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A BOUNDARY VALUE PROBLEM IN T H E 
CALCULUS OF VARIATIONS* 

BY G. A. BLISS 

1. Introduction. I t is well known that the necessary con­
dition of Jacobi for a problem with fixed end-points in the 
calculus of variations is closely related to a certain boundary 
value problem associated with Jacobi's differential equation.f 
If Jacobi's condition is satisfied then the smallest value Xi 
of the parameter X of the boundary value problem, for which 
that problem has a solution, must satisfy the inequality 
Xi^O, and conversely. In the following pages it is proposed 
to deduce a similar relationship for problems of the calculus 
of variations with variable end-points. The corresponding 
boundary value problem has end conditions of a more 
general type than those which arise when the end-points 
of the original calculus of variations problem are fixed. 
The existence of the smallest value Xi is established by 
methods of the calculus of variations, in particular by means 
of a theorem analogous to a well known theorem of Osgood.J 
It seems likely that a complete theory of self-ad joint boun­
dary value problems for ordinary differential equations, with 
end conditions of a very general type, can be deduced from 
theorems already well known in the calculus of variations. 
So far as I know this has never been done, though many 
significant relationships have of course been pointed out.§ 

2. The Calculus of Variations Problem and its Second 
Variation. Let C\ and C2 be two arcs with the parametric 
equations 

* Presented to the Society, April 14, 1922. 
f See, for example, Lovitt, Linear Integral Equations, p . 207. 
% TRANSACTIONS OF THIS SOCIETY, vol. 2 (1901), p. 273. 

§ See, for example, Richardson, MATHEMATISCHE ANNALEN, vol. 68 
(1910), p . 279; Plancherel, BULLETIN DES SCIENCES MATHÉMATIQUES, 

vol. 47 (1923), p . 376. 
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(Ci) x = Xi(u) , y=Yi{u), (*=1, 2) 

and let E be an arc 

(E) y = y(x) (xiSx^x2) 

intersecting them, respectively, in points 1 and 2, as shown 
in the accompanying figure. We suppose that the functions 
defining C\ and C2 have continuous first and second deriva­

tives and that these arcs have no singular points. The arc 
E is continuous and consists of a finite number of pieces 
each of which has a continuously turning tangent. 

Consider now an integral 

I=f**f{%,y,yf)dx 

whose integrand function f(x, y, yf) has continuous partial 
derivatives up to and including those of the fourth order for 
all sets of values (x, y, yf) in a neighborhood of those on E. 
The arcs which have continuity properties similar to those 
of E and whose elements all lie in this neighborhood may be 
called admissible arcs. The problem before us is to discuss 
the necessary conditions which E must satisfy if it mini­
mizes I in the class of admissible arcs joining C± and C2. 

It is well known that an equation fy=fafy dx + c must be 
satisfied by .£,* from which it follows that the function jfy is 
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necessarily continuous, when considered as a function of x 
along E, even at the corners of E, and that the Euler equation 

d 
(1) -fv>=fv 

ax 
is satisfied on every sub-arc of E on which the tangent turns 
continuously. Furthermore at the points 1 and 2 the trans-
versality condition 

(2) f(x!y,y')X'+(Y'-y'X')fy,(x,y,y') = 0 

must be satisfied by the element (x,y,yf) of E and the di­
rection X' \ Y' of the arc C\ or C2.\ We assume, as is cus­
tomary for problems with variable end-points in the cal­
culus of variations, that the value of ƒ at the points 1 and 2 
on E is different from zero. Since C\ and C2 have no singular 
points it follows from this assumption and equation (2) 
that the difference Y' — y'X' is not zero at the points 1 and 
2, or in other words that E is not tangent to either C\ or C2. 

In the discussion of further necessary conditions for a 
minimum we may agree to limit ourselves to arcs E for which 
the function y{x) has continuous first and second derivatives 
on an interval containing X\X2, and we may consider as usual 
a one-parameter family of arcs of the form 

(3) y = y{x) + ar)(x) = y(x, a) 

where 77 has continuity properties like those just prescribed 
for y(x) but is otherwise arbitrary. The equations 

(4) Y1(uz)-y(X1(us),a)=0 , Y2(u4)-y(X2(ué)ya) = 0 

determine the parameter values ih and u± where the arc (3) 
intersects Ci and C2, respectively, as shown in Figure 1. 
The former, for example, has a solution (uz,a) = (wi,0), 
corresponding to the point 1 of the figure, at which the 
derivative of its first member with respect to u% is 

rt(*i)-y*(XÎ(«i^ • 

* Bliss, Calculus of Variations, p . 130. 
f Bliss, loc. cit., p . 167. 
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I t follows from well known implicit function theorems that 
the first equation (4) has a unique solution u$(a) with con­
tinuous first and second derivatives near a = 0 and with 
the initial value Us(0)=ui. The second has a similar solu­
tion u±{a) with initial value UA(0)—U2. The derivatives at 
a = 0 of these two functions are both defined by the equation 

du ya(X,0) ri(x) 

da Y'-yx(Xi0)X' Y'-y\X)X' 

when suitable subscripts are attached to X and F, and when 
the arguments U\ and u2, respectively, are substituted. 
The coordinates of the intersection points 3 and 4 are also 
functions of a defined by the equations 

Xz(a) = Xi(u*(a)) , yz{a) = y(xz(a) ,a) = Yi(uz(a)) , 

xi(a) = X2 (u±(a)) , 3/40) = y (x±(a), a) = F2 («4(0)) , 

and their derivatives satisfy the relations 

(6) 

dx du 
— =X'— , 
da da 

d2x d2u 
=X' \-X 

da2 da2 

/ du y 
\dâ) ' 

dy dx du 

da da da 

/dx\2 dx d2u / du\2 

( — ) + 2yxa—= Y' + F"( ). 
\daj da da2 \ da J 

d2y d2x /dx\2 dx d2u / du\2 

•S I I I I / - » -r-rt 1 TT / ƒ f 1 

== yx Y yxx 
da2 da2 

If the arc E minimizes / as described above the function 

J(<0 = f 4f(%,y(%,a),yx(x,a))dx 
v Xs 

taken along the arc (3) from its intersection 3 with C\ to 
its intersection 4 with C2 must have a minimum at the value 
a = 0, and its derivatives must satisfy the conditions I'(0) = 0, 
I"(P) ^ 0 . The values of these derivatives are readily found 
to be 

dx I4 f*Xi 

i\a)=f— + \ (fyya+fy>yxa)dx, 
da Is J a?a 
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d x /dx*\ 
i" (a) =ƒ — + (f.+f*y*+fyy~) [ - ) 

dx l4 rx* 
+ 2(fvya+fy>yxa)— + I 2<û\X,ya,yax)dx 

da I3 Jxz 

where 2co(#, rç, V) = fyyr)2 + 2fyy>rir}' + /^v7?'2 . When a = 0, 
the first of these vanishes, as may be shown by integrating 
the second term of the integrand by parts and applying 
Euler's equation (1) and the transversality conditions (2). 
With the help of the last equation (6) the second derivative 
at a — 0 takes the form 

d^x d^v /dx\^ 
J»(0) = (f-yxfy,) +fyl i- + (fx + yxfy) ( - ) 

da2 da2 \da/ 
dx I2 fx* 

+ 2fyya— \ + I 2a)(x,ya,yax)dx . 
da h J X1 

When the partial derivatives ya = V and the total derivatives 
of x and y with respect to a are substituted from equations 
(6) and (5) it is found after some computation that this 
derivative has the value 

(7) r(0) = W\2
i+ f*L(x,ri9r,')dx 

where L is defined by the equations 

M VX'2+ Yn 

L=-+N , M= [X%.-Y'(ƒ-y%,)] r ' ' l J" "J "JVJi (Y'-y'X'Y ' 

N- [(f*H>y')X'+2fv(Y>-y'X>)]^^ , 

in which r is the radius of curvature of C\ or C2- The only 
term which might cause difficulty in this computation is 
the term M/r in L. To find it we note with the help of equa­
tions (6) that 

dP'x d^v d^u 
(8) ( / - y ' / » ' ) — + ƒ , ' — = [(f-y%>)x'+f,Y'] — 

aa aa aa 

+ [(f-y%')x"+fv.Y"}(~y 
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The coefficient of d2u/da2 in this expression vanishes at 1 
and 2 on account of the transversality condition (2), and it 
follows from the same condition that at those points 

X'fv—Y'U-y'fv) 

With the help of the value (5) for du/da we now find that 
the value of the expression (8) is (M/r)rj2. The other terms 
in the expression for /"(O) give no trouble, and we may 
summarize the results of this section as follows. 

THEOREM 1. If the arc E is to minimize the integral I 
in a class of neighboring arcs joining the curves C\ and C2, 
as described above, then the expression (7) for the second varia­
tion I"{0) must be ^Ofor every function rj{x) having continuous 
first and second derivatives on the interval X\X2. 

One can infer readily that I"(0) must also be ^ 0 for all 
continuous functions rj(x) on X\X2 which have continuous 
first derivatives except possibly at a finite number of corners. 
This can be done by modifying suitably the analysis of the 
preceding paragraphs, or by showing that every function 
rj(x) of this character can be approximated by a polynomial 
giving I"(0) a value near to that for r}(x).* 

3. The Problem of Minimizing the Second Variation. Let 
us consider in this section the problem of determining when 
an expression of the form 

212 (xj rj, r]')dx 

is ^ 0 in the class II of functions rj(x) continuous on XiX2 

and having continuous derivatives except possibly at a 
finite number of corners. The integrand 20 is understood 
to be a quadratic form 

2Q(x, y, y') =P(x)v2+2Q(x)r1V
f + RMrif2 

with R>0 on XiX2 and with P,Q,R having continuous first 
* Hadamard, Calcul des Variations, pp. 51-54. 
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derivatives on this interval. The second variation (7) is 
easily seen to be an integral of the type I^rf) if we set 

(9) 2Ü = — W +fwV2 + 2fyv,rJv'+fv>v>v'2 , 
ax 

where L is a function of x with continuous second derivatives 
on Xix2 and with L\ and L% as initial and end-values on this 
interval. 

The problem of minimizing 12(11) in the class / / of func­
tions rj(x) is that of finding a curve in the #?7-plane joining 
the two ordinates x = Xi and x = x2 and minimizing J2O?). 
It is therefore of the same type as the original problem of 
the last section in the :ry-plane, and it is clear that a mini­
mizing curve for the ^-problem must satisfy an equation 

Q,v>— I tirjdx+c 

and the transversality conditions 

(10) a„, | i = 0 , 12^|2 = 0 . 

If we substitute the derivatives of the quadratic form 12 
in these three equations we find from the first that a mini­
mizing function rj(x) must have continuous first and second 
derivatives and satisfy the Jacobi equation 

d 
(11) Q, ^ = ( P ~ Q ' ) * ? - ^ y - ^ ' ' = 0 

dx 
where 12 is defined by the equation preceding (9). This is 
identical with the Jacobi equation deduced from the quad­
ratic form 2co in the second variation (7) when 212 has the 
value (9), as one readily verifies. The equations (10) show 
that a minimizing function must further satisfy the boundary 
conditions 

where the numerical subscripts designate the values of 
Q(x), R(x) at xi or x2. One can readily interpret these condi­
tions in terms of the coefficients of the quadratic form 2co 
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and the constants L\ and L2 of the second variation when 212 
has the value (9). We have then the following result. 

THEOREM 2. A function rj(x) which minimizes 1~2(rj) in the 
class H must have continuous first and second derivatives and 
be a solution of the boundary value problem 

where J(rj) is a symbol for the first member of the Jacobi 
equation (11). 

We shall need presently the following lemma. 

LEMMA 1. If u(x) is a solution of the equation J(u)=0 
and is different from zero on Xix2 then for every rj(x) in the 
class H 

2Q,dx = — üur\ + I R(x) I ri' u' )dx 
xi U 11 J xi V U / 

where Çlu> = Çln>(x,u,u'). 

To prove this consider the function a(x) and its derivative 
determined by the equations 

rj(x) =a(x) u(x), 7]' = au'+afu. 

With the help of Taylor's formula and the equation J(u) = 0 
we see that 

2 £2(#, 7], rf) — 20 (%, au j au') + 2a''u tiv'(x, au, au') +Ra'2u2 

= a2 (utiu+u'tiu') + 2aa'uQu> -\-Ra'2u2 

d 

= — a2u<àu.+R(r)'-au')2 

dx 

d V2 / V Y 
= - Qui + RIri' u'). 

dx u \ u / 
An integration gives at once the formula of the lemma. 

THEOREM 3. A necessary and sufficient condition that the 
relation I2(v) = 0 shall hold f or every, function r)(x) of the class 
H is that the two solutions u\(x), u%(x) of the equation J(u) = 0 
defined by the conditions 
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ui(xi) = Ri , Ui'(xi) = -Qi , 
ylo) 

U2(X2) = R2 , ^2,(X2) = — <?2 , 

be positive and have 

(14) U2Ui—UiU2f>0 

on the interval Xix2. 

T o prove t h e necessi ty we n o t e first t h a t for every solu­

tion u(x) of the equa t ion J{u) = 0 we have 

x d 

(15) 2tt(x,u,u') = UQU+M'QU' = —uQu>. 
dx 

T h e function U\{x) is posi t ive a t x = X\ and can no t vanish 

a t a n y va lue £ be tween Xi and x2. Otherwise we could de­

fine rj(x) by the equa t ions 

rj(x) = Ui(x) for tfi^tf^i;, 

= 0 for £^-x^X2, 

and for this function we should find wi th t he help of (15) 

the va lue 

l2(rj) = UiÇlu'\ = 0 1 S 

since Çlu[ vanishes a t Xi and U\ a t £. B u t this function rj(x) 

would have a d i scont inuous de r iva t ive a t x= £ since a solu­

t ion ^ i (x) of J ( ^ ) = 0 can vanish wi th i ts de r iva t ive only 

when ident ical ly zero. Hence rj(x) could no t minimize A M 

and the re would be rç's giving J2O7) nega t ive va lues . In t he 

s ame m a n n e r we m a y prove t h a t U2(x) does no t van ish 

be tween x± and x2 when the values of I2M a r e all ^ 0 in H. 

T h e equa t ion 

d 
0 = UiJ(u2) — U2J(Ui) = R \U2U1 — U1U2) 

dx 

shows t h a t 
(16) R(u2Ui —U1U2) = c 

and hence t h a t the d e t e r m i n a n t (14) has a lways the same 

file:///U2U1


326 G. A. BLISS [July-Aug., 

sign or else vanishes identically on X\X2. We may define 
rj(x) by the equations 

r)(x)=u2(£)Ui(x) for xi^x^Ç, 

= Ui(Ç)u2(x) for £Sx^x2, 

and the value of I2(r}), with the help of (15), is then 

/ 2 ( » = U1U2 (u&u^ — UiQw) I £ = CU1(^)U2(0 

which would be negative, since U\ and u2 are both positive 
between X\ and x2, if the constant c in equation (16) were 
negative. Hence we see that the determinant (14) can not 
be negative when I2(rj) ^ 0 in H. 

The function Ui(x) can not vanish even at x = x2 since 
if Ui(x2) were zero we should have ux(x2) < 0 and the deter­
minant (14) would be negative since u2(x2) is positive. 
Similarly u2(x) can not vanish at Xi. 

To prove the sufficiency of the condition of the theorem 
let 7] (x) be an arbitrary function of the class II and let us 
apply the formula (12) to rj and U\ on an interval Xi%, 
and to rj and u2 on the remaining interval %x2. Then 

?72 rj2 |£ rx% / V Y 
I2(v)=—tiux ö«; + R[ v' u')dx 

U\ U2 I J X1 \ U / 

(17) = L v ^__ + Rln>--Lu'\dx 
«l(Ö«2(Ö ^ 1 V « / 

where u in the last integral is u\ on Xi%, and #2 on £x2. 
The last expression is evidently not negative under the 
hypothesis of the theorem. 

COROLLARY 1. A necessary and sufficient condition that 
the relation I2(rj) > 0 shall hold for every function of II except 
7](x) ^ 0 is that Ui(x) and u2{x) be positive and have 

(18) u2u1 — uiu2>0 

on the interval X\X2. 

To prove the necessity we observe that the last theorem 
requires U\ and u2 to be positive and u2Ui — U\U2 to be ^ 0 
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on #ix2. But if this determinant were zero we should have 
u± = ku2, and then r]=ui would make Izirj) = 0, as we readily 
see by applying equations (15) and (13). Hence 12(11) would 
vanish for an rj(x)^0 in H unless the condition (18) is sat­
isfied. 

To prove the sufficiency we note that the first term in the 
expression (17) is certainly positive for some value of £, 
under the hypotheses of the theorem, unless rj(x) = 0 on #i#2. 

COROLLARY 2. If the condition of the last corollary holds 
then there is a constant S > 0 such that /2(??)>ô for every 
function rj (x) of the class H satisfying the equation 

s*X2 

(19) I rf{x)dx = 1. 

This follows from the formula (17) since for such an rj (x) 
there must be at least one point £ on the interval Xix2 

where rç2(£) > l / ( # 2 — Xi). The corollary is analogous to the 
theorem of Osgood cited on a preceding page. 

Let us define Hi as the class of all functions of H which 
satisfy the equation (19). Then it is of interest to note the 
following theorem. 

THEOREM 4. A function rj(x) which minimizes 12(11) ^n l^e 

class Hi is necessarily a solution of the boundary value problem 

J07)-X77 = O, 
(20) Qiv(xi)+R1r)'(x1)=Q2r)(x2)+R2r)'(x2) = 0 . 

For suppose that 77(x) is such a minimizing function and 
consider the two-parameter family of functions 17+af+aif i 
where f and f 1 are two arbitrarily selected functions of H. 
Denote by I(a,ai), K(a,ai) the values of J2 and the integral 
in (19) on an arc of this family. The determinant 

Z«(0,0)Kai(0,0) - Jf l l(0,0)Ka(0,0) 

must be zero for every choice of f and f 1. Otherwise, ac­
cording to well known implicit function theorems, the equa­
tions 

I(a,ai) =I(0,Q)+u , K(a,ai) = l 
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would have solutions for both positive and negative values 
of u near u = 0, and 1(0,0) could not be a minimum value 
of I(a,ai). Since the determinant vanishes for every choice 
of f and f i let us fix f i and choose X so that the second of 
the equations 

7 a (0 ,0 ) -Xi£ a (0 ,0 )=0 , 7 O i (0 ,0 ) -XK a i (0 ,0 )=0 

is satisfied. Then the first must hold for every f in the class 
H. I t has the form 

/ o (0 ,0) -Xtfa(0 ,0)= f 2[l2,f+SVr'-Arçf]^=:0 • 
J xi 

Since this must be true for every f in H it follows, by the 
customary integration of the second term of the integrand 
by parts, tha t rj satisfies the conditions (20), which was to 
be proved. 

I t is evident that if the expression I^rj) is ^ 0 in the class 
H it will also have this property in the class Hu and con­
versely. We shall in the next section be concerned with the 
problem of determining the minimum of 12(11) in the class Hi. 

4. The Boundary-Value Problem. From the theorems of 
the preceding section it may be inferred that the solution 
of the boundary value problem 

(21) / M - X i ^ O , 
Qii?(*i) +-Rii?/(*i) = Q^i^) +R*rif(x2) = 0 

is closely related to the problem of determining the minimum 

of the integral 

J %x2 

2ti[x.n.n')dx 
XI 

in the class Hi of functions rj(x) satisfying the equation 

ƒ 7)2(x)dx=l 
xi 

where 20 = P(x)>n2 + 2Q(x)<ori'+ R(X)T)'2 . I t is the purpose of 
this section to investigate this relationship further. 

THEOREM 5. The values of the integral 12(11) h>ave a greatest 
lower bound Xi in the class Hi. 
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For we may readily verify that 

/2U)-X J V2dx= J [ H i ^ + V 

+ (p~——xj^ljx. 

By taking X negative and sufficiently large the coefficient 
of r]2 in the last integral will be positive on XiX2 and the in­
tegral itself will be positive for every function rj (x) in H 
not identically zero. From the first member of the equation 
it follows then that I2M will be greater than X for every 
function rj(x) in Hi. 

THEOREM 6. The boundary value problem (20) has a solu­
tion for X =Xi, and this is the smallest value of \ for which such 
a solution exists. 

It is provable readily that no solution of the boundary 
value problem exists for a value X <Xi. Such a solution would 
give 1'2(rj) the value 

h{v) = f \vQn+v'Qn>)dx 
J x\ 

12 s*x2 s*x2 

+ I rjj(rj)dx = \ I r]2dx, 
1 •/ xi J x\ 

vsince Qn> vanishes at x\ and x2 and J(rj) =\rj. By multi­
plying 7](x) by a suitable constant a function of Hi would 
be found giving I2M the value X which is less than the 
minimum Xi. 

The expression 
(22) h(v)-\ f \HX 

J x\ 

is always ^ 0 in Hi when X=Xi, and hence also in H, as one 
easily verifies. By Theorem 3 of the preceding section it 
follows that the solutions Ui(x,\), u2(x,\) of the equation 
J(u) —X^ = 0, determined by the conditions (13), must for 
X=Xi be positive and satisfy the relation 
(23) U2Ui—UiU2f^0 
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on the interval XiX2. If the inequality were true then 
Corollary 2 of Theorem 3 shows that in the class Hi the 
expression (22) for X=Xi would always exceed a constant 
5>0 , or in other words that 12(1)) >Xi + ô in Hi. But this 
is impossible when Xi is the minimum described above. 
Hence the equality sign in the relation (23) must hold. 
But in that case Ui = ku2 and U\ is therefore a solution of the 
boundary value problem (20). 

COROLLARY 1. A necessary and sufficient condition that the 
relation l2(rj)^0 holds for every function rj(x) of the class H 
is that Xi^O where Xi is the smallest value for which the 
boundary value problem (20) has a solution. A necessary and 
sufficient condition that l2(rj)>0 for every function rj(x) in H 
except rj(x) = 0 is Xi>0. 

This conclusion is an immediate consequence of the fact 
that Xi is the minimum of the values of I2(rj) in the class Hi. 

COROLLARY 2. Let E be an arc, as described in Section 1, 
which gives the integral I there considered the value 1(E), and 
suppose that along E the derivative fy>y> is positive. Then a 
necessary condition for 1(E) to be a minimum is that Xi^O 
where Xi is the smallest value of X for which the boundary 
value problem (20) associated with the second variation has a 
solution. 

It should be remarked that the necessary condition Xi^O 
is equivalent to the well known analog of Jacobi's condi­
tion for this calculus of variations problem.* The focal 
points of the curves Ci and C2 on E are determined by the 
roots of Ui(x,0) and u2(x,0), as one readily verifies. The 
condition Xi^O implies that the integral I2(rj) is ^ 0 for all 
functions 77 in H when X = 0, and hence, by Theorem 3, 
that the roots of wi(#,0) and u2(x,0) do not lie on Xix2. 
This means that the focal points 1' and 2' of Ci and C2 do 
not lie on the arc 12 of E. Furthermore the condition u2ux 

*See Bliss, MATHEMATISCHE ANNALEN, vol. 58 (1904), p. 70. 
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— Uiu2>0 implies that the derivative d(u2/ui)/dx is less than 
or equal to zero, so that the equation Ui = 0 can have no 
root xx>X2 preceding the first root x2 of U2 = 0. The points 
1 and 1' are therefore surely not separated by 2 and 2' on 
the arc E, This is the complete Jacobi condition as described 
in the reference of the footnote on the preceding page. 

UNIVERSITY OF CHICAGO 

A CONNECTED AND REGULAR POINT SET 
WHICH CONTAINS NO ARC* 

BY R. L. MOORE 

A point set is said to be connected im kleinen,\ or regular, 
at the point P if, for every positive number e, there exists a 
positive number de such that if X is any point of M at a 
distance from P less than de then X and P lie together in some 
connected^ subset of M of diameter less than e. A point set 
which is regular (connected im kleinen) at every one of its 
points is said to be regular (connected im kleinen). The set 
M is uniformly connected im kleinen if for each positive num­
ber e there exists a positive number de such that every two 
points of M at a distance apart less than de lie in a connected 
subset of M of diameter less than e. If a point set M is con-

* Presented to the Society, September 6, 1923. 
f Cf. Hans Hahn, Ueber die allgemeinste ebene Punktmenge, die stetiges 

Bild einer Strecke ist, JAHRESBERICHT DER VEREINIGUNG, vol. 23 (1914), 
pp. 318-322. Also S. Mazurkiewicz, Sur les lignes de Jordan, FUNDAMENTA 
MATHEMATICAE, vol. 1 (1920), pp. 166-209. This conception, as applied to 
a simple closed curve, was used by Pia Nalli in the paper Sopra una défini-
zioni di dominio piano limitato da una curva continua, senza punti multipli, 
RENDICONTI DI PALERMO, vol. 32 (1911), pp. 391-401. 

% According to Harm's formulation, X and P lie in a closed and con­
nected subset of M of diameter less than e. It has been customary with me 
to omit the stipulation tha t this subset should be closed. However, the 
set M described below is connected im kleinen according to either defini­
tion. 


