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SOME MODERN VIEWS OF SPACE* 

BY JAMES PIERPONT 

1. Introduction. We are living in an age of great dis­
coveries; in physics, in chemistry, in astronomy; in the 
field of invention one is almost bewildered by the great 
achievements which have been made in recent years. 
Although figuring less in the public eye, the development of 
mathematics has been no less remarkable. In the present 
paper I wish to outline briefly what progress has been made 
in our knowledge of space from a mathematical standpoint. 

Until about a century ago everybody believed that the 
geometry of Euclid gave an exact description of space as 
far as it went. Geometry as the science of space has to deal 
with points, straight lines and planes. What are these things? 
Euclid says: A point is that which has no part, a line is 
breadthless length, a straight line is a line which lies evenly 
with the points on itself, and so on. I do not need to con­
tinue. As we see, these definitions would not tell one what a 
point, a straight line, a plane, are if one did not already have 
these notions in his mind. Euclid probably did not intend 
that they should be regarded otherwise than briefly describ­
ing some of their salient properties. 

We see on all sides of us lines which are approximately 
straight, and surfaces which are approximately plane. A 
stretched string or a ray of light visualize a straight line, 
and the surface of a pond a plane. In machinery plane 
surfaces are of great importance ; the engineer, the physicist 
and the astronomer are vitally interested in them. How 
are they constructed? One takes three metal plates nearly 
plane and rubs them pairwise together using some abrasive 
powder. In this way we get slightly spherical surfaces, one 
concave and two convex or two concave and one convex. 

* Delivered before the Society and their guests, in a joint meeting of 
this Society and the American Association for the Advancement of Science, 
as the Josiah Willard Gibbs Lecture, at Kansas City, December 30,1925. 
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By rubbing surfaces together of opposite curvature we 
flatten them. When nearly flat the surfaces may be scraped. 
Their flatness is tested by applying a fine layer of pigment 
and then rubbing them together. Plates may be prepared 
in this way so flat that, although one surface slides freely 
over the other, it requires considerable force to pull them 
apart. In optics, especially for astronomical needs, plane 
glass surfaces are ground so flat that they do not deviate 
from true flatness by more than a tenth of a wave length of 
light, say one five-hundred-thousandth of an inch. 

In this way we may prepare three right trieders each 
formed of three plane surfaces such that two of them resting 
on a third, touch perfectly along another pair of their sur­
faces. Such plane surfaces cut at right angles; their three 
edges are straight lines which meet in a point. We are now 
in position to construct a straight edge or ruler and hence to 
draw straight lines ; also to construct right triangles. With 
straight edge and triangle we can draw parallels. By means 
of dividers or compasses we can draw circles and lay off equal 
segments and angles. With this small equipment we can 
test some of the propositions of euclidean geometry by 
actual construction. Some, by the means we here employ, 
we can never verify. For example, Euclid says only one 
parallel can be drawn to a given straight line. Obviously 
on any given drawing board we can draw through a given 
point a great many lines which do not cut a given line on 
the board. In our mind we enlarge the board, yet for any 
board however large, we see at once that there are always a 
great many non-cutting straight lines. Only when we take 
an infinite plane can we assert that there is even one parallel. 
But now that we have an infinite plane, how do we know 
that there may not be more than one? What do we know 
about the infinite part of space anyway? 

We may go further and ask : Is there an infinite part of 
space? To the naive mind this last question seems almost 
foolish. Is not space boundless? Is there not always a 
beyond? 
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There are three main ways in which we may answer these 
questions. 

1) Space is infinite and there is only one parallel to a given 
straight line through a given point. 

2) Space is infinite and there are two parallels to a given 
line. 

3) Space is boundless but not infinite ; there are no parallels 
since any two straight lines in a plane always cut. 

The first gives us the geometry of Euclid, the geometry of 
our every day life, the geometry on which astronomy, 
physics, and engineering rest or did rest till the advent of 
Einstein. The second answer was adopted by Lobachevsky 
and Bolyai just about a century ago (1823-33). That the 
third answer is equally possible was first established by 
Riemann about thirty years later (1854) although his 
results were not published until 1868. The second and third 
geometries are called non-euclidean. All three depend upon 
a certain constant which we may call the space constant k* 
In the geometry of Euclid k is zero, in the geometry of 
Lobachevsky k is negative, in the third geometry k is 
positive. In the classification of conies a similar distinction 
arises, and this has led Klein to call these geometries para­
bolic, hyperbolic, and elliptic, respectively. 

The reception which greeted the epoch making discoveries 
of Lobachevsky and Bolyai was cold indeed. Geometers 
at that time like a great part of the learned world lay supinely 
under the spell of the great Königsberg philosopher Kant, 
according to whom geometry, that is euclidean geometry, is 
an a priori science having apodictic certitude. Gauss years 
before (1792-1817) had discovered the hyperbolic geometry, 
but had not dared to publish his results. 

Writing to Gerling* (1818) he says "I am glad that you have 
the courage to (publically) acknowledge the possibility that 
our theory of parallels and hence our whole geometry may 
be false." "But the wasps whose nest you thus disturb will 

* Gauss, WERKE, vol. 8, p. 179. 
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fly about your head." In 1829 he confesses to Bessel* that 
his dread of the clamor of the Boeotians, that is the adherents 
of Kant, may prevent him ever during his life time from 
publishing his extensive researches regarding the foundations 
of geometry. Like Newton, Gauss preferred his peace of 
mind to glory if it had to be purchased at the price of endless 
wrangling. After his death the world learned Gauss' views 
through the publication (1860-65) of his correspondence 
with Schumacher and in the biographical sketch by his 
friend Baron von Waltershausen (1856). Influenced by the 
great weight of Gauss' name, geometers directed their 
attention once more to non-euclidean geometry. In 1868 
Beltrami published his representation of the hyperbolic 
plane on the pseudosphere; in the GÖTTINGER NACHRICHTEN 

of the same year appeared Helmholtz's paper on the founda­
tion of geometry, while in the ABHANDLUNG of the Göttingen 
Royal Society of this year was published the epoch making 
paper of Riemann mentioned above. In 1871 Klein, taking 
over some of Cayley's results, showed how to establish 
non-euclidean geometry by projective methods. From now 
on, labor in these fields of research has never halted. 
With the advent of Einstein's general theory of relativity 
(1914-16) a new epoch began. Before we touch on this I 
wish to note briefly a few of the outstanding facts of non-
euclidean geometry. 

2. Non-Euclidean Geometry. Suppose for the moment our 
space were non-euclidean. We would have rigid bodies in 
it which could be moved about freely without any distortion, 
just as in euclidean space. A stretched string and a ray of 
light would be straight lines in this geometry. The method 
of preparing plane surfaces and right trieders described 
above would still hold good. Everything immediately about 
us would behave as far as we could ascertain as if space were 
euclidean. Let a, &, c be the lengths of the three sides of a 

* Ibid., p. 200; "da ich das Geschrei der Böotier scheue," 
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triangle and A, B, C the angles opposite these sides. Then 
our theory tells us: 

{sin A : sin B : sin C = a : b : c in euclidean space ; 

sin kA : sin kB : sin kC = a : b : c in elliptic space ; 
sinh kA :sinh kB : sinh kC = a:b:c in hyperbolic space. 

Since as far as our measurements go, the first relation holds, 
the space constant k is small. 

To picture to our minds how large portions of our space 
would look if non-euclidean, we may imitate the geographers 
who represent the spherical surface of the earth on a plane 
by different kinds of maps. As is well known, the shortest path 
joining two points on a sphere is an arc of a great circle, or a 
geodesic ; and these take the place of straight lines in a plane. 
I would like to call your attention to two maps, known as the 
stereographic and central projections. In the first, geodesies 
are represented by circles; in the second by straight lines. 
Stereographic maps are conformai, i.e., two intersecting 
curves meet on the map under the same angle as on the 
sphere. In both maps distances are distorted. 

We have similar representations or models of a non-
euclidean space in a euclidean space, with this difference: 
if we wish to represent our non-euclidean straight lines by 
euclidean straights, our model will preserve neither angles 
nor lengths. We shall therefore speak only of the model 
which preserves angles. We begin with hyperbolic space. 

3. Hyperbolic Space. We take an e-sphere S of radius R, 
which we call the fundamental sphere.* All points of-ff-space 
lie within 5 . iJ-straights are e-circles cutting S orthogonally ; 
these are the paths of light in this space, if-planes are 
e-spheres cutting S orthogonally. Hence two iJ-planes cut 
in an /^-straight. If our space were hyperbolic our whole 
universe would lie within 5 and to bodies moving about in 
e-space would correspond figures moving about within S. 
Any one who has looked into a convex mirror (common 

* For e, read euclidean; for H, read hyperbolic; for E, read elliptic. 
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enough on automobiles now) will grasp the spirit of this 
model. Suppose one wished to measure an üZ-straight (Fig. 1) 

cutting 5 in A and B, starting from 
a point P on it. His measuring rod in 
the model would get shorter and 
shorter as he moves toward A or B 
so that PA and PB would have an 
infinite length. Any point Q within 
S is at an infinite distance in H-
measure from any point on S. No 
displacement in space takes a point 

on 5 in the model off from 5. Let A CD in Fig. 1 be an 
iï-straight / meeting S at A and D, and P a point without. 
Let the iJ-straights AP, DP cut 5 in B and E. Let an H-
straight m rotate about P in the plane of P , L 

When m lies within the sector APD, it will cut Z; when m 
lies within the sector DPB it will not cut I. The two H-
straights PD and PA are the limiting positions of straights 
through P separating the straights which cut I from those 
which do not. They are the parallels of iJ-geometry. In 
il-space the sum of the angles of any plane triangle ABC is 
less than two right angles. This is obvious in our model. 

For since figures may be moved without 
distortion, we may move the plane of 
ABC so that A coincides with the center 
of S. Two of the sides in the model are 
now 0-straights while the third side BC 
is an e-circle orthogonal to S. As its con­
vex side is turned toward A, we see at 

F l G - 2 once that A+B + C<2 right angles. 
At the points A of an iJ-straight as LM in Fig. 2 let us 

erect ü-perpendiculars meeting S at B, Bf. On each per­
pendicular lay off a segment AP of constant length in H-
measure. The locus of these points P is an equidistant curve. 
Such a line in e-geometry would be a parallel to the line LM. 
In our model equidistant curves are e-circles; the perpendicu­
lars as ABB' are orthogonal to the equidistant curves. 
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We define a circle and sphere in iüT-space as in e-space. 
Let A be a fixed point ; the locus of the points P such that the 
distance of P from A is a constant p in ü-measure is an 
iJ-sphere of radius p and center A. In our model an 
ü-sphere is also an e-sphere, but its e-center is not A except 
when A coincides with 0, the center of the fundamental 
sphere 5. If P is restricted to an iJ-plane through A, the 
locus is an JEZ-circle of radius p. If we apply the method 
of inscribed and circumscribed polygons employed in our 
school geometries we find the length of the circumference 
of a circle of radius p is 

(2) C = 2*nRsinh (p/R), 

while its area in il-measure is 

^=27r#2(cosh (p/jR) —1). 

If R is large compared with p we have approximately 

C — lirp, A =7rp2. 

The volume of an iJ-sphere of radius p is 

(3) V = 4TTRH— sinh — ) 
\2R 4 R) 

4 
=—7rp3 approximately when p/R is small . 

Ó 

The area of the surface of the sphere is 

S=4TTJR2 sinh2 (p/R) . 

The relations valid in a right triangle whose sides are of 
lengths a, b, c in H-measure, and whose angles opposite 
these sides are A} B, C, the latter being a right angle, are 

sinh (a/R) tanh (a/R) 
(4) sin A = , tan A = , 

sinh (c/R) sinh (b/R) 
cosh (c/iT) = cosh (a/R) cosh (b/R) . 

Finally let us show how we can find the length of a curve C 
in this model. If da is the e-length of an element of arc of 
C, its length in i?-measure is 
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(5) ds~ 
da 

4tR2 

where r is the ^-distance of the element from the center 0 
of 5. 

4. Elliptic Geometry. To construct a model of elliptic 
space in e-space we take again an ^-sphere 5 of radius R 
and center 0. E-straights in this model are e-circles 
cutting S in diametral points. E-planes are represented in 
the model by e-spheres cutting S along great circles. To 
diametral points in the model as A, B, on 5, correspond but 
a single point in E-space. Thus all E-straights are closed 
curves, two co-planar E-straights always cut, and two 
points determine an E-straight. Figures in E-space may be 
moved about freely without distortion. Any straight may 
be moved to coincide with any other : all have the length TR. 

The model exhibits very clearly that 
the sum of the angles of a plane triangle 

Ŷ A, By C is greater than 2 right angles. 
.j/H For if we move the plane ABC so that A 

coincides with the center of 5, two of the 
sides in the model are e-straights and the 
third side BC is an ^-circle with its con­
cave side turned toward A. 

All E-straights as PA in Fig. 3, cutting S in A, perpen­
dicular to a given E-straight LM meet in a point A called 
the pole of LM. The length of all these perpendiculars is 
TTR/2 in E-measure. The family of e-circles whose centers 
lie on the straight AOA' perpendicular to LM and which 
cut the circle S orthogonally are E-circles having A as center. 
Let FQG be one of these cutting 5 in F, G. Since AQ is an 
E-radius, the segment PQ is constant along FG; hence the 
curve FQG is a curve whose points lie at the same constant 
distance from the E-straight LM. Such curves are called 
equidistant curves; in ^-geometry they would be a parallel 
to LM. 
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FIG. 4 

A peculiarity of E-space is made quite clear by our model. 
Suppose a flat circular disk ABCD in Fig. 4 has its center 
K at 0, the center of the fundamental sphere; AKC is a 
vertical diameter and BKD a horizontal 
diameter; the points A B CD correspond 
to 12, 3, 6 and 9 o'clock on the face of a £/ 
watch. Suppose the disk is moved in a L 
plane so that its center K describes an v/ 
E-straight meeting 5 in the points L', 
L " . When K is at L' , the diameter 
AKC coincides with A'L'C' on 5, to 
which correspond on 5 the diametral points AnL"C". The 
right vertical half of the disk ABC is now at A"B"C" and 
the upper quadrant AKB is now at A"LnBn below the line 
LfL". Continuing the motion along L 0, we see that when 
the center of the disk has returned to 0, the disk coincides 
with its original position but A and C have interchanged 
positions. A similar remark holds for a sphere. 

Another peculiarity of E-space is the following. Let / be 
an E-straight, and let AB be two points on either side of /. 
We can pass from A to B without crossing / ; for let the join 
of AB cut 5 in A'B'. Then AA'B'B is a continuous path 
joining A, B since A' = B' in E-geometry. Thus an E-
straight does not divide an E-plane into two pieces. Similarly 
an E-plane does not divide E-space into two pieces. Such is 
not the case in e-space. 

Defining a sphere and circle in E-space in a manner 
analogous to ET-space, we find in a similar manner 

(6) c = 2TR sin (p/R), A = 27ri?2(cos (p/R) - 1 ) ; 

4 / p 1 2p 
(7) V = — irR* I — sin — 

3 \2R 4 R ) • -
4TT#2 sin2 (p/R) 

Also for a right triangle we have, analogous to (4), 

(8) sin A = 
sin (a/R) 

tan A — 
tan (a/R) 

sin (c/R) ' """ " sin (b/R) ' 

cos (c/R) = cos (a/R) cos (b/R) . 
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The -E-length of an element of arc of e-length da in the model 
is 

We notice (9) goes over into (5) on replacing R by iR. 

5. The Parallel Axiom. As we have observed, Euclid's 
geometry is characterized by a certain assumption regarding 
the infinite part of space. In the Elements of Euclid it appears 
as postulate 5 and is known as the parallel axiom. From 
time immemorial this postulate has given offense. Not that 
anyone doubted its truth ; but in the form as given by Euclid 
it did not seem as intuitively self-evident as the other axioms 
and postulates. For centuries one believed it was possible 
to deduce it from the other axioms ; and countless have been 
the at tempts to do so. I t was reserved to Lobachevsky and 
Bolyai to show the world that it is possible to deduce a con­
sistent geometry in which the parallel axiom of Euclid does 
not hold. 

The question arises : Is our space euclidean or is it not? 
To answer this question, Gauss, who was engaged in geodetic 
work in connection with the great Hannover triangulation, 
measured the angles of the triangle whose vertices were 
stations on Hohenhagen, Inselsberg, and the Broeken. As 
reported by Waltershausen, the sum of these three angles 
differed from two right angles by about 0.2 " . As this amount 
is quite within the limit of error, these observations leave 
the question undecided. They do show, however, that if 
space is not euclidean, the space constant k is small. 

Assuming that space is hyperbolic, Lobachevsky gave a 
method of estimating a lower limit of k as follows. Let AB in 
Fig. 5 be opposite extremities of the earth's orbit. Let 5, the 
sun,be midway between. Let a s tarD lie on the perpendicular 
SD. Let AD and BD be iT-straights whose e-tangents at A 
and B are ACA', BCB' meeting at a point C on the per­
pendicular SD. 
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If space were euclidean an observer would see the star 
at C, and in passing from A to B the star would appear to 
move through the angle A'C'B'. As­
tronomers call half this angle the paral­
lax p of the star. Then in the e-right 
triangle A CS, 

p = C = 90-A. 
The distance of the star in e-space i.e. 
as estimated by astronomers is 

SC = AS • tan A =AS • ctn p. 
If space were hyperbolic, we would have to consider the 
iJ-right triangle ASD. Let AS = a, SD=p in H-measures. 
Then, by (4), we have 

sinh (a/R) a 

~~Rp' 

FIG. 5 

(10) tanh (p/R) = sinh(a/J2) tan A=-
tan p 

approximately, since a/R is small. Hence 

sinh (p /£ )= -
Vp2R2-a2 

This requires that 

p2R2>a2 , or R>a/p . 

As there are stars whose parallax is less than 0.05 " this gives 

R>4: • 106 • a. 

Let us suppose now that space were elliptic. Suppose a 
star A were moving along an E-straight, as LAM meeting 
5 at Ly M. An observer at O sees the star in the direction O A. 
As E-straights are closed lines, he also sees it in the opposite 
direction OLM A. Thus to stars having no proper motion or 
small proper motion, should correspond antistars. 

We do not observe such antistars, and we may therefore 
suppose that R is so large that light is absorbed to such an 
extent that the antistars cannot be observed. Let us apply 
this above to the sun, whose magnitude is about —26.5. 
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Assuming we could detect an anti-sun of magnitude 15 let 
us use the relation 

m— — 5 log p, 

where m is the magnitude of the sun at a distance correspond­
ing to a parallax p. Here m = 15, hence p = 0.001 " . 

To this parallax corresponds a distance a ' = 2 • 108 • a, 
where a = OA, the distance of the earth to the sun. As a+a' = 
7T.R, we have 

2a 
R = — • 108 = 6 • 107 • 0 , approximately. 

7T 

The distribution of the stars in space has excited the 
interest of philosophers from very early days ; scientifically 
the question was first taken up by Herschell (1784). The 
question arises: Is all space loosely filled with stars or do 
they cease to exist outside a certain sphere? Already in 
1826 Olbers noticed that in the former case the whole sky 
would be as bright as the sun, unless the light is partly 
absorbed in its passage through space. C. Neumann and v. 
Seelinger (1896) have noted another difficulty. If we assume 
that Newton's gravitation law of inverse squares holds good 
throughout all space, we must suppose the density of cosmic 
matter is zero for an infinite space. The milky way or galaxy 
to which our sun belongs is estimated to be within a sphere 
of radius 3 • 104 light years. Beyond this are the star clusters 
and spiral nebulae; the nearest of which is perhaps 105 light 
years distant. One light year = 6 • 104 orbrads, or astronomical 
units. 

6. Analytic Formulation. In the foregoing we have been 
able to present many of the results of non-euclidean geom­
etry in a way easy to visualize. In order to acquaint you 
with some of the more recent work in this field it is necessary 
to have recourse to analysis. I t rests on the 1868 paper of 
Riemann mentioned above. 

Geometers define a point in space in a great variety of ways 
by means of three coordinates. Without specifying what 
coordinates we employ we will denote them by X\f X%t Xz* 
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We allow these x's to range continuously over a certain set 
of values ; to each set of values in this range corresponds a 
point which we denote by x=(xix2x3) . We call the point 
x-\-dx a nearby point, and say the distance of x+dx from 
x is ds, where 

(11) ds2=y£aijdxidxj ; a^—a/c ; ( i j =1,2,3) . 

Let x\*=<pi{t), X2 = <p2(t), Xz = <pz(t); when / ranges over a 
certain interval (ce, /3) we say x describes an arc of a curve C 
whose length is 

r^ds 
1 = 1 — d 

Ja dt 
(12) 

If 

(13) 

-dt 

i jds = 0 , 

we say C is a geodesic. In e-geometry these are straights. 
Let C, C' be two curves meeting in a point x\ the angle 9 

between these curves is defined by the equation 

(14) 

We call 

(15) 

dxj 

Ts7 
dxi ^ 

cos 0 = 2~taa 
ds 

dxi 
& = — -

ds 

the direction constants a t the point x along C. 
geodesies whose direction constants are 

( i - 1 , 2 , 3 ) , 

A pencil of 

(16) 

define a geodesic surface. 
call 

(17) 

In 6-geometry this is a plane. We 

0 = 

011 012 013 

021 022 023 

031 032 033 

the determinant of the form (11) and define the element of 
volume by 

(18) dv~\/\a\ • dxidxïdxz 
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These definitions show that the fundamental elements of a 
given geometry depend on the quadratic differential form 
(11), We say this form defines the metric of the particular 
geometry or space considered. Let us consider two geom­
etries defined by the two forms (11) and 

ds = 2 J dijdxidxj ; 

we ask when are these geometries essentially the same. This 
occurs when there is a continuous one to one correspondence 
between the x, x' such that on changing from one set of 
variables to the other ds goes over into ds' and conversely. 
In fact, to a figure F in the x-space will correspond a figure 
F' in the x'-space such that corresponding lengths and angles 
in the two figures have the same values. In this case we say 
the two forms ds and ds' are equivalent, so that to equivalent 
forms correspond the same geometry, at least for not too 
large regions. 

For example, consider the geometry on a cylinder or cone. 
By cutting the surface along a rectilinear generator it may 
be rolled flat on a plane without distortion. Geodesies on 
one of these surfaces become ^-straights on the plane. The 
geometry on these surfaces is thus essentially the same as 
e-plane geometry for figures not too large. 

To find analytic conditions in order that ds'^ds, we 
introduce the following symbols due to Christoffel : 

(i„ r^[;*]4,^+^_^, 
1 / dda\ dap\ da<xp \ 

V dxp dxa dx\ / 

<*> H^=r / [ - ] , 
(21) = rx«,M+ IV.x . 

ÔXa 

Here aX/* = minor of aX/t divided by a. 
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We need also a four-index symbol due to Riemann : 

(22) {fx\jk) - RUtih = — — 
OXk OXj 

+ 23 # K rxa,« rM/,i~ rx/,« rMM) , 
ia 

from which we form 

(23) {Xaj&} = R\jk = X / 0 (MX Jk) 

d T\i d Txfc _-^ « * « »* 

(24) 

(25) 

d#& # # ƒ 

-&Xfc = 2 ^ # î XM,jfc = 
3> 

# = Z ax*i?x*. 

» 

2-, -Kx<* > 
i 

x& 

We can now state a necessary condition in order that ds'2 be 
equivalent to ds2, viz. : 

^_. dx r dxi dxh dXk 

(26) («5 , * ) ' - £ (r*, «*)— ~ — — 
rftto d # OX' ÔX' OXi 

ct p y o 

where the symbol on the left refers to ds'. This is called the 
condition of integrability. There is an important case 
when this relation is identically satisfied, viz., when the 
coefficients a^ in ds2 satisfy the relations 
(27) (rk,ih)=K(ariakh—arhaki) 

where K is a constant. 
As an example let us consider a surface 5 whose coordinates 

are expressed as functions of two parameters xi9 x%. Let 
the metric on 5 be given by 

ds2~audx*+2ai2dxidx2+a22dx2
2 . 

The 16 symbols (a/3, yd) are here all 0 except 

(12,12) = - (12 ,21 ) = - (21 ,12 ) = (21,21). 



240 JAMES piERPONT [May-June, 

This symbol (12, 12) is closely related to what Gauss called 
the curvature of a surface at a given point. In fact let v be 
the normal to 5 at a point x. Any plane through v cuts out 
a normal section C which will have a certain curvature at x. 
There are two planes at right angles to each other for which 
the curvatures ici, K2 are a maximum and a minimum. Gauss 
calls 

(28) k = Ki • K2 

the curvature of S at x. We find now that 

(12,12) 
(29) k=K ' . 

a 

In general ft is not a constant as x ranges over 5. If we set 
r = l, ft = 2, i = l , ft = 2 in (27) we see K~k at x. For this 
reason a space whose metric (11) satisfies (27) is said to be 
of constant curvature K. 

We have now the following facts: 
1) If two metrics have the same constant curvature they 

are equivalent. 
2) In space of constant curvature there are 006 displace­

ments or transformations which leave ds unaltered. A 
trieder whose vertex is A can be displaced so as to coincide 
with a given trieder whose vertex is A '. 

3) In space of constant curvature ft, we may choose as 
coordinates X\y X%y XZ such that ds2 takes the canonical form 

(30) *•-- **+**+** 
( k2 ) 2 

When ft2 < 0 we get the geometry of Lobachevsky and Bolyai ; 
when ft2>0 we get elliptic geometry and another geometry 
in which two straights cut in two points. For n = 2 this gives 
geometry on a sphere. We may call this second type of 
geometry for a positive ft, spherical or sphero-elliptic. When 
ft = 0, the metric is euclidean. 
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4) The necessary and sufficient condition that ds2 can be 
brought to the form ds2 = Cidxl+c2dxl+Csdxl, where the c's 
are constants, is that the symbols (aj3,YÔ) should all be zero. 
In case the c's are all positive we can reduce this to 

ds2 = dy2+dy2+dy2 

1 2 3 

i.e. this space is euclidean. 
We return now to the general case. Suppose the space S 

which we are considering is not of constant curvature, what 
then? We will suppose its metric is given by (11). Let x be a 
point of 5 and a an arbitrary plane through x. The geodesies 
through x whose tangents lie in a form a geodesic surface Ga 

whose equations in parametric form are, say, 

#1 = #1(^1,^2) , 2̂ = ^2(^1,^2) , Xz = X$(UiyU2) . 

From them we get 

dx\ dx\ 
dx\ = du\-\ du% , 

dui ÔU2 

which in (11) gives the metric on Ga viz.: 

(31) da2 = aiidu2+2anduidu2+â22du2
î. 

We define now the curvature of Ga at x by 

(w) fc-»îiî*. 
a 

where a is the determinant of (31) and (12, 12)« is the 
Riemann symbol relative to the metric (31). If we let the 
plane a turn about x we find there are three positions ortho­
gonal to each other corresponding to maximum and mini­
mum values of k ; call these kh £2, ks- If now £1, £2, £3 of (15) 
are the direction constants of the normal to a we have 

(S3) ka^ki^+kz^+ktès 

as the curvature of space at x for a given orientation a, 
Levi-Civita has introduced a notion which has led to im­

portant generalizations of our ideas of space, in the hands of 
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Weyl and others. Let C be a curve on the surface 5 ; x and 
x+dx are two nearby points, a is an infinitesimal vector lying 
in the tangent plane r at x. Let us move a from x to x+dx 
parallel to itself. This vector j3 will not in general lie in 5. 
Let us therefore resolve f3 into two components, one lying 
in the tangent plane r ' at x+dx, call it a', and the other 
component normal thereto. 

If £i> £2, £3 are the direction cosines of a and 

dii 

as 
those of a ' , we have 

ds jk ds \ l ) 

We generalize the foregoing considerations as follows. Let 
an elementary vector in space, whose components are 
A\ A", A'n be displaced from a point x to x+dx such that 
the new components Al+dAl satisfy 

(34) dA*+ J2 A*d%\3 1 = 0 , 0'= 1,2,3) 
ih \ 1 ) 

Such a displacement is called an infinitesimal parallel dis­
placement, or a geodetic displacement. 

If dxi, dx2, dxz are the components of the infinitesimal 
vector along the tangent to a geodesic G in space, we have 

A^j*, (• = 1,2,3); 

substituting this in (34), we find 

a ,x% . ^ axj ax\ 
(35) 

«us2 

__ rf*i i£fc (jk\ 
+ Z - 7 - - 7 - . =0, (i-1,2,3), 

jh ds ds [ % ) 
which are the equations of G. 

Hence the displacement of a tangent along a geodesic is a 
case of infinitesimal parallel or geodetic displacement. Let 
us displace geodetically the elementary vector (A', A'\ A'") 
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around a closed curve C. We find that the components A1 

have changed by the amount 

AA%=— j ^2 AxR\jkdx3'dxk , ( i= 1,2,3) . 

If the curvature tensor is 0, AAl is zero and conversely. 
Thus only in flat spaces does a vector remain unchanged 
when displaced geodetically along a closed curve. For 
example, if we displace geodetically a vector over the sides 
of a geodesic triangle on a sphere we find its direction has 
changed at the end of the circuit by an amount equal to the 
spherical excess of the triangle. 

On the other hand, if the vector A11 whose squared length 
is I2 is moved parallel to itself around a small circuit we find 

d - / 2 = 2 2KlXP,<rA»A»dx<r , 

where 

(36) 
2 V dxa / 

As here i£MVf<r = 0 by (21) we see that d • Z2 = 0, i.e., I is un­
changed. 

Let dx = PA, ôx = PB be two elementary vectors; they 
determine a geodetic surface G. On displacing geodetically 
PA along ôx let A pass to C; we find if we displace PB geo­
detically along dx, that B coincides with C Let us move an 
elementary vector v geodetically around the parallelogram 
PA CB whose area we call Aa. At the end of the circuit we 
will suppose v has become v', making an angle Ad with v. We 
find now that the curvature k of G at P is 

AS 
(37) * = - - > 

Aa 
which gives an elegant interpretation of k. 

7. Higher Dimensional Space. According to Minkowski 
(1908) our universe is a four-dimensional manifold; we must 
therefore say a few words about four-dimensional or more 
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generally ^-dimensional space. To "the man in the street" a 
4-way space is a thing of mystery and awe. He has heard that 
if space had a fourth dimension a person could escape from a 
room, closed as to three-way space ; a closed surface could be 
turned inside out like a glove ; knots in closed strings could 
be untied etc. Such facts were used by spiritualists to make 
plausible the manifestations of the so called spirit world ; as, 
for example, by F. Zöllner, professor of astrophysics at the 
University of Leipzig. 

This is not the point of view of the mathematician. To him 
w-way space is a figment of the brain. Let xi, • • • ,xn be n 
variables ; the complex (xi, • • • ,xn) he regards as defining a 
point x, and w-way space is the totality of these points. Let 
the parameter u range over a certain set of values, say 
a^u^P\ the points x whose coordinates are 

Xi=*Xi(u), • • • yXn-Xniu) 

are called a curve, or a segment of a curve. Let v be another 
parameter; the points whose coordinates are 

lie on a surface, etc. A linear relation between the x Sy a s 

01*1+02*2+ • * • +anxn+c = 0, 

defines a plane ; the equation 

(xi-a1y+(x2-a2)
2+ • • • +(xn-an)* = R2 

defines a sphere whose center is a and whose radius is R, etc. 
One sees that the method of procedure is simply one of 

generalization of the equations of ordinary analytic geome­
try. If one wishes an n-dimensional non-euclidean space, we 
replace the metric ds2 = dx1+ • • • +dxl by 

(38) ds2= X) a>udxidxi , 0,7=a#, (i,7 = l, 2, • • • ,n). 
<»/ 

The only difference between this and (11) is the number of 
variables x. All the notions of 3-dimensional non-euclidean 
space developed in the previous section may be extended at 
once to w-way space. 
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I suppose the layman will think w-dimensional geometry is 
a crazy fiction, and mathematicians who study it rather want­
ing in common sense ; yet such is not the case. In the first 
place I would observe that all abstract geometries are pro­
ducts of our mind, the euclidean geometry of our text books 
being very closely related to the geometry of physical space 
as manifested to us by our sense perceptions. There is there­
fore no a priori reason why we should not free ourselves from 
the trammels of three dimensions and see what is to be gained 
by imagining space of higher dimensions. 

The first to suggest a space of more than three dimensions 
as far as I have ascertained was Lagrange. In his Théorie 
des Fonctions (1797) he says; "Thus we may regard mech­
anics as a geometry of four dimensions, and analytic mech­
anics as an extension of analytic geometry." 

Cayley in the early 40's saw clearly the service that space 
of higher dimensions might render in studying ordinary geom­
etry and Grassmann in 1844 treated it systematically in his 
Ausdehnungslehre. Gradually it has become an integral 
part of geometry. Even the pre-Einstein physicist found 
it convenient, so for example in the kinetic theory of gases. 
The motion of each molecule of the gas is given by 6 coordi­
nates, viz. :the three coordinates x,y,z of its center of mass and 
the three components u,v,w of its velocity. Consider a gas 
formed of N molecules in a closed container; it is convenient 
to represent the state or phase of the gas by a point in 6 N-
way space. As there are something like 3 • 1019 molecules in 
1 ccm at 0°C, and pressure of 1 atmosphere, one sees that the 
dimensionality of this space is a tidy little number. 

We need one more notion before taking up the ideas of 
Einstein. When Kepler and Newton came to study from a 
fresh point of view the motion of the planets, they found 
ready for use the properties of conic sections developed by 
the Greek geometers centuries before. With no thought of 
gain, actuated only by an ideal love of science, Appolonius 
of Perga and many other ancient geometers had studied the 
conic sections and we may well believe that the whole history 
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of modern astronomy would have been different if this theory 
had not been known. 

In a manner quite similar, Einstein found ready for use a 
calculus without which there would have been no general 
theory of relativity. This calculus was called by its inventors, 
Ricci and Levi-Civita, the absolute differential calculus ; the 
name tensor analysis seems to be preferred to-day. 

What is a tensor? Consider the n quantities 

(39) A' = dxi, • • • ,AW=dxn ; 

they are the components of an infinitesmal vector A. Let us 
introduce n new variables xv • • • , xn and set 

dxi f dxi 
Pa = — > Pa = — • 

OX' OXj 
J 

Then the n quantities 

are related to the original n quantities (39) by the equations 

(40) ^HfnA™, (* , i= l ,2 , . . . ,» ) . 
i 

In general any n quantities A', A", - - - , Ain) which are 
transformed, on introducing n new variables, according to 
(40) form a contravariant tensor of order 1. 

Similary, the n2 quantities ai]' relative to (38) go over, on 
changing from the x to the xf variables, into 

a = 2-j PaPma • 

Any n2 quantities Aij' which are transformed in this manner 
form a contravariant tensor of order 2, and so on. 

Let <p(xi,X2, - • • ,xn) have continuous first derivatives 

d<p d<p 
A l = . . . ,A«=— - . 

oXi aXn 

On changing to the xf variables, these become 

d<p -̂̂  
Ai = — - = J2 paAi . 

ox'. i 
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Any n quantities Ai, • • • ,An which are transformed in a 
similar manner form a covariant tensor of order 1. 

A set of n2 quantities An which are transformed by 

(41) lij= X) Pi\PwA\v 

form a covariant tensor of order 2. The coefficients an in 
(38) form a tensor of order two. The nA Riemannian symbols 
R\n,jk = (fJ^,jk) formed on the general metric (38) transform 
as in (26) ; they form thus a covariant tensor of order 4. 

If the law of transformation of nm quantities involves a 
factors pn and (3 factors p'n where m =ce+/3 we say they form 
a tensor of order m, covariant of order a and contravariant of 
order /3. Thus the R^jb of (23) form a tensor of order 4, covari­
ant of order 3, contravariant of order 1. The R\h of (24) form 
a covariant tensor of order 2. The R of (25) is altogether 
unchanged by transformation; it is an invariant; so is ds2 in 
(38) ; so is cos 6 as defined in (14) relative to the ds2 in (38). 

8. Restricted Relativity. Let us return for a moment to the 
fundamental concepts of geometry, the straight line, the 
plane etc. All our mechanics, physics etc. were founded on 
euclidean geometry until the advent of Einstein. For ex­
ample all pre-einsteinean optics rests on the assumption that 
light travels in a euclidean straight line and astronomers use 
this theory to make delicate tests in constructing plane 
mirrors. Now eclipse observations seem to show that light 
in passing a massive body like the sun is deflected ; its path 
apparently resembles a very flat hyperbola. If space is not eu­
clidean, what kind of a space is it? 

Almost 50 years ago (1870) Clifford inspired by Riemann's 
great paper of 1868 held the following beliefs: 

1) That small portions of space are, in fact, of a nature 
analogous to little hills on a surface' which is on the average 
flat ; namely that the ordinary laws of geometry are not valid 
in them. 

2) That this property of being curved or distorted is con­
tinually being passed on from one portion of space to another 
after the manner of a wave. 
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3) Tha t this variation of the curvature of space is what 
really happens in that phenonenon which we call the motion 
of matter, whether ponderable or ethereal. 

4) Tha t in the physical world nothing else takes place but 
this variation, subject (possibly) to the law of continuity. 

Clifford never succeeded in putting these ideas on a solid 
footing ; they were too far in advance of the epoch. Instead 
of being realized by one grand effort of genius the fates that 
rule the evolution of human thought decreed that they should 
be unfolded to our eyes in a series of lesser steps; non-eu-
clidean differential geometry, tensor analysis, the Michelson-
Morley experiment, the laborious efforts of Lorentz, M. 
Abraham, Larmor, Poincaré, leading up to the restricted 
relativity theory of Einstein (1905). This theory welded into 
a physical entity the 3 coordinates of space x,y,z and the time 
/. Minkowski began his Cologne address (1908) with these 
revolutionary words : 

4 'The views of space and time which I wish to lay before 
you have grown up from the fields of experimental physics. 
In this fact lies their strength. Their tendency is radical. 
From this hour onward, time and space as independent ele­
ments must sink down to shadows, and only a union of both 
shall preserve an independent existence." 

From this standpoint, only events exist, a happening at a 
given place x,y,z and time /. To specify an event, these 4 
numbers are always necessary; the universe is a 4-dimen-
sional continuum whose metric is given by 

(42) ds2 = dx2+dy2+dz2~c2dt2. 

As we have seen this is a space of constant curvature 0 ; and 
any section of it corresponding to / = constant is euclidean. 

The restricted relativity theory made a great stir in the 
scientific world ; its teachings ran sheer counter to notions 
which since the days of Newton had formed the ground work 
of our scientific thinking. Newton began his Principia by 
postulating an absolute space and an absolute time ; relativity 
relegated these to the scrap heap. Simultaneity of two events 
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lost its former absolute meaning and was shown to be a rel­
ative concept depending on the motion of the observer ; in a 
similar manner the mass of a body was no longer an absolute 
attribute. The luminiferous ether which Lord Kelvin in his 
Baltimore Lectures (1888) said we knew more about than we 
did of air, water, glass, iron was declared to be non existent. 

No such revolutionary ideas had shaken the scientific 
world since Copernicus removed the center of our little world 
from the earth to the sun. 

In the simplest manner it extricated physicists from a most 
embarassing position, bringing unity and clarity where before 
confusion and obscurity had reigned. It required us indeed 
to give up certain ways of thinking which long custom had 
led us to accept as necessary forms of thought ; but so did the 
teaching of Copernicus, Bruno, Kepler, and Galileo. 

9. General Relativity. Einstein's theory of 1905 was tied 
down by two restrictions; only rectilinear uniform motions 
were considered and the velocity of light was assumed to be 
strictly constant. In 1914 he proposed a broader theory in 
which both these restrictions were removed. In this theory 
the metric (42) was replaced by 

(43) ds2=^2aijdxidxjy aa—aa , ( i j = 1,2,3,4). 

Here one of the variables, as x4, is the time coordinate, and 
the a's are functions of the such that in the vicinity 
of a given point x the form (43) reduces to (42) for a properly 
chosen set of coordinates. All equations describing physical 
phenomena were to have tensor form. For example, let A^ 
be the 16 components of a tensor and suppose the 16 equa­
tions 

(44) ^xM = 0 , (X,/i= 1,2,3,4) 

expressed a physical fact. On changing to another set of coor­
dinates xv x2, x3, xé the components A become by (41) 

Âii= ILP^PWA^, (i,j= 1,2,3,4) . 
X/i 
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Here each term 4̂x̂  = 0; the equations (44) are replaced by 
the equations 

Âi,=09 ( v = 1,2,3,4), 

which bear the same relation to the transformed ds'2 as A »•/ to 
(43). We express this condition by saying that the equations 
of mathematical physics must be invariant relative to all 
transformations of 'the coordinates. 

In general, the metric (43) is not euclidean ; the path of a 
free particle will not be a euclidean straight; its deviation 
from such a path is due to gravitational masses. Einstein 
assumes the warp or twist of space, characterized by a purely 
geometrical tensor, is measured by a purely physical tensor. 
As geometrical tensor, Einstein takes (24), (25) 

G\n^ 7\M-—2a'*M— > 

as physical tensor he takes for a continuous medium of proper 
density p 

a ds ds 

Then the coefficients a a of the metric (43) are determined by 

(45) GX^-KTX, ; 

where K is a universal constant. Where there is no matter, 
p = 0 and TXM = 0 ; then the 10 unknown coefficients a»-,-de­
termining the metric are given as solutions of the ten partial 
differential equations 

(46) Gx, = 0 . 

As a special case consider the warp of space produced by a 
single heavy body as the sun. Einstein finds 

df doc 
(47) ds2 = r2d<p2-r2 cos2<pd62+ * 1 — u/r 1—p/r 

Here r&$ are polar coordinates, #4 is the time coordinate and 
JU = 1kmIc = 3 • 105 c.g.s. units, m = mass of sun, c = 3 • 1010 cm. 
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per sec. = velocity of light. For #4 = const., dx^ — O, and (47) 
gives as metric of the 3-way space around the sun 

dr2 

(48) ~<k2 = + r W + c o s V L 4 2 . 
l - / * / r 

I t is not euclidean. The path of a particle freely moving 
about the sun is a geodesic. Such a particle in Newton's 
theory describes an ellipse ; in Einstein's theory it describes a 
slowly turning ellipse. This is verified in the case of Mercury. 
Einstein's theory also requires that light shall be bent when 
passing a heavy body and the spectral lines shall shift toward 
the red. This has also been verified. 

In 1917 Einstein published his Cosmological considerations. 
As we do not know much as to the distribution of cosmic 
matter in the depths of space, such considerations are highly 
hypothetical, but it is interesting to see what results one can 
deduce. A number of reasons led Einstein to adopt as metric 
of the time-space universe 

2 2 2 

, x dxi+dx2+dxz 
(49) ds2 = c2dt2 - [ k2 "I2 

For dt = 0 this gives the metric of elliptic or sphero-elliptic 
geometry. Among the reasons which influenced this choice 
we may note the following: 

1) If space were infinite the values of the a*/ at infinite 
distance would be troublesome. 

2) Identifying cosmic matter with gas molecules in isother-
mic equilibrium we may use Bolzmann's formula 

Po/p^e^-^fRT 9 

where p is density and v velocity. If now p approaches zero 
while po is finite, v must become infinite; that is, the stars 
would have very large velocities. On the other hand p must 
approach zero unless the force of attraction of the matter of 
the universe, supposed infinite, on a given particle is inde­
terminate or infinite. 
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The coefficients a^ of the cosmological metric (49) do not 
satisfy the field equations (45), and Einstein was compelled 
to introduce a new universal constant X. The equations (45) 
are replaced by 

(50) G*p-\a«i3=-KTa{i ; (a ,0= 1,2,3,4) . 

The constants K,X are related by 
2 

(51) 2X = *p , *p = " j^ > 

where 1/R2 = k is the curvature of the #i,#2>#3 space, and p is 
the density of cosmic matter supposed on the whole to be 
constant. Now Kapteyn estimates that there are 80 suns of 
about the same mass as ours in a cube about our sun having 
sides of lengths 10 parsecs or 3 • 1019 cm. Then 

p = 5 -9 • 10~24. 
Hence 

R=l -3 • 1025 

= 9 • 1011 orbrads . 

DeSitter has given (1917) another solution of the field equa­
tions (50). He finds that the a»/ of the metric 

(52) ds* =-R2{ dp2+sin2p (# 2 +s inVd0 2 ) } +c2cos*pdt2 

satisfy (50) if we take 
3 

(53) p = 0 , X = — . 
R* 

This metric is spherical with respect to the time coordinate 
t, as well as to the space coordinates. According to this 
theory we should find : 

1) That light changes its wave length X, due to mere dis­
tance according to the formula 

AX 
(54) = ± tan p , 

X 
i.e., the spectra of distant stars should show a systematic 
shift toward the red. 
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2) Celestial bodies at a great distance have on the average 
a greater velocity than those near to us. Quite recently 
astronomers have succeeded in measuring the apparent 
motion of distant nebulae and star clusters, and both of these 
predictions have been verified thus far. 

L. Silberstein (1924) has used the DeSitter shift toward 
the red to estimate the space constant R. He finds approxi-

R = 6A012 astronomical units, 
a result which agrees well with the estimate made by 
Einstein, as above mentioned. 

10. Electro-Magnetic Phenomena. In our sketch of Ein­
stein's theory thus far, we have considered only the effect of 
gravitation ; the equations (50) which determine the an of 
the 4-dimensional universe take no account of electro­
magnetic phenomena. To account for this side of nature, 
Einstein introduces a covariant tensor (ç?i,. • • • , <p\) which 
he identifies with the electromagnetic potential. By means 
of the <p's and the g's it is easy to write down the equations 
corresponding to the field equations of Maxwell. 

According to this theory the metric of the universe is 
determined by gravitational matter and not at all by electric 
masses which may be present ; it seems however as though 
electric masses should play some part in determining the 
metric of the universe. 

In 1918 H. Weyl, generalizing the parallel displacement of 
Levi-Civita, showed how a 4-dimensional geometry could 
be constructed, embracing gravitation and electricity in an 
organic manner. Weyl's ideas have been further extended 
by Eddington (1921), by Einstein himself (1923-25), by 
Wirtinger, Cartan, Schouten, Eisenhart, Veblen, and many 
others. In fact a new branch of differential geometry has 
been created in the last few years which includes the geom­
etry of Riemann as a special case. By identifying certain 
tensors which arise in this theory with gravitational and 
electrical phenomena we obtain various ways of defining 
the structure of physical space. 
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In Riemann's geometry we start with a given metric (11) 
or (38) by means of which we form the Christoffel symbols 
{X<J*}. Then with the vector Aa &t x we associate the vector 
Aa+8Aa at the point x+dx where 

(55) ôA°*=dA°+ 2 ^ x ( M W • 
X M I « J 

Similarly with the vector A a we associate the vector Aa+ôAa 

at the point x+dx where 

(56) ôAa=*dAa- J^Ax \ W . 

The equations (55) and (56) define covariant differentia­
tion in Riemannian geometry. In the new geometry we 
define these differentials by analogous expressions, viz.: 

(57) oA« = dA<*+ X) A^T^dx» , 
XM 

(58) ôAa = dAa+ J2 AxAxvdx» 
X/i 

where r£M, A^ are arbitrary functions of X\j , X&» We 
regard (57) and (58) as defining an affine connection of the 
vectors Aa and Aa a t x with those at x+dx, or as defining 
geodetic differentiation of the Aa and Aa. When the^4a and 
the Aa are transported along a curve such that SA=0 we 
call the displacement a parallel or geodetic displacement. 
The geodetic differentials of tensors of higher order are 
formed in a manner analogous to their covariant differen­
tials. Thus if aX/t is a tensor of order 2 

where 

In Riemann's geometry Qx^^O; while in Weyl's, 

Q?-a*Qa. 
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The TxM and A ^ are not tensors but 

C\n= Ttn+Axn^eZCn, €x = 0 or 1, as a ^ X or =X, 

are, as their labels indicate, tensors of order 3. In the geom­
etry of Riemann, Weyl, and Eddington the C£M and *S£M 

are 0. By means of aX/i, <2\M, C» and 5"M the parameters T 
and A can be simply expressed, and by making various 
assumptions different geometries arise. 

If we displace geodetically the elementary vector Aa 

around a small circuit, we find that the Aa have changed by 

1 
AA«=— £ B*»VAHS , 

~ X/ii» 

where dS11" is an element of area and B"^ is what R"^ in 
(23) becomes when the Christoffel symbols are replaced 
by the T's which enter (57). Contraction of the B"^ gives 
us B\M analogous to (24). 

If we define the length I of an elementary vector A{ by 

a 
we find on displacing geodetically Ai from x to x+dx, 
that I2 has changed by the amount given in (36), when we 
replace the Christoffel symbols which figure there by the 
T's of (57). In passing we may remark that in Weyl's 
theory 

Let us see how Einstein uses this theory in his last paper 
(1925). He takes ^ = 0; there are thus 64 P s and 16 a's to 
determine. To effect this he sets 

and introduces the scalar density 
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He then assumes that all the variations of the integral 

\Hdx \dxîdx%dx± fi 
relative to the T's and g'sf regarded as independent variables, 
vanish. This gives 64+16 = 80 equations to determine the 
80 unknown g's and T's. 

11. The Geometry of Paths. In the foregoing, we have 
generalized the geometry of Riemann by generalizing the 
notion of parallel displacement; we may also proceed along 
another route as Eisenhart and Veblen (1922 et seq.) have 
shown. We are led to similar results but from another point 
of view, which, as these authors have shown, has important 
advantages. 

As above we take the nz functions rXM of X\) ' • ' , Xn ano. 
write down the system of n differential equations 

d2Xi _-^ i dx\ dxn % i 
-jT + 22 TXM — - — - = o , (*= 1,2, • • • , » ) , rXM= rMX . 

ds2 xM ds ds 

These define a family of ' 'curves called paths which like 
straight lines in euclidean space serve as a means of finding 
one's way about." These paths are geodesies in a Riemann 
space when there exists a metric ds2 whose coefficients 
satisfy (21). In the general case the I\M may be used to 
define an affine connection as in (57) while (58) is deter­
mined by taking AXM = — rX/x. 

12. Conclusions. Let us bring this paper to a close by 
making a few remarks of a general nature. We began by 
describing what may be called the naive view of space. 
Wha t space is per se is not discussed; its properties are 
codified in the geometry of Euclid. This geometry was 
taken over in toto by the physicist, astronomer, and engineer 
as the foundation of their science. Now Euclid's geometry 
had one weak spot, the notorious "fifth axiom." D'Alembert 
(1767) called it "le scandale des éléments de la géométrie" 
All attempts to prove this axiom, which seemed more like 
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a proposition than a true axiom, were in vain. Finally 
Lobachevsky and Bolyai (1823-1833) showed how a con­
sistent geometry might be constructed in which the parallel 
axiom did not hold. With this discovery a two thousand 
year period in geometry is closed and a new epoch begins. 
At first the significance of the Lobachevsky and Bolyai work 
was two fold. 

1) It showed that the parallel axiom could not be proved 
and further attempts to do so were doomed to failure. 

2) I t bore heavily against some aspects of Kant 's phil­
osophy, particularly as to the a priori character of euclidean 
geometry. 

Very gradually another view of space took shape. Gauss 
in a letter to Bessel (1830) writes "In all humility we must 
admit • • • that space has a reality independent of our 
mind and that we cannot lay down all its axioms". 

This view of space we have seen was further developed 
by Riemann, Helmholtz, and Clifford (1854-1870). 

We may characterize it briefly thus: Our sense percep­
tions, our daily experiences furnish the mind crude material 
which is worked up by it. One of its products is our notion 
of space. In the older view it was naively believed that our 
knowledge of this space, as far as its essential properties 
were concerned, was complete, and was embodied in the 
geometry of Euclid. Not so in the present view. According 
to this, the data of experience must be refined or idealized 
and rendered definite before a science of space, i.e., geometry, 
is possible. This idealization is effected by laying down cer­
tain definitions and axioms. A model of space is constructed 
in the same sense as Newton's mechanics is a mechanical 
model of the real world of mass and force, or Huygens un-
dulatory theory of light is a model of the real phenomena of 
light. These models we call abstract geometries. Euclid's 
geometry is one, the geometry of Lobachevsky and Bolyai is 
another so are the sphero-elliptic geometry of Riemann, the 
elliptic geometry of Klein and Newcomb. There are many 
others. Which of these is most truly in accord with physical 
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space must be found out by experience. But as soon as we 
begin to measure, we fall into a bottomless morass of physical 
theories ; does our measuring rod change as we move it about, 
is the path of light a euclidean straight, are our mirrors 
euclidean planes; in short, geometry and physics seem in-
dissolubly bound together. I t must be remarked, however, 
that these views were not held by the rank and file of the 
scientific world. Indeed the attitude of scientists was more 
like the attitude of the scholastic world as whether the earth 
was flat or a sphere. 

This state of mind was rudely shaken by the appearance of 
the theory of relativity (1914 et seq.). This theory not only 
requires a space whose structure is in constant flux, chang­
ing with every displacement of gravitational or electric 
masses, but it also gives the means of experimentally deter­
mining this structure. 

A most significant fact in the latest development of the 
theory of relativity is the preponderant role played by 
geometry. There is no one theory of relativity and to-day 
geometers are discovering, as we have seen, new geometries, 
one of which may prove the best adapted to give an in­
telligible picture of the physical world from the standpoint of 
relativity. 
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