CONCERNING RELATIVELY UNIFORM CONVERGENCE*

BY R. L. MOORE

According to E. H. Moore, a sequence of functions $f_1(p)$, $f_2(p)$, $f_3(p)$, ..., defined on a range K, is said to converge, to a function f(p), relatively uniformly with respect to the scale function s(p) if, for every positive number e, there exists a positive number e such that if e0 then, for every e1 which belongs to e2, $|f_n(p)-f(p)| < e |s(p)|^{\dagger}$.

In this note I will establish the following theorem.

THEOREM. If S is a convergent sequence of measurable functions $f_1(x)$, $f_2(x)$, $f_3(x)$, \cdots defined on a measurable point set E and S converges for each x belonging to E, then E contains a subset E_0 of measure zero such that the sequence S converges relatively uniformly for all values of x on the range $E-E_0$.

PROOF. Suppose that S converges on E to the limit function f(x). By a theorem due to Egoroff‡, E contains a subset E_1 of measure less than 1 such that S converges to f(x) uniformly on $E-E_1$. Similarly E_1 contains a subset E_2 of measure less than 1/2 such that S converges to f(x) uniformly on E_1-E_2 . Continue this process thus obtaining a sequence of point sets E_1 , E_2 , E_3 , \cdots such that, for each n, (1) the measure of E_n is less than 1/n, (2) E_{n+1} is a subset of E_n , (3) S converges uniformly on E_n-E_{n+1} . Let E_0 denote the set of points common to the sets E_1 , E_2 , E_3 , \cdots . The set E_0 is either vacuous or of measure 0. Furthermore

$$E = E_0 + (E - E_1) + (E_1 - E_2) + \cdots$$

Since S converges uniformly on each point set of the countable collection $E - E_1$, $E_1 - E_2$, $E_2 - E_3$, ..., it

^{*} Presented to the Society, April 14, 1922.

[†] See E. H. Moore, Introduction to a Form of General Analysis, The New Haven Mathematical Colloquium (Yale University Press, New Haven, 1910).

[‡] Comptes Rendus, Jan. 30, 1911.

follows, by a theorem due to E. W. Chittenden, that S converges relatively uniformly on the sum of all the point sets of this collection. But this sum is $E-E_0$.

THE UNIVERSITY OF TEXAS

THE THEORY OF CLOSURE OF TCHEBYCHEFF POLYNOMIALS FOR AN INFINITE INTERVAL[†]

BY J. A. SHOHAT (J. CHOKHATE)

1. The Theorem of Closure. Suppose we have a function p(x), not negative in a given interval (a, b), for which all the integrals

$$\int_{a}^{b} p(x)x^{n}dx, \qquad (n=0,1,2,\cdots)$$

exist. It is well known that we can form a normal and orthogonal system of polynomials

$$g_n(x) = a_n x^n + \cdots, \quad a_n > 0, \quad (n = 0, 1, 2, \cdots),$$

uniquely determined by means of the relations

$$\int_a^b p(x)\varphi_m(x)\varphi_n(x)dx = \begin{cases} 0, & m \neq n, \\ 1, & m = n. \end{cases}$$

We call these polynomials Tchebycheff polynomials corresponding to the interval (a, b) with the characteristic function p(x). The simplest example is given by Legendre polynomials, corresponding to the interval (-1, +1) with p(x) = 1.

The most important application of Tchebycheff polynomials is their use in the development of functions into

^{*} E. W. Chittenden, Relatively uniform convergence of sequences of functions, Transactions of this Society, vol. 15 (1914), pp. 197-201. As Chittenden observes, this is an extension of a theorem given by E. H. Moore on page 87 of his Introduction to a Form of General Analysis, loc. cit.

[†] Presented to the Society, December 29, 1923.