
ciently small in absolute value, a solution yi, a, b} of the 
functional equations %(yi, a, &, /) =*M(:y»o, a0, &o» 0> °f the 
form (26). 

(3) For every e > 0 , there exists a <2, such that if i/v(0 
are continuous functions of / on (h, t2), for which |^M(J)| <d> 

* For the definitions of these terms, see, e.g., Levy, Leçons d'Analyse 
Fonctionnelle, pp. 50, 52. 
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then there exists a t least one set of functions rji(x) of class 
C' on (a0, &o) and a pair of constants a, /3, such that 

\n\<e, \vi\<e, \a\<e, \p\<e, 

and such that 

The following problem is now considered. Among all 
sets of n functions ji{x) of class C' which satisfy the condi­
tions (25) and for which 

WAyi,o,b) = 0, 7 ' = 2, • • • , r 
and 

$n(y<>M,0 ==: °> /* = 1, • • • , w ; h^t S h, 

to determine one which will minimize the operator 

m(y<, o, 6). 
I t is shown in the first place that there must exist r 

numbers h, • • • , lr not all equal to 0, such that 

for every solution rji, ay /3 of the linear functional equations 

¥M(i7,a,j8,0 = 0. 

Next it is shown that if 

¥M(i7,,a,/5,0 = * M ( r<,T,M), 

then we will also have 

V(in,a,P) = 7(f*,7,«), 

so that the value of V(rji, a, ]3) depends only upon ^(rç^jS,*) 
which are ordinary functions ^ of /. We may then write 

where £7 is a functional operator. This operator is then 
proved to be linear and continuous. Hence, by the use of 
a theorem of Riesz,* of which Hahn gives a very elegant 

* See,e.g., Levy, loc. cit., p. 55 ; also footnote (2) on first page of Hahn's 
paper mentioned above, in which full references are given for this theorem. 
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proof in this paper, we conclude that U can be represented 
as a Stieltjes integral, i.e., that there exist functions of 
limited variation vM(/), such that 

ju=l J h 

This result combined with the preceding results, leads to 
the following theorem. 

If the set of f unctions y\ furnishes a solution of the problem, 
then there exist r constants ly not all 0 and m functions of 
limited variation XM such that 

for every set of functions 77», of class C' in (a0, 60), and for 
all numbers a, /?. 

This is the Euler-Lagrange rule for this general minimum 
problem, which includes as special cases the problems 
mentioned under (a) and (b). 

3. Second Order Conditions. Other advances made in the 
theory of the Lagrange problem and of the Mayer problem 
have to do with second order conditions and with extensions 
to these problems of the Hubert independent integral and of 
the Weierstrass theorem, which were mentioned in connection 
with the simplest problem of the calculus of variations in I, 
§3. The first point of importance is that whereas the 
Hilbert integral, for the simplest problem, is independent of 
the path of integration in any field of extremals, the inde­
pendence of the analogous integral for these more general 
problems takes place only in the "Mayer fields," character­
ized by special conditions. Returning to the Lagrange 
problem, as formulated in §1, we suppose we have an w-para­
meter family of extremals which furnishes a field, and we 
define, as in the case of the simplest problem, slope functions 
of the field pi(x,yi, • • , yn), and also functions q»(xt 
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yu * • • > yn) which are obtained as the Lagrange multipliers 
for the unique extremal which passes through the point. 
Then it is shown that the integral 

^ j * y(x'yi'*à "" ? ^' ~ yi)Fvi'(x>yi,Pi,qn)fdx, 

in which F is the function defined by (22), will be inde­
pendent of the path provided the following n(n — l)/2 
relations are satisfied : 

— , h,k = 1, • • - y tn. 
dyh dyk 

These conditions determine the special fields for which 
the Hubert independence property holds and which are 
known as Mayer fields. The construction of Mayer fields, 
the Weierstrass theorem for Mayer fields, the connection 
with the transformation of the second variation and with 
second-order conditions have formed the subject of a 
number of papers. 

(a) The conditions for the independence of the Hubert 
integral, both for the case when all curves in a field are 
considered (absolute invariance) and for the case, suggested 
by Radon,* in which only curves which satisfy the equa­
tions (20) are taken into account (relative invariance), 
were studied by Bolza,f who also gave a simple geometric 
interpretation for these conditions, upon which the con­
struction of Mayer fields can be based. He showed that, 
a t least for the special Lagrange problem, to which the 
problem of minimizing the integral ff(x, y, y', • • • , yM) 
can be reduced,J the relative invariance of the Hilbert 
integral carries the absolute invariance as a consequence. 

The classical treatment of the second variation by 
Clebsch, Mayer, and von Escherich was based on the 

* See WIENER BERICHTE, vol. 119 (1910), p. 1257. 
t See PALERMO RENDICONTI, vol. 31 (1911), p. 257, and vol. 32 (1911), 

p. 111. 
î See Bolza, Vorlesungen, p. 543. 
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transformation of the second variation to which we have 
had occasion to refer earlier. The complicated character 
of these transformations constitutes a serious drawback 
to this treatment of the second variation. A valuable 
contribution to the problem of relating these transformations 
to other parts of the theory was made by Hahn.* A con­
siderable advance was made through the application to 
the second variation for the integral (19) of the method of 
Bliss, the essential features of which were discussed in 
I, §5(b). 

(b) This was done by D. M. Smithf who obtained the 
analogues of the Legendre and Jacobi conditions, by applying 
the Weierstrass condition and the corner-point conditions 
to the secondary minimum problem. In a paper presented 
to the Toronto Congress in 1924, Bliss carried the treatment 
of the second variation still further by showing how Mayer 
fields may be constructed for the secondary problem, then 
using the Hubert independent integral, and finally deriving 
the Weierstrass formula for the total variation of the secon­
dary problem in terms of the E function. By taking an 
arbitrary admissible variation rj* for one curve and the 
curve rji^O for the other, an expression for the second 
variation is then obtained, in a very simple manner, which 
turns out to be exactly the one sought for by the compli­
cated transformations of the earlier theories. 

The same form of treatment was carried through for the 
Mayer problem with fixed end-points by Gillie A. LarewJ 
again leading to the analogs of the Legendre and Jacobi 
conditions. In a later paper§ the same author set up a defi­
nition of an invariant integral and a definition of Mayer 
fields for the Mayer problem. This made it possible to 
prove a theorem analogous to the Weierstrass theorem on 

* See PALERMO RENDICONTI, vol. 29 (1910), p. 49. 
t See TRANSACTIONS OF THIS SOCIETY, vol. 17 (1916), p. 459. 
t See TRANSACTIONS OF THIS SOCIETY, vol. 20 (1918), p, 1. 
§ Ibid., vol. 26 (1924), p. 61. 



500 ARNOLD DRESDEN [Sept.-Oct., 

the total variation. Space is lacking for a discussion of the 
details of these papers. 

I I I . MULTIPLE INTEGRALS 

1. Parametric Form. The study of the minima of multiple 
integrals has not reached the advanced stage which has 
been attained in the theory of the simple integral. The 
fundamental problem is concerned with an integral of the 
form 

(27) I / ( a i , • • • , xn,z,zi, • • • , zn)dxi • • • dxn, 

in which Zi — bz/bxi, and in which the integral is to be 
extended over a closed manifold M in the «-space deter­
mined by the coordinates The function ƒ 
is of class C"1 in a domain R\ of (2w + l)-space determined 
by the conditions that (xh • • • , xn, z) be in a domain 
R of (« + l)-space and that Zi be finite. The question 
is then to determine among all functions z of Xi, • • • , xn 

which (1) are of class C', (2) assume on the boundary 
of M preassigned values, (3) yield points ( # ] , • • • , xv, 
z(xi> • • , xn)) which lie in R, when (xi, • • • , xn) is in 
My a function Z for which there exists a „positive number 
d, such that for any function z, which satisfies conditions 
(1), (2), (3), and also the condition that \Z — z\<d for 
(xi, - • • , xn) in M, the integral (27) has a value not less 
(greater) than the value which it takes for Z. 

By the same procedure which led to the Euler equation 
in the simple problem, one reaches the conclusion that the 
function z must satisfy the partial differential equation 

OXi 

A more symmetric form for this problem, and one which 
connects more readily with the theory of surfaces, is ob-
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tained when parametric representation is introduced. We 
have then to consider the minimum of an integral 

(28) I F(xi,xifi)dui • • • dun-i, 
J(n-l) 

fori = l, • • • ,n, andjot = l, • • • , n — 1, in which Xin = dxi/dun 
and in which the integral is to be extended over a closed 
manifold in the (n — l)-space of the parameters «i, • • • , 
«n-i- This integral has been studied for the case n — 3, by 
Kobb;* and in the general case by Radon, f I t is found that 
a minimizing surface must satisfy the partial differential 
equations 

1 OUn 

which are not independent, but are connected by the n — 1 

relations 2tP»fft> = 0. 
The first question, which arises in the study of the prob­

lem in this form, refers to the conditions under which the 
integral (28) shall be independent of the choice of the 
parameters ui, • • -, #n-i . The following treatment of 
this question is due to Radon. As in the case of the simple 
problem,} we find that if the integral (28) is to be invariant 
under a transformation of parameters ulx = ulx(u{, • • • , ul _i) 
which preserves the orientation upon a surface, i.e., such 
that 

A = d(«i, • • • , un-i)/d(ui, - • • , «„_i)>0, 

then we must have 

(29) F(xi9 */,) = AF(xi, XiJ. 

Radon observes that if ph represents the determinant ob­
tained from the matrix \\xiti\\ by omitting the hth row 
and prefixing the factor ( — 1) , then condition (29) is 

* See ACTA MATHEMATICA, vol. 16 (1892), p. 65. 
t See MONATSHEFTE FÜR MATHEMATIK UND PHYSIK,VO1. 22 (1911),p.53. 
t See I, §4(c). 
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equivalent to the condition that F(xif xilx) can be expressed 
in terms of Xi and pif F{xi> #t>) = $(xi,pi), and that for 
k>0, we shall have 

$(xi,kpi) = k$(xi,pi) ; 

a condition comparable in simplicity with the homogeneity 
condition (14) for the simple integral in parametric form. 
From this relation we obtain by differentiating with respect 
to k and then putting & = 1, the equation 2Z»-p<$^ = $, a n d 
hence by differentiating with respect to p$ we find the system 
of equations X^/3W,- = 0- From this we conclude that 
there must exist n(n — l)/2 functions &rs such that 

ra 

these functions <£rs play a role analogous to that of the 
function Fi in the simple problem. Instead of to a set of 
n partial differential equations between which there exist 
w —1 linear relations, the first order condition now leads 
to a single equation which a solution of the problem must 
satisfy, viz., 

n n~-1 n 

f s E $ziPi + Z ) 12 $raXhaphr = 0 , 
i-1 r ,a=l h=l 

an equation which resembles in form the Weierstrass 
equation for the simple problem 

Fxy> - Fst+FWy" - x"y') = 0. 

Radon also obtains a simple expression for the transver-
sality condition, a generalization of the Hilbert invariant 
integral, and of the Weierstrass formula. 

The invariance of the integral (28) under parameter 
transformation has also been studied by Vivanti,* by Usai,f 

* See PALERMO RENDICONTI, vol. 33 (1912), p. 268; ANNALI DI MATE-
MATICA, vol. 20 (1913), p. 49; PALERMO RENDICONTI, vol. 47 (1922), p. 232. 

t See GIORNALE DI MATEMATICHE, vol. 52 (1914), p. 63 ; vol. 53 (1915), 
p. 136; LOMBARDO RENDICONTI, vol.48 (1915), p. 77; ibid., vols. 49, 52; 
ANNALI DI MATEMATICA, vol. 31 (1922), p. 279. 
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and by Grosz.* Vivantes earlier papers followed the method 
of Radon, giving, however, details of the reasoning which 
led to the conclusion that F(xt, x^) must be expressible in 
the form $(xi} pi). Usai had attacked the problem by means 
of a partial differential equation for the function F and 
had considered also the case in which F contained partial 
derivatives of the Xi of the second, third, and fourth orders. 
This was highly complicated work involving very elaborate 
calculations. In his 1922 paper, Vivanti developed a very 
simple method leading to a condition for the invariance of 
the simple integral ƒ ' F(x,y9x'fy',x",y", • • -, x(n),y(n))dt, 
which may be stated as follows. 

Let \l/i(i) =y'/x', and let \pr(t) be defined by the recursion 
formula \[/r(t) =x'\l/r-i(t) — (2r — 3)x"i/v_i(/); these func­
tions \j/r are the numerators of the formulas that express 
dry/dxr in terms of the derivatives with respect to t of x 
and y. Then the necessary and sufficient condition for 
the invariance of the integral is that F be a positively 
(or negatively) homogeneous function of degree 1 with re-

specttox',y',[Mt)F3, • • • , WrO)?""1*, • • • , W-Wf 0"" 1 ' . 
After the appearance of the paper, Usai, who had obtained 
an equivalent result by his elaborate methods, returned to 
the problem of the invariance under parameter transfor­
mation of an w-fold integral involving partial derivatives 
of higher order, viz., 

J r\Xi, Xifti^Xinifl3) * ' ') Xin^*• AjJcLUp , 
(n - l ) 

for ju, /xi, • • • , jit* = l, • • * , n — 1; and obtained a result of 
the same character as that of Vivanti. If xn be looked upon 
as a function of the remaining w —1 variables Xi, • • • , 
ffn-ii we find that dxn/dxtl= —pn/pn, where p^ and pn are the 
functions defined by Radon. Similarly, it is found that 

* See MONATSHEFTE FÜR MATHEMATIK UND PHYSIK, vol, 27 (1916), 
p. 70. 
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d2xn a mm dkxn a mu*... ju/b 

dxmdxw pn
z dXm • • -d%nk pnk~l 

where o^ , , • • • , (JHfit. . . nk are polynomials in the partial 
derivatives of Xi up to those of order 2, • • • , k respectively. 
The condition for invariance is now that F be expressible 
as a function of xi} pi, (ÖV1/X|)

1/3, • • •, ( o ^ , . . . ^ ) ~X) and that 
it be positively (or negatively) homogeneous of degree 1 
with respect to pif (o-MlM2)

1/3, • • • , (<rMlMt... Mjfe)
1/(2*"1}. 

These results answered definitively the question of the 
invariance of an (n - l ) - fo ld integral involving n functions 
of n — 1 parameters. The question still remained open with 
regard to an m-fold integral, when l<m<n — l. This was 
answered, at least for integrals involving first partial 
derivatives, by Grosz in the paper referred to above. He 
considers the integral 

I F(zk, zki)dui • • • dun, 
•An) 

for & = 1, • • • , N = n+m1 and i = l, • • • , n. Putting also 
pQ = d(ziy • • • , zn)/d(ui, • • • , un)j and defining the symbol 
£ij(i = l, • • • , n; j = l, • • • , N — n) as the determinant 
obtained from pQ by omitting Zi and placing zn+j behind zn, 
he finds that F must be positively homogeneous of degree 1 
with respect to pa and pa at any point at which the matrix 
of the Zk% is of rank n. 

2. Euler-La grange Rule; Jacobi's Condition. The last 
mentioned paper offers a convenient transition to other 
parts of the theory of the multiple integral. 

(a) The paper by Grosz is concerned primarily with 
an extension of the Lagrange problem to the double integral. 
The problems considered are variations on the following 
central theme of the paper.* To minimize the double 
integral ƒ BJ ƒ (zk\ zkr) duidu2i k = l, • • • , n + 2; r = 1, 2, when 
zk are to be functions of class C" which satisfy the finite 

* See the second footnote on p. 491. 
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equations gT(zlf • • • , £n+2)=0, ir = 1, • • • , p<n> and the 
isoperimetric conditions fBffy(Zk]Zkr)duidu2:=Cyf 7 = 1, • • • , 
q> and which take given values on the boundary of the 
domain B over which the integration takes place. To insure 
non-singularity the requirement is made that the matrix 
\\zkr\\ is everywhere of rank 2. For this problem, an extension 

of the multiplier rule is obtained by the methods developed 
by Hubert and Bolza* for the classical Lagrange problem. 
The result may be stated as follows. If Zk = Zk(ui,U2) is a 
solution of the problem, then there must exist q + 1 constants 
h, - • • » lq and p functions A T ^ I , ^ ) such that Z* and A* 
satisfy the partial differential equations 

d d 

where F^hf+Zlyfy + ZK^-
The variations on this theme are obtained by modifications 

of the conditions which the functions Zk have to satisfy on 
the boundary of the domain of integration B, and by the 
consideration of various possibilities for this boundary, of 
which only rectiflability is presupposed. 

In spite of the considerable generality that is thus attained 
with respect to some elements of the problem, we are still 
far from having a theory of the general Lagrange problem 
for double integrals. Grosz goes further however and ob­
tains an extension of the multiplier rule for the problem 
in which the integral JBJf(x,y,z,u,zx,zy,uXlUy)dxdy is to 
be minimized by functions which must also satisfy the 
partial differential equation zx = g(x, y, Z, %ly %x) • 

(b) An interesting group of investigations is concerned 
with the analog of Jacobi's condition in the theory of the 
integral JBJ'ƒ(#, y, zt p, q)dxdy, where p = dz/dx and 
q==dz/dy. As usually stated in the literature, this condition 
is that for no simple closed analytic curve Ci which lies 

* See the first footnote on p. 491. 
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entirely within B, shall there exist a function f {xiy)) except 
f ~ 0 , which satisfies the equation 

d d 
~T~ \JPP*x i JpQ*v) I ~~~ \JqpCx + J qqÇy) 

ox oy 
(b d \ 

+ n-u + -u-u) =0, 
\dx ay / 

which is continuous on C\ and of class C" in the interior of 
Ci, and which vanishes on C\. Because this condition is not 
readily applicable, it has been a desideratum to replace 
this condition by another in more usable form. One way 
in which this has been done recently* connects up most 
readily with the Jacobi condition III for the simplest 
problem. Writing fy>y,=R and fyy — dfyy>/dx=—A, the 
Jacobi equation (8) takes the form (Ru')'+Au = 0. Consider 
now the boundary problem consisting of the differential 
equation 
(30) {Ru')' + \Au = 0, 

and the conditions u(xi)=0, u'(xi) = l. For this problem 
there exists an infinite set of positive characteristic con­
stants {Xw, n = 0, 1, • • • } and a corresponding system of 
functions \un{x)}, which satisfy the conditions of the 
problem and the further condition ^ n (x 2 )=0. I t has been 
shown by Piconef that a necessary and sufficient condition 
for the existence of a solution of the problem which vanishes 
exactly n times on (xi, x2) is that Xn-i^A<Xn, it being 
understood that we write 0 in place of X_i. Hence if X 0 >1, 
there exists no solution of Jacobi's equation which vanishes 
between Xi and x2 ; and if X0 ^ 1, there exists such a solution 
of the equation. This result makes it possible to replace 
Jacobi's condition by the condition that the least positive 

* See Picone, RENDICONTI DEI LINCEI, vol. 30 (1921), p. 410; also vol. 
31 (1922), p. 46 and p. 94. 

t See ANNALI SCUOLA NORMALE DI PISA, vol. 11 (1909), p. 3. 

file:///JqpCx
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characteristic number X0 for the boundary problem (30) be 
greater than 1. 

The proof of the necessity of the condition X 0 ^ l for a 
permanent sign of the second variation is simply made. For, 
Xo being less than 1, let us suppose that X„_X<1^X,. 
Multiplying the equation (Run)'+\nAun = 0 through by 
un, and integrating, we find 

Au£dx = I un{Run)'d% 
x\ */ xi 

I X'Z S*X2 

— I Run2dx, 
xi J xi or 

Run2d% — \n f Au%dx. 
x, J x. 

Hence, if Legendre's condition for a minimum is satisfied, 
fl\ Aun

2dx>0] and moreover, we can show that for n<v, 
fx

z\(Run'
2 - Au2)dx < 0, while ƒ*(£«»'2 - Au2) dx^O for 

n^v. From this we conclude that if Jacobi's condition is not 
satisfied, the second variation can be made negative as well 
as positive by functions u which vanish at X\ and #2. 

The boundary problem (30) is equivalent to the linear 
integral equation* 

J» #2 

G(*,ÉM(Ö«(Ö#, 
XI 

in which G(xt £) is the corresponding Green's function; 
and the characteristic values Xn are the roots of the 
Fredholm determinant for this equation, FÇS). We are 
therefore able to replace Jacobi's condition by the condi­
tion that ^ ( X ) ^ 0 on (0, 1). I t is this last form of 
Jacobi's condition which Picone has carried over to the 
theory of the double integral. 

* See, e.g., Bôcher, Leçons sur les Méthodes de Sturm, p. 108 et seq. 
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The results which have here been indicated, and which 
run very close to investigations of Richardson,* had pre­
viously been given by Lichtenstein in papersf which carry 
the problem a great deal farther. Starting from the work 
of Schwarz on minimal surfaces,{ he follows, for the general 
double integral, the method suggested above, and discusses 
also the case in which the least positive characteristic 
constant Xo is equal to 1. He proved also that if X 0 >1, the 
extremal can be imbedded in a field, and then extends the 
results to include the case in which the boundary of the 
minimizing surface is not fixed. 

This latter case forms the subject of a recent doctoral 
dissertation by Simmons. § He secured a very simple form 
for the second variation of the integral and deduced from 
this a formulation of the Jacobi condition in terms of a 
boundary value problem. 

(c) Mention should finally be made of another method 
of dealing with the second variation of the double integral 
in parametric form, the object of which is to make a reduc­
tion of the second variation for this case to the form which 
it has in the non-parametric case. This reduction is based on 
a treatment of linear partial differential forms, similar to 
that used by the author for ordinary linear differential 
forms in the study of the second variation of the simple 
integral in parametric form.|| 

3. A General Formulation. The discussion of the problems 
which have been mentioned thus far makes it possible to 

* See MATHEMATISCHE ANNALEN, vol. 68 (1910), p. 279; vol. 71 (1911), 

p. 214; TRANSACTIONS OF THIS SOCIETY, vol. 13 (1912), p . 22; vol. 18 

(1917), p. 489. 

t SeeSiTZUNGSBERiCHTE DER BERLINER GESELLSCHAFT, vol. 14 (1915), 
p. 119; MONATSHEFTE FÜR MATHEMATIK UND PHYSIK, vol. 28 (1917), p. 1 ; 

MATHEMATISCHE ZEITSCHRIFT, vol. 5 (1919), p. 26. 

Î See GESAMMELTE ABHANDLUNGEN, vol. 1, p. 223. 

§ See Report of the April meeting of this Society, this BULLETIN, vol. 
32 (1926), p. 221. 

II See ANNALS OF MATHEMATICS, (2), vol. 13 (1912), p . 149; vol. 15 

(1913), p. 78. 
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formulate now in general terms the problems of the calculus 
of variations involving integrals of various kinds. In every 
such problem we are concerned with an integral of the 
following form : 

J" / dxv 

**{ h> " V m J %U ' * ') %n > ~~ > ' ' ' ') 
M \ dtp 

drxp \ 
)dh - - - dtm, 

n;=1V 
in which tn^n, and r is an arbitrary integer, and in which 
the function F is subject to conditions of continuity. The 
integration is extended over a closed domain M in the 
m-dimensional space of the variables t», which may be 
completely determined, or which may merely be conditioned 
by restrictions that determine it incompletely. 

In the second place we are concerned with a class Ko of 
sets of functions ffi(//*), • • • , xn (tn), or with a class Ko of 
m-dimensional manifolds in ^-dimensional space (fn<n), 
represented by a set of functions xv(tv) or by a set of functions 
^ \ ( T M ) , where 

in which the functions T^TI, • • • , rm) are of class C' and 
such that d(Ti, • • • , Tm)/d(ru • • • , rm) > 0 . The class K0 

is further restricted by conditions on the functions which 
make up the set Xi, • • • , xn; these conditions may be in 
the first place continuity conditions, and further they may 
take the form of finite equations, or of differential equations, 
ordinary or partial; finally they include conditions which 
these functions must satisfy on the boundary of the closed 
domain M over which the integration is extended. 

Finally we are concerned with a subclass K\ of the class 
K0 ; this subclass usually is defined by means of such sets of 
functions X\y , x<fi a s lie within a prescribed neighborhood 
of a particular one of these sets. This neighborhood may be 



510 ARNOLD DRESDEN [Sept.-Oct., 

of order 0, 1, • • • , p, according as the conditions defining 
it include 1,2, • • • , £ + 1 of the inequalities 

I y, - *n\ < P , | y / - * / | < P , • • •, | yM
(,,) - *M(2,)I < P -

With these elements in mind, we may now state the general 
problem to be one in which we ask for an element of class 
Ko, which shall give to the integral a value not greater (less) 
than that which it has for any element of class K\. If 
KI^KQ, we have the problem of an absolute minimum 
(maximum) ; if Ki is a proper subclass of K0 we have a 
problem of a relative minimum (maximum), the order of 
the problem being determined by the type of neighborhood 
involved in the definition of K\. 

IV. ABSOLUTE MINIMA AND FUNCTIONAL CALCULUS 

1. Minima of Functionals. In 1904, Hubert formulated 
the following general minimum problem. An infinite class 
K of mathematical objects a, &, • • • is given; also an 
operator J associating with each element a real number. 
To determine an element of K to which corresponds the 
smallest number.* Apart from the evident vagueness of 
this problem, it is clear that it includes a vast number of 
problems many of which are not, as far as we can see now, 
problems of the calculus of variations and are not reducible 
to such problems. Among them are the ordinary maxima 
and minima problems, problems like that of Kakeyaf which 
asks for the least area in which it is possible to turn a line 
of given length through an angle of 180° and also the type 
of problem which has been discussed by Bonnesen,J Le-
besgue,§ Blaschke|| and others. I t includes the general 
problem of the minima and maxima of functionals. And the 

* See Bolza, Vorlesungen, p. 16, footnote, 
t See, e.g., Ford, this BULLETIN, vol. 28 (1922), p. 45. 
t See MATHEMATISCHE ANNALEN, vol. 91 (1924), p. 252 ; vol. 95 (1925), 

p. 267. 
§ See JOURNAL DE MATHÉMATIQUES, (8), vol. 4 (1921), p. 67. 
II See MATHEMATISCHE ZEITSCHRIFT, vol. 6 (1920), p. 281. 
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calculus of variations may indeed be conceived as a part 
of the broader theory. 

This standpoint, clearly suggested by the work of Volterra, 
was definitely introduced in the calculus of variations by 
Hadamard,* but only in a tentative way. I t has been 
systematically developed by Tonelli, in his Fundamenti 
di Calcolo dette Variazioni, to which the greater part of 
the present section will be devoted. In the discussion of 
the Euler-Lagrange multiplier rule we have already called 
attention to the extension of this rule by Hahnf to the case 
in which the integrals are replaced by more general function-
als. Mention must also be made of a paper by LeStourgeon,$ 
which is concerned with minima of functionals (in particular 
of functions of lines), of such character as to include the 
integrals of the calculus of variations. The independent 
variables are arcs of curve defined by equations 

y = X(x), a S x ^ b. 

For each arc X of a class L of such arcs there is defined a 
real number F(k). The problem considered is that of deter­
mining an arc X0 of L for which there shall exist a number 
d) of such character that for every arc of L for which |X—Xo| 
<d, |X'-Xo' | <d9 we shall have FQs>)^FÇK0). We say that 
FÇK) has a differential at X0 if there exists a linear func­
tional L(rj) with continuity of order 1, such that 

FÇKo+rj) - ^(Xo) =£(1?) +€fo)Jlf ifa), 

where Mi(rj) is the maximum \rj\ and |rç'| on (a, &), and 
e(r})—»0 with Mi(rj). Similarly, FÇK) is said to have a second 
differential a t X0 if there exists a linear functional L(X) 
and a bilinear functional B(\, ju), such that 

^(Xo + V) - F(\o) = L(ri) + B(V, y) + MKv) • *(v), 

where e(rj) and M(r)) are defined as before. 

* See Leçons sur le Calcul des Variations, Book 2, Chap. 7. 
t See II, §2(c). 
X See TRANSACTIONS OF THIS SOCIETY, vol. 21 (1920), p. 357. 
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By a modification of the theory of Riesz, referred to 
above,* it is shown that a linear functional L(X) which has 
continuity of order 1, is expressible, in an infinitude of ways, 
in the form 

\(x)du(x) + I \'(x)dui(x) j 
a *)a 

where u(x) and Ui(x) are functions of limited variation on 
(a, b) ; and also that a bilinear functional Z?(X, JU) which has 
continuity of order 1 in each variable, when the other is 
fixed, can be expressed in the form 

Hx)fx(y)dxyp(x,y) + I I \'(x)fi(y)dxvq'(x,y) 
„ J a +J c 

nd /%b s*d 

^V>'dxyq"(x,y) + I I \'ix'dxyr(x,y) 
J a *) c 

in which p, q', q", r are of limited variation in x and y 
separately and jointly. 

I t is now shown that conditions of the first and second 
orders for a minimum of FÇK), which is supposed to possess 
a second differential, are obtained from the conditions 
L(rj)=0 and B(rj, rj) ^ 0 ; and from these, generalizations of 
the Euler equation, of the transversality condition and 
of the Jacobi condition are obtained, the latter by applying 
Bliss' methodf to the condition J3(?7, rj) ̂ 0 . 

2. Introduction to Tonelli's Work. In the two volumes of 
Tonelli's Fondamenti which have thus far appeared, the 
simplest problem of the calculus of variations is discussed, 
both in the form (1) and in the parametric form (13), with 
and without an isoperimetric condition. We shall confine 
our brief account of this work to the theory of the unrestricted 
integral (13). This integral associates a real number with 
every curve C of a certain class, and is therefore a function 
of such curves; the integral is studied with regard to its 
dependence upon the curve. 

* See the footnote on p. 496. 
t See I, §5 (b). 
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The various problems of the calculus of variations which 
have been discussed in earlier sections, are concerned with 
the relative extremes of an integral ; i.e., they are problems 
for which the class K\ is a proper subclass of K$. To secure 
knowledge of the absolute extremes, one might conceivably, 
after having determined all relative extremes, determine 
that one among them, which gives to the integral the smallest 
value. 

But this method leaves out of account the difficulty that 
arises in case there is an infinitude of relative extremands, in 
which case one cannot be sure that any absolute extreme 
exists. The question as to the existence of an absolute 
extreme has given rise to the famous Dirichlet principle, 
according to which it was argued that 

(«I + u$) dxdy 

must have a minimum, because its value is always ^ 0. 
That this conclusion involves a confusion between minimum 
and greatest lower bound was pointed out by Weierstrass. 

A first step in the direction of establishing conditions 
which will insure the existence of an absolute extreme was 
taken by Hubert,* who proved an existence theorem, which 
has since been extended to the following form. 

If (1) F(x, y, x', y') is of class C" and positively homo­
geneous of degree 1 in x' and yf in a region T, defined by 
(x, y) in i?, x / 2 +;y / 2 ^0 , 

(2) F(x, y cos 7, sin 7) > 0 for (#, y) in R0, a domain in 
the interior of R, and y arbitrary, 

(3) Fi (x, yj cos 7, sin 7) >0 , for (x, y) in Ro and 7 arbi­
trary, 

(4) R0 is bounded, closed, and convex, 

(5) A\ and A2 are two distinct points of Ro. 

* See JAHRESBERICHT DER VEREINIGUNG, vol. 8 (1899), p . 184; see also 

Bolza, loc. cit., Chap. IX. 

ƒƒ 
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Then there exists at least one rectifiable curve H join­
ing A\ and A2l which furnishes an absolute minimum for a 
suitably generalized integral 

§ F(x,y}x'iy')dt, 

with respect to the totality of rectifiable curves which join 
Ai and A2 and which lie in RQ. A large part of Tonelli's 
second volume is devoted to existence theorems of this 
general character. Tha t we have a problem here very 
different from the corresponding one in the theory of 
functions of a real variable becomes clear when we realize 
that the functionals of the calculus of variations do not 
possess the continuity property which is basal in the other 
theory. A very wide class of integrals of the calculus of 
variations possess lower semicontinuity, which property ac­
cordingly occupies a central position in Tonelli's treatment.* 
In order to obtain an idea of the scope of this treatment, we 
must take up a few agreements and definitions. The integral 
(13) taken along a curve C is denoted by /<?• 

(1) A point set A of the xj-plane, such that those of 
its points which belong to any circle form a closed set, is 
called a region. The function F(x, y, x'', y') is understood 
to be of class C, and of class C" with respect to x' and y' 
for (x, y) in A and x'2+y'29*0 ; and also to satisfy the homo­
geneity condition (14). 

(2) If Fx>0(<0) for (x, y) in A and x'2 + y'29*0, 
the integral Ic is called positively (negatively) regular; if 
^ i ^ O ( g O ) , Ic is called positively (negatively) quasi-regular. 

(3) If FxèO for (x, y) in A and x'2+y'2^0, and if for 
no point (x, y) in A, the values of d for which Fi(x, y, 
cos 6j s i n0 )=O fill up any subinterval of (0, 2ir), Ic is 
called normally quasi-regular. 

(4) If Fi^O for (x, y) in A and x'2+y/2^0, and if for 
no point in A, we have Fi(x, y, cos 0, sin 6) = 0 for all 0, 
Ic is called semi-normally quasi-regular. 

* See an article by Tonelli, this BULLETIN, vol. 31 (1925), p. 163. 
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(5) If .F>0(<0) for (x,y) in A and xf2+y'2^0, Ic is 
called positively (negatively) definite; if i ^ O ( g O ) , Ic is 
called positively (negatively) semi-definite. 

(6) An ordinary curve is one which lies in the region A 
and which is rectifiable. 

(7) A class K of ordinary curves is called complete if 
every rectifiable accumulation curve of the set also belongs 
to the set. 

3. TonellVs Treatment. With these definitions in mind, 
we proceed to the following theorem. 

(a) If IQ is positively quasi-regular, and if for a given 
complete class K of ordinary curves C, all in a bounded 
portion Ai of A, it is possible to determine a function $>(«), 
defined and continuous for all real values of ce, always 
non-negative and non-decreasing, such that for any curve C 
of K} we have 

in which L is the length of C, then Ic has an absolute 
minimum in K. 

We shall indicate the principal steps in the proof of 
this theorem, so as to obtain an insight into Tonelli's 
method and because it acquaints us with some of the central 
features of his theory. Let {Cn}, n = 1, 2, • • - , be a sequence 
of sets of ordinary curves taken from K, such that for 
every curve Cn of the set {Cn}, we shall have 

1 
Icn < i + - y or Icn< - n> 

n 

i being the greatest lower bound of the values of Ic in K, 
according as i is finite or infinite, this greatest lower bound 
being necessarily equal to — oo in the latter case. We show 
then first of all that i is finite; for in the contrary case we 
would have in virtue of the hypotheses on <£(a), if Ln 

denotes the length of Cni 

Ln^ $(Icn) ^ * ( - » ) ^ * ( - l ) . 



516 ARNOLD DRESDEN [Sept.-Oct., 

Hence, if M is the maximum of \F(x, y, cos 0, sin 0)| for 
(xf y) in A\ and for O^0fg27r, we shall have 

but this result contradicts the condition Icn< —n. 
We conclude that we have for every curve Cn of the 

set {Cn}f Icn < i+ 1/n ; and consequently 

Ln ^ HIcn) ^ *(i + ~) ^ *(* + l) i 

so that the lengths of the curves of the sets {Cn} are bounded. 
Now we make use of an important theorem of Hubert* 
according to which an "infinite set of continuous curves, 
all contained in a bounded region and whose lengths form 
a bounded set, has a t least one continuous and rectifiable 
accumulation curve." This theorem has played an im­
portant part in Hubert 's existence proofs, and it is not 
surprising to see it appear here. We conclude from it 
that the set of curves K has a rectifiable accumulation 
curve C0. I t is readily proved that C0 must lie within the 
region A and that its length L0 is less than or equal to 
$ ( i + l ) ; hence, since the class K is complete, this curve Co 
belongs to K. 

Now Tonelli has provedf that "If Ic is positively quasi-
regular, and L is an arbitrary positive number, then Ic 
is a lower semi-continuous function on the set of ordinary 
curves whose length is less than L" From this it follows 
that Ic is lower semi-continuous on Co, which means that 
for any e, there exists a p, such that for any ordinary curve C 
which lies in the p-neighborhood of Co, we have 

ICo < Ic + e . 

In particular, therefore, there exists an nt, such that if 
n>ne) there is at least one curve Cn for which 

ÏÇ <ICn + t-

* See JAHRESBERICHT DER VEREINIGUNG, vol. 8 (1900), p. 184. 

f See Fondamenti, vol. I, p. 292. 



1926.] THE CALCULUS OF VARIATIONS 517 

Consequently, / ^ « O ' + l/w + e, for every n>n€; hence we 
conclude Ic^i + e, and therefore Ic^Si- On the other 
hand, since C0 is in K, we must have 7c 0 è^î therefore we 
obtain the final result that IcQ — iy which means that the 
rectifiable curve C0 furnishes an absolute minimum for Ic> 

(b) There is a second criterion for the existence of an 
absolute minimum of IQ, for the case that IQ is positively 
quasi-regular and positively semi-definite; the proof depends 
in an essential manner on the fact that also in this case IQ 
is lower semi-continuous. From these two criteria, twelve 
existence theorems for an absolute minimum are derived 
which form a nucleus for the further developments and 
which constitute therefore a very fundamental part of the 
work. Thus it is seen how essential a role the lower semi-
continuity of Ic plays in Tonelli's theory of the absolute 
minimum, and it is not surprising therefore that the first 
volume of his work has as its central purpose the study of 
this property. There are given a large number of necessary 
conditions, of sufficient conditions, and of conditions 
which are both necessary and sufficient for the lower semi-
continuity of ICl over the entire class of ordinary curves 
(i. e. uniform lower semi-continuity), over a restricted 
class of curves, or on a particular curve. Among the results 
that are obtained it is interesting to note the following : 

(1) If Ic is positively quasi-regular and positively definite, 
it is lower semi-continuous. 

(2) If Ic is lower semi-continuous in A, then Fi(x, y, 
cos 7, sin 7 ) ^ 0 for every 7 and for every point (x, y) 
which is interior to A or is a limiting point of interior 
points of A. 

(3) If A satisfies a certain condition of convexity, and 
if Ic is positively definite, then a necessary and sufficient 
condition for the lower semi-continuity of Ic on an ordinary 
curve Co in A is that for "nearly every point" of CQ and 
for all values of 0, we have 

E(XQ, y0l cos 0o, sin 0O, cos 0, sin 0) ^ 0 . 
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4. Further Developments. Once the question as to the 
existence of a curve which furnishes an absolute minimum 
has been answered more or less completely, attention is 
turned to the properties of such curves. 

(a) From the conditions for semi-continuity and the 
relation of this property to the existence of minima, the 
necessity of the conditions of Legendre and Weierstrass 
follows without difficulty. I t is next shown in the usual 
way that at every point of a minimizing curve of class C' 
which lies in the interior of the region A, the Eulër equations 
must be satisfied; also, that every ordinary extremand 
which is not of class C' must satisfy the equations 

r' d rs rs d ra 

I Fxds I Fx>ds = Cly I Fyds I 2 V ^ = C2, 
Jo dsJo Jo dsJo 

along every one of its arcs whose points fall entirely within A ; 
a curve satisfying these equations is called an extremaloid. 

(b) When we come to the question of the existence of 
extremals and extremaloids, it is clear that this can be 
answered by means of the existence theorems for absolute 
minima. For a variety of conditions are known under which 
there must exist a t least one minimizing curve ; moreover, 
such a curve must be an extremal or an extremaloid— 
hence we can infer the existence of extremals (extremaloids). 

We observe tha t this procedure suggests a new method 
for proving the existence of solutions of differential equa­
tions of the second order, since such an equation may always 
be looked upon as the Euler equation of some problem of 
the calculus of variations. At any rate the existence of 
extremals is put on a basis independent of the existence 
theorems for differential equations. In consequence of this 
the problems concerning the uniqueness of extremals, their 
dependence on the initial points and their differentialibity 
with respect to initial data receive a treatment which does 
not, as usually has been the case, depend upon the theory 
of differential equations. And finally, necessary and suffi-
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cient conditions for relative minima are derivable from 
those for absolute minima ; thus a connection is established 
with the classical theory. 

(c) For the simplest problems of the calculus of varia­
tions, Tonelli's method dominated by the point of view of 
the functional calculus, has led to an important re-orientation 
of the subject, and to the establishment of an imposing 
group of existence theorems. How fruitful it will prove to 
be in the study of more complicated problems, and whether 
it will enable us to study functionals of more general char­
acter than those included in the calculus of variations, are 
questions which I am not able to answer. Certainly, our 
knowledge concerning the minima of multiple integrals, at 
present handicapped by the incompleteness of our knowledge 
concerning partial differential equations, would be greatly 
enlarged if the functional methods were to prove extensible 
so as also to cover these cases. 

V. APPENDIX 

In this report on progress in the calculus of variations, 
I have of necessity limited myself to a few of the subdivisions 
of this field. No mention has been made, e. g., of the appli­
cations and extensions which are being made in the newer 
differential geometry of calculus of variations concepts. 
Moreover, I could not aspire to completeness in those parts of 
the subject with which I did deal. While very useful bibliog­
raphies for the calculus of variations up to 1920 have been 
published by Lecat,* it will be worth while to list here, 
although merely by title, some additional papers which have 
come to my attention, and which are not mentioned by 
Lecat, most of them being subsequent to 1920. 

* See Bibliographie du Calcul des Variations, depuis les origines jusqu' 
à 1850, Paris, Hermann; Bibliographie du Calcul des Variations, 1850-
1913, Paris, Hermann; Appendix to the Bibliographie des Séries Trigono-
métriques, published by the author, Avenue des Alliés, 92, Louvain, which 
carries the bibliography of the calculus of variations up to 1920. 
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