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COVERING THEOREMS* 

BY R. L. MOORE 

A set of segments will be said to cover a point set F in the 
Vitali sense if, for every point P which belongs to F and every 
positive number e, there exists a segment of G which contains 
P and is of length less than e. J. Splawa-Neyman has shown f 
that if, in space of one dimension, F is a closed and bounded 
point set of measure zero and G is a set of segments which 
covers F in the Vitali sense, then, for every positive number e, 
the set G contains a subset Ge such that Ge covers F and such 
that the sum of the lengths of the segments of the set Gê is 
less than e. He cites the question, raised by Sierpinski, 
whether this theorem remains true after the removal of the 
condition that F be closed. I have recently J answered this 
question in the negative. Splawa-Neyman shows, by an 
example, that his theorem does not hold true for two dimen­
sions, but makes the following statement, without proof: 

"Remarquons que notre théorème subsiste pour les espaces 
à n dimensions, s'il existe pour tout point p de F une sphère 
appartenant à F de rayon aussi petit que Ton veut et dont le 
centré est en p." 

In the present paper I will show that the theorem thus 
stated, without proof, by Splawa-Neyman remains true on the 
removal of the condition that F be closed. I will also show that 
the condition that each point of F be the center of spheres of 

* Presented to the Society, in a somewhat different form, December 30, 
1924. In the abstract of this paper printed in this BULLETIN, vol. 31 (1925), 
pp. 219-220, proposition (2) is not correctly worded and, as will be shown 
below, (3) is false. 

t Sur un théorème métrique concernant les ensembles fermés, FUNDA-
MENTA MATHEMATICAE, vol. 5 (1924), pp. 328-330. 

% Cf. R. L. Moore, Concerning sets of segments which cover a point set in 
the Vitali sense, PROCEEDINGS OF THE NATIONAL ACADEMY, vol. 10 (1924), 
pp. 464-467. 
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G of arbitrarily small radius may be replaced by a weaker 
condition. These results will be established with the aid of 
certain theorems* which may, perhaps, be of some interest in 
themselves. I will first consider these theorems. 

THEOREM 1. If 0<k<l,e<0, and G is a set of circular regions t 
all of radius greater than e and, for every region g of the set G, 
hQ is a circular region, concentric with g and with a radius equal 
to k times the radius of g and H is the set of all such regions h0 

for all regions g of the set G and the sum of all the regions of the 
set G is a bounded point set, then the set G contains a finite sub­
set G such that every region of the set H lies wholly in some region 
of the set G. 

PROOF. Let K denote the point set composed of the centers 
of the regions of the set G. Let T denote the set of all circular 
regions /, of radius equal to (1 — k)e/4, such that / is concentric 
with some region of the set H. I t is easy to see that the closed 
point set K+K', composed of K plus its derived set, is covered 
by T. I t follows, by the Borel-Lebesgue theorem, that T con­
tains a finite subset T which covers K+K'. For each region / 
of the set T select just one region of G whose center is in t and 
whose radius is greater than rt—(l—k)e/2, where rt is the 
least upper bound of the radii of all those regions of G whose 
centers are in t. Let G denote the set of all regions so selected. 
It is easy to see that every region of the set H lies wholly in 
some region of set G. 

THEOREM 2. If k is a positive number less than unity and G 
is a set of circles and there exists no positive number such that 
infinitely many circles of the set G have radii greater than that 
number and, for each circle g of the set G, hQ is a circle concentric 
with g and with a radius equal to k times that of g, and H is the 
totality of all such circles hQ for all circles g of the set G, then there 
exists a subset G of the set of circles G such that (a) each circle of 
the set H is within some circle of the set G, but (b) no circle g of 

* These theorems will be stated in the terminology of space of two 
dimensions. It is easy to see however that this restriction is not necessary, 

t By a circular region is meant the interior of a circle. 



1926.] COVERING THEOREMS 277 

the set G completely encloses any circle h} of the set H, such that 
h = hgfor some circle g, other than g, of the set G. 

PROOF. If for any circle g of the set G there exists another 
circle of G which is concentric with it let kg denote the largest 
circle of G which is concentric with g and let K denote the set 
of all such circles kg for all circles g of the set G. Let H denote 
the set of all circles h of the set H such that h = hg for some 
circle g which belongs to K. Clearly every circle of H either is 
identical with some circle of H or is within, and concentric 
with, some circle of £T. No two circles of H are concentric with 
each other. It follows from the hypothesis that there exists a 
circle gi which belongs to the set K and which has as large a 
radius as any other circle of the set K. Let G\ denote the set of 
circles consisting of g\ together with every circle of K which is 
not concentric with any circle of H which lies within gi. No 
circle of Gi, except gi, encloses hfft and gi does not enclose any 
circle of the set H (except h01) which is concentric with a circle 
of the set G\. Furthermore every circle of the set H is within 
some circle of the set G\, If G\ contains any circle other than gi 
there exists, in the set Gi, a circle g2, distinct from gi and with 
a radius as great as that of any other circle in Gi except g\. 
Let G2 denote the set of circles consisting of g2 together with 
every circle of the set Gi which is not concentric with any circle 
of the set H which lies within g2. Clearly gi belongs to G2. 
Continue this process thus obtaining a finite or countably 
infinite sequence of circles gi, g2, g3, • • • and a corresponding 
sequence of sets of circles Gi, G2, G3, • • • such that, if n> 1, 
Gn consists of gn together with every circle of the set Gw_i 
which is not concentric with any circle of the set H which lies 
within gn and if Gn contains any circle other than gi, g2, g3, 
• * * gi gn then gn+i is a circle belonging to Gn and distinct from 

the circles gi, g2, g3, • • • , gn and with a radius as great as that 
of any other circle in Gn except gi, g2, g3, • • • , gn, but if Gn 

contains no circle other than gi, g2, g3, • • • , gn (i.e. if every 
circle belonging to Gn_i, except gu £2, g3, • • • , gn, is con­
centric with some circle of the set H which lies within gn) 
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then the sequences gu g2, gz, • • • and Gu G2, G3, • • • are 
finite and gn and Gn are their last terms. The finite or countably 
infinite set of circles gu g2, gz, • • • satisfies all the require­
ments indicated for the set G. 

THEOREM 3. /ƒ ki and k2 are positive numbers (\>k2>kx) 
and D is a bounded domain and G is a set of circular regions 
lying in D and1 for every region of the set G, h0 is a circular 
region concentric with g and with a radius k\ times that of g and H 
is the set of all regions hQ for all regions g of the set G, then there 
exists a subset G of the set G such that every region of the set H is 
contained in some region of the set G and such that the sum of the 
areas of all the regions of the set G is less than or equal to 
4A/(1— &2)

2, where A is the area of the domain D. 

PROOF. For each circle g of the set G construct a circular 
region t0 concentric with g and with a radius equal to k2 times 
that of g. Let T denote the set of all the regions tQ for all 
regions g of the set G. Let Hi denote the set of all those regions 
of the set H whose radii are greater than or equal to 1. For 
each positive integer w, greater than 1, let Hn denote the set 
of all those regions of the set H whose radii are greater than 
or equal to 1/n but less than l/(w — 1). By Theorem 1, for each 
n, there exists a finite subset Tn of the set of regions T such that 
every region of the set Hn is a subset of some region of the set 
Tn. Let T denote the set of regions composed of all the regions 
of all the sets Tu T2l T3, • • • . There exists no positive 
number such that infinitely many regions of the set T have 
radii greater than that number. I t follows, by Theorem 2, 
that there exists a subset G of the set of regions G such that (a) 
every region of the set T is a subset of some region of the set 
G, (b) no region g of the set G contains any region / of the set 
r such that t = t0 for some region g, other than g, of the set 
G. For each region g of the set G let qQ denote a circular region 
concentric with g and having a radius equal to the radius of g 
multiplied by ( l - & 2 ) / 2 . Let Q denote the set of all such re­
gions qQ for all regions g of the set G. I t is easy to see that no 
two regions of the set Q have a point in common. Hence the 
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sum of the areas of all the regions of this set is less than or 
equal to A. I t follows that the sum of the areas of all the 
regions of the set G is less than or equal to 4 4 / ( 1 — &2)

2. But 
every region of the set H is a subset of some region of the set T 
and therefore of some region of the set G. The truth of Theo­
rem 3 is therefore established. 

THEOREM 4. If M is a bounded point set of measure zero and 
k is a positive number less than 1 and G is a set of circular regions 
and for every point P of M and every positive number e there 
exists, in the set G, a region g of radius less than e and such that 
the distance from P to the center of gis less than k times the radius 
of gf then, for every positive number e, there exists a subset G of 
G such that G covers M and such that the sum of the areas of the 
regions of the set G is less than e. 

PROOF. For each region g of the set G let hQ denote a circular 
region concentric with g and with a radius k times that of g. 
Let H denote the set of all such regions h0. Let k denote some 
definite number between 1 and k. Suppose e is a positive 
number. Since M is of measure zero there exists a set S of 
circular regions covering M and such that the sum of the areas 
of the regions of S is less than e(l— &)2/4. For each point 
P of M there exists a circular region g belonging to the set G 
and lying in some region of S and such that P lies in the region 
h0. I t follows by Theorem 3 that there exists a subset G of G 
such that each region of H is a subset of some region of G, 
and the sum of the areas of the regions of the set G is less than 
or equal to 4B/(1 —k)2> where B is the sum of the areas of the 
regions of the set 5. Since B is less than e(l — k)2/4 it follows 
that the sum of the areas of the regions of the set G is less 
than e. 

DEFINITIONS. By a simple chain of segments in space of one 
dimension is meant a set C of segments such that (a) the point 
set obtained by adding together the points of all the segments 
of C is connected, (b) there exists no point which is common 
to more than two segments of C, and (c) no segment of C is a 
subset of any other segment of C. 
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By a simple chain of intervals in space of one dimension is 
meant a set C of intervals such that (a) the point set obtained 
by adding together the points of all the intervals of C is con­
nected, (b) there exists no point which is common to more than 
two intervals of the set C, (c) no interval of C is a part of any 
other interval of C, and (d) no endpoint of an interval of C is a 
limit point of a set of endpoints of intervals of C. 

THEOREM 5. If, in space of one dimension, G is a set of 
(segments i 
< . . > and there exists no positive number such that infinitely 
[intervals) 
many< > of the set G are of length greater than that 

[intervals) 
number then G contains a subset G such that (a) every point that 

belongs to \ . S of G belongs also to some < . I 
Ian interval) (interval) 

of G y (b) G consists of a set of nonoverlapping simple chains of 
(segments,) 
(intervals.) 

The truth of Theorem 5, for the case where G is a set of 
segments, is established in the course of the argument given to 
prove Theorem 1 of my PROCEEDINGS paper referred to above. 
For the case where G is a set of intervals the same argument 
will apply if the word "segment" is replaced, at times by the 
word "interval" and at times by the phrase "other interval." 

THEOREM 6. If, in space of one dimension, K is a bounded 
point set of measure zero and G is a set of intervals such that, for 
each positive number e, each point of K belongs to at least one 
interval of G of length less than e and there exists no positive 
number such that infinitely many intervals of the set G are of 
length greater than that number, then, for every positive number 
e, G contains a finite, or countably infinite, subset Ge such that Ge 

covers K and such that the sum of the lengths of the intervals of Ge 

is less than e and such that, furthermore, Ge consists of a coun­
table number of nonoverlapping simple chains of intervals. 

With the help of Theorem 5, Theorem 6 may be proved by 
an argument similar to that used to prove Theorem 1 of the 
above mentioned paper. 
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Splawa-Neyman indicates that his theorem becomes true 
for a point set F of measure greater than zero if the condition 
that the sum of the lengths of the segments of the set Ge be 
less than e is replaced by the condition that it be less than 
tn(F)+e, where m{F) is the measure of F. Theorems 4 and 6 
of the present paper may be generalized in an analogous 
manner. The truth of this statement for the case of Theorem 6 
may be seen with the help of the fact that, under the hypothesis 
of this theorem (modified by the omission of the requirement 
that K be of measure zero), the set G contains as a subset a 
set S of nonoverlapping intervals such that (a) every interval 
of S lies in a certain predetermined domain whose measure 
exceeds the measure of F by less than e/2, (b) S covers the 
whole of F except for a point set of measure zero. The exis­
tence of such a set S follows from Carathéodory's generaliza­
tion* of Vitali's theorem. A largely similar argument holds 
good for the case of Theorem 4. 

That Splawa-Neyman's theorem does not remain true if 
the words "à son intérieur'' are omitted may be seen as follows. 
Using the notation of the example given on pages 464 and 465 
of my PROCEEDINGS paper, for each positive integer n let Kn 

denote the point set consisting of the left ends of all the seg­
ments of the set Gw. For each point P of Kn let Ip denote the 
smallest segment of Gn which has P as its left end and let HP 

denote a set of intervals having P as their common left end, 
their right ends forming an infinite sequence of points A PU 
AP2, A PI, • • • such that, for every positive integer j , the 
length of the interval whose end points are P and APJ is equal 
to the length of IP divided by 2j. For each n let Qn denote the 
set of intervals composed of all the intervals of all the sets 
Hp for all points P of Kn. Let Q denote the set of intervals 
composed of all the intervals of all the sets Qu Q2, Q3, • • • , 
together with a set of intervals having B as their common left 
end, their right ends forming an infinite sequence of points 
Bu B2y B3l - • • , all lying to the right of B and such that the 

* Cf. C. Carathéodory, Vorlesungen iiber réelle FunkHonen, Teubner, 
1918, p. 304. 
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distance from Bj to B is equal to I / / . Let W denote the set 
of intervals composed of all the intervals of Q and all intervals 
/ such that t is equal to some segment of G plus its endpoints. 
Let F denote the point set B+K+Kx+K^+Kz+ • • • . It 
can be seen that F is a closed point set of measure zero and 
that it is covered in the Vitali sense by the set of intervals W. 
But W contains no subset W such that W covers F and such 
that the sum of the lengths of the intervals of W exists (as a 
finite number). 

THE UNIVERSITY OF TEXAS 

T H E CONVERGENCE OF A GENERAL MEAN OF 
MEASUREMENTS TO T H E T R U E VALUE* 

BY E. L. DODD 

THEOREM. For positive measurements xi suppose that the 
frequency function 4>{x) has a positive lower bound b in some 
interval (a — k,a + k) about the true value a, and that f or each 
positive r 

J»oo 

%r4>(x)d% , {finite)) wo=l . 
0 

Then there exists a continuous increasing function f(x), with 
inverse f"1, such that if e > 0,77 > 0, and 

(2) M=f~*{Arithmetic mean off{xi)}, i = l, 2, • • • , n, 

then, when n>some n', there is a probability > 1 — rj that 

(3) \M-a\<€. 

PROOF. For (3) the special condition f is 

(4) / (a)- Pƒ(*)*(*) ix . 
Jo 

* Presented to the Society, February 27, 1926. 
f Dodd, Functions of measurements under general laws of error} SKANDI-

NAVISK AKTUARIETIDSKRIFT, vol. 5 (1922), pp. 133-158. Apply theorem, 
p. 135, taking 2/(xi)<w/(a+e) =»(!+«)ƒ(a) =s; then S/(«i)<n/(a-«). 


