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SOME PROBLEMS OF CLOSURE CONNECTED 
WITH THE GEISER TRANSFORMATION* 

BY ARNOLD EMCH 

1. Introduction, Problems of closure may be defined as 
series of geometrical operations of the same type performed 
on a given figure with the property that the series closes 
after a finite number of steps and that the closure in one 
instance has as a consequence the closure of an infinite 
number of series with the same number of steps performed 
on the same given figure. As examples of such problems 
may be mentioned the well known Steiner series of circles 
attached to two given non-intersecting circles, the Poncelet 
polygons, the Steiner polygons inscribed in a cubic, etc. 
There are various methods of treating problems of this 
kind. One very effective method for a certain class of 
problems is by means of elliptic functions, as inaugurated 
by Jacobit and Clebsch.J 

Another method, distinguished by its simplicity and 
directness, has been established by A. Hurwitz§ and is 
based on the correspondence principle in a one-parameter 
algebraic domain. For example, if the correspondence 
between the elements is (m, n) on a rational curve, there 
are m -f- n coincidences. Now it is possible that in certain 
cases the correspondence may be such that there are more 
than m-\-n coincidences. If this happens, then there are 
an infinite number of such coincidences and we have a 

* Presented to the Society, April 18, 1924. 
t tiber die Anwendung der elliptischen Transcendent en au f ein be-

kanntes Problem der Elementargeometrie, CRELLE'S JOURNAL, vol. 3, 
p. 376. 

% Über einen Satz von Steiner und einige Punkte der Theorie der 
Curven dritter Ordnung, CRELLE'S JOURNAL, vol. 63 (1864), pp. 94-121. 

§ Über unendlich-vieldeutige geometrische Aufgaben, insbesondere 
über die Schliessungsprobleme, MATHEMATISCHE ANNALEN, vol. 15 
(1879), pp. 8-15. 



528 ARNOLD EMCH [Nov.-Dec, 

problem of closure. Algebraically the problem may be 
stated thus : If the solution of a geometrical problem leads 
to an equation of degree n in one unknown (parameter), 
and if under certain imposed conditions this equation admits 
of more than n roots, then the equation has an infinite 
number of roots, and the problem admits of an infinite 
number of solutions. 

Recently Professor A. B. Coble has worked out a method 
of procedure of an invariantive character by which he has 
been able to solve problems of closure (porisms) in a very 
elegant manner. * The purpose of this paper is to establish 
some new problems of closure by a certain mapping pro­
cess applied to previously known problems of closure. It 
was also by a mapping process that the writer found the 
problems of closure stated in the recently published paper 
on the geometry of the symmetric group.t 

2. The Geiser Transformation^ For a better under­
standing of what follows it is perhaps well to state the 
principal properties of this well known involutory Cremona 
transformation in a plane in agreement with our notation. 
The seven base-points Al9 A2, • • •, A7 in a general position 
determine a net of cubics so that any two cubics of the 
net intersect in two points P, P' which as a pair of cor­
responding points define the Geiser transformation. The 
base-curves d are nodal cubics through the base-points, 
with their nodes at the J / s respectively. The # / s are 
octics with triple points at each of the Ajs, and determine 
a net of octics. The transformation has the pointwise 
invariant sextic C\ with double points at each of the JL/S, 

* Multiple binary forms with the closure property, AMERICAN 
JOURNAL, vol. 43 (1921), pp. 1-19. 

f AMERICAN JOURNAL, vol. 45 (1923), pp. 192-207. See also the 
author's monograph, Applications of elliptic functions to problems 
of closure, THE UNIVERSITY OF COLORADO STUDIES, vol. 1 (1902), 
pp. 81-133. 

| Geiser, über zwei geometrische Problème, CRELLE'S JOURNAL, 
vol. 67 (1867), pp. 78-89 ; Sturm, Die Lehre von den Geometrischen 
Yerwandtschaften, vol. 4, 1909, pp. 96-103. 
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which is consequently of genus 3, and which is the Jacobian 
of the net of cubics. It has the same nodal tangents at 
the Ai$ as the nodal base-cubics. The transformation is 
of class 1. The invariant isologue curve Cs attached to a 
point S is an elliptic cubic which outside of the A4 s cuts 
the C\ in four points P1? P2, P3, P4 which form a Steinerian 
quadruple on the cubic 6Y, i. ev the tangents to the Cs at 
the P/s meet in S which is on the Cs- Prom this follows 
that corresponding pairs P, P ' of the Geiser transformation 
on the Cs are also corresponding pairs in an involutory 
quadratic transformation with Pu P2, P8, P4 as the quad­
rangle of invariant points. This property of the Cs makes 
it easy to establish the relation between an invariant Cjm 
of the Geiser transformation and the corresponding class-
curve Kv from which it is generated. 

The order of the transformed Cn is in general fy*. 
Hence in order that this number reduce to fi it is necessary 
that the Op, have multiplicities ji at the J./s? such that 
]£3iji = $p — [A, = 7(j, which shows that ^ must be a 
multiple of three. The class v of the Kv is equal to the 
number of lines joining couples of corresponding points 
P, P ' on the Cfi through any given points 8. All such 
couples also lie on the attached Cs- The intersections of 
the CpL and the Cs at the Ai s absorb £ji points, so that 
outside of the Ai s there are 3^— ^jji intersections which 
arrange themselves into half that many couples aligned 
through S. Hence v = (1/2) (3^ — 2jd* In case of an 
invariant C$, v = 1, which corroborates the fact that the 
net of cubics through the Ai* is identical with the net 
of isologue cubics. 

Let us consider an invariant Cgm in the Geiser trans­
formation. As for a general Osm the corresponding curve 
is of order 24m? a curve of order 21m must split off in 
order to have a proper corresponding curve of order 3m. 
Assuming the simple case in which the C%m has equal 
multiplicities at the JL/s, these multiplicities are necessarily 
of order m, since whenever a branch of the C%m passes 

34 
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through an Ai, the corresponding base-cubic splits off as 
a part of the Csm. Now the isologue of a point 8 cuts 
the Czm in 3 • 3m — 7 • m — 2m points outside of the AJs. 
Hence for an invariant C%m these arrange themselves into 
m couples of corresponding points on lines through S. 
Hence the invariant C*m may be generated from a I m , 

As the Km is determined by m(m + 3)/2 conditions, the 
manifold of invariant Cam's of this type is equal to this 
number, The number of conditions of the class of CW's with 
multiplicities of order m at each Ai is ft = (1/2) 3m (3m + 3) 
— 7(l/2)m(m + 1) = m(m +1) . The question is, how must 
the k points be chosen to insure an invariant Csm. It is 
obvious that since k is even, a sufficient condition is that 
the k points form ft/2 couples. But this is not always 
necessary. From the ft points choose y couples of cor­
responding points, then the Csm and C%m have at least 
7m2 + 2r + 4m points in common, since the Csm cuts the 
pointwise invariant sextic in 6 • 3m — 7 • 2 • m — 4m points» 
If 7m2 + 2y + 4m ;> 9m2, then C%m = Csm. This condition 
reduces to 2/ >̂ 2m2—4m. On the other hand 2y < m{m + 1)* 
For m = 5, this gives 30 < 2/ ;< 30. Thus in case of an 
invariant C15, 15 couples determine such a curve uniquely. 
As 2m2 — 4m — (m2Jrm) = m(m — 5) is positive for all 
values of m > 5, in case of CWs for m > 5, (1/2) m (m + 1) 
couples determine the invariant C8m uniquely. 

As an example of particular interest may be mentioned 
the class of invariant sextics with double points at each 
of the base-points. In the first place a sextic with double 
points at each of the ^4/s depends on six free constants 
and is transformed into a sextic of the same type since 
6-8 — 2*7-3 = 6. Such a non-invariant sextic Ct cuts 
the d in 36 — 7-4 = 8 points J outside of the .A/s. The 
d and the C\ determine a pencil of sextics with the same 
multiplicities at the Ai% and all passing through the 8 points «7. 
Through every point of C\ there is a selfcorresponding 
direction, i. e., a line on which lie two corresponding points 
of the Geiser transformation infinitely close to the C\. Con-
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sider now any of the 8 points J and the corresponding 
line-element through J. There is just one sextic Ct of 
the pencil through the Aj s and the J ' s which will have 
this element as a tangent at J. The transformed Cj' be­
longs to the pencil, since the J ' s are invariant, and along 
the element through J cuts the Ce in two consecutive points. 
Hence the two curves intersect in 37 points and are there­
fore identical. This establishes the existence of invariant 
sextics. As every invariant sextic C* determines a pencil 
of non-invariant curves and as all non-invariant curves 
are contained among such pencils, the system of invariant 
sextics with double points at the AJs depends on five 
effective constants. This may be verified as follows: An 
invariant cubic Cs cuts an invariant CQ in four points out­
side of the Ais. These lie in couples of corresponding 
points on two lines through 8. Consequently the lines 
joining corresponding points on an invariant C$ with double 
points at the Aj& envelope a conic K2. Conversely any in­
variant sextic of this sort may be generated from a conic K2 

of class two. There are therefore oo5 such sextics. If 
we denote by ipXj ip2, Vs three linearly independent in­
variant cubics, any invariant sextic of the system may be 
represented in the form 2i,k=i ^n^i^Pu ~ ®* ̂ ° s u m UP 
we have the following theorem. 

THEOREM I. The entire class of oo5 invariant sextics with 
double points at the base-points may be generated from the 
class of conies K2. An invariant sextic C$ cuts the point-
wise invariant sextic C\ in 8 points, so that the tangents 
to the CQ at these points touch a conic (K2). 

The pointwise invariant curve C\ connected with seven 
generic points in a plane is sometimes called the Aronhold 
curve. It cannot be represented as a polynomial of the 
second degree of three linearly independent cubics through 
the seven points. However its square may be expressed 
as a certain polynomial of the fourth degree in the three 
cubics Ci\ &i\ (t, so that (C|)2 = F(C?, Cf, Cf) , 

34* 
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where F is a general quartic with the (73's as projective 
coordinates. Hence the general quartic can be resolved 
by three linearly independent cubics through seven points. 

It is easy to study higher systems of invariant curves in 
the Geiser transformation by the properties of the transfor­
mation and by the curves Kv from which they are gene­
rated. A Kv generates a reducible curve of order 9v 
with an equation of the form (C*)rH(ipv ip2, V8) = 0, 
in which the H is of degree 3 v in the #'s. The pointwise 
invariant curve C\ splits off v times and leaves an invariant 
curve H of order 3 v with v-told points at the base-points. 

3. Mapping by the Geiser Transformation on a General 
Cubic Surface. Consider the cubic Cremona transformation 
between two quaternary spaces ]£ and ^' in which to 
the planes p of ]£ correspond cubic surfaces C' through 
the base-curve 8' in 2 ' and conversely to the planes pf 

of 2 ' correspond cubic surfaces (7 through the base-curve S 
in ^ . The curves S and Sf are sextics of genus three 
and the base-surfaces of the transformation are octic sur­
faces formed by the trisecants of 8 and 8'. To a point 
of 8 corresponds a trisecant of 8', and conversely to a 
point of 8' a trisecant of 8. 

Choose a definite plane p in ]£ a s the plane of a Geiser 
transformation which by the cubic transformation is mapped 
into a definite cubic C' of J£'. The sextic 8 cuts p in 
six points Au . . . , AQ which in general do not lie on a 
conic. These points we take as six points of the Geiser 
transformation, while A7 may be chosen in some fixed po­
sition independent of the six other points. To Al9 . . . , AQ 

correspond on C' six lines ai, . . . , aé, while the image of 
Ai is some point Al-i on C'. To a plane section p' through 
A'7 with C' corresponds in p a plane cubic C$ through 
Al9 ..., A?. Likewise to another plane section c[ through 
Alj corresponds in p another plane cubic Cg through the 
base-points. Cf and Cg intersect, outside of the A's, in 
two points P and Q which are corresponding points in the 
Geiser transformation. To them correspond on C' two 
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points P ' and Qf which lie in pr and g', and which are 
therefore the points in which the line of intersection of 
p' and q cuts the cubic surface C\ Thus to pairs of cor­
responding points of the Geiser transformation correspond 
on the cubic C' pairs of corresponding points cut out by 
secants u' through A7. Every line in p carries one pair 
of corresponding points, and to it corresponds in J£' uniquely 
a line u' through J.7. 

THEOREM II. The correspondence between u and u' is 
(1,1) and involutory. Hence the points P and lines u of p 
are in involutory reciprocity with the planes pf and lines u' 
through A7. In this reciprocity, to a curve Km of class m 
in p corresponds in ^ a cone Km of order m with A7 as 
a vertex. The locus of pairs of corresponding points on 
tangents u' of Km is an invariant C$m of the Geiser trans­
formation, as has been proved in § 2. The cone Km cuts 
Cf in a curve C%m of order 3 m which is invariant in the 
involution (P', Qf) on C'. Thus (78m and Clm correspond 
to each other in the cubic transformation between ]? and ^'. 

To the plane sections through A7 and a'i correspond in p 
the base-curves of the Geiser transformation. To the plane 
section of the tangent-plane to C' at M corresponds the 
base-curve with A7 as a node. To the tact-sextic of the 
tangent cone from A? to C' corresponds in p the Aronhold 
curve or the pointwise invariant sextic or Jacobian of the 
net of plane cubics through the J.'s. 

4. Problems of Closure. A cone Km with A'7 as a vertex 
cuts the cubic C' in a curve C%m of order 3m. As Km 

cuts each of the lines a\ in m points, the corresponding C%m 

in p, generated from the class-curve Km, has Ax, . . . , AQ 

as multiple points of order m. But the C$m has an m-fold 
point at the point A7, so that also A7 has the multiplicity m 
on GW à. tangent-plane to the cone Km along an ele­
ment uf cuts C' in a cubic C3 which touches C'sm in the 
two points P' and Q' cut out by u''. Thus, to Cg cor­
responds in p a cubic Cz which touches Cnm in corresponding 
points of the Geiser transformation. 
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As a particular case, choose two quadric cones K2 and 
L2 with common vertex at An, but not intersecting in real 
generators (V). They intersect G' in two sextics T' and 
$ ' . Every tangent plane of K2 cuts C' in a cubic Cg which 
touches T' in two points on a ur and cuts S' in two pairs 
of points whose joins also pass through Ah, since they lie 
on generators of L2. If we now construct a pyramid with 
vertex at Ah such that its faces are tangent to K2 and its 
edges are generators of L2, and if once such a pyramid 
closes for two fixed cones K2 and L2, then there are an 
infinite number of such pyramids, circumscribed to K2 and 
inscribed to L2. If by means of the cubic transformation 
we go back to the Geiser plane p, we derive immediately 
the following theorem. 

THEOREM III. Let T and 8 be two invariant sextics of 
the Geiser transformation and G\ an invariant cubic touching 
T in two points T\ and T[ and catting 8 in two couples 
of corresponding points Si, Si and S2, S2. Through S2, 82 

pass an invariant cubic C2 touching T in a couple of cor-
responding points T2, T2 and cutting S in a couple SQ, #3. 
Through S$, 8% pass a cubic C& touching T in Tz, T'% and 
cutting 8 in S4, Si, and so forth. Suppose this process con­
tinued n times, so that the last cubic Gn of the series cuts S 
in Sn+i, S'n+i* If once Sn+i, Sn+i coincides with Si, Si, 
i. e., if the process closes, then there is always closure after 
n operations, no matter what initial cubic Ci touching the 
sextic T in a couple Ti, Ti is chosen. 

The joins of all couples T%, T[ envelope a conic K2, those 
of Si, Si a conic L%, such that K% and L% are correlative 
to K2 and L2, 

A general cubic cone K' with vertex at Ah cuts the 
cubic surface C' in a curve Si of order 9. To it corre­
sponds in p an invariant curve of the same order, generated 
from a correlative plane cubic of class 3. Through a 
generator u' of Kf pass two tangent planes ag and ah 

touching Kf along the generators g and h. ag and ah cut 
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C' in plane cubics C'g and C{ which pass through the inter­
section TJ and U' of u' with C'? and which touch the C$ 
in couples G, G' and H, H' of corresponding points in the 
involution on the cubic C'. The closure property of the 
quadrilateral pyramid with vertex at Ah whose six edges 
are generators of K', all in analogy with the closure theory 
of Steiner polygons inscribed in a plane cubic, transferred 
to the Geiser plane leads to the following theorem. 

THEOREM IV. Given an invariant S$ in the Geiser trans-
formation and on it a couple (U, U') of corresponding points. 
Through (J7, U') dratv two invariant cubics touching 89 in 
two couples (G, Gf) and (H, Hf) respectively. Through (G, Gr) 
pass any invariant cubic Ci cutting S9 in two couples (A, A!) 
and (B, Bf)\ through (H, Hf) and (B, Bf) pass an invariant 
cubic C2 cutting S9 in (C, C); through (G, G') and (C, C') 
pass the invariant cubic C3 cutting Sd in (D,Df); through 
(H, H') and (D, D') pass the invariant cubic Ci ; then C4 

will always pass through (A, A'), no matter what initial 
first couple (A, A!) or initial cubic Ci is chosen. 

By the mapping process explained above a number of 
problems of closure may be obtained without difficulty. 
Thus we may state the following theorem. 

THEOREM V. Given an invariant curve C9 of order 9 
with triple points at the base-points of the Geiser trans­
formation. Through a couple of corresponding points of 
C9 draw the four invariant cubics touching the C9? each 
touching the C9 in a couple of corresponding points. Thus 
four couples are obtained which we define as a Steinerian 
octuple on the C9. Consider a second octuple of this sort 
on the C9. Any couple of the first octuple together with 
any couple of the second octuple determine an invariant 
cubic uniquely. In this manner are determined 16 in­
variant cubics ivhich by fours intersect in four couples of 
a third octuple on the C9. 
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