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CONCERNING RELATIVELY UNIFORM 
CONVERGENCE* 

BY R. L. MOORE 

According to E. H. Moore, a sequence of functions fi(p)7 

/â(p)> fs(p)> • • • ? defined on a range ÜT, is said to converge, 
to a function f(p), relatively uniformly with respect to the 
scale function s(p) if, for every positive number e, there 
exists a positive number öe such that if n >- de then, for 
every p which belongs to ÜT, \fn(p)—f(p) I ^ e | s(p) | t . 

In this note I will establish the following theorem. 
THEOREM. If 8 is a convergent sequence of measurable 

functions ft(x), f2(x), fa(x), • • • defined on a measurable point set 
E and 8 converges for each x belonging to E, then E contains 
a subset E0 of measure zero such that the sequence 8 converges 
relatively uniformly for all values of x on the range E—EQ. 

PROOF. Suppose that S converges on E to the limit 
function f(x). By a theorem due to Egoroff J, E contains 
a subset E± of measure less than 1 such that S converges 
to f{x) uniformly on E—Et. Similarly Ex contains a 
subset E2 of measure less than 1/2 such that S converges 
to f(x) uniformly on Ex—E2. Continue this process thus 
obtaining a sequence of point sets El7 E$, E3, • • • such 
that, for each n, (1) the measure of En is less than \ln, 
(2) En+i is a subset of En, (3) 8 converges uniformly on 
En — En+i. Let E0 denote the set of points common to 
the sets Eu E2, Es, • • • . The set E0 is either vacuous 
or of measure 0. Furthermore 

E=E0 + (E—El)+(E1—E2) + - •. . 
Since S converges uniformly on each point set of the 

countable collection E—Et, Ex — E2j E2 — Es, • • - , it 

* Presented to the Society, April 14, 1922. 
f See E. H. Moore, Introduction to a Form of General Analysis, The 

New Haven Mathematical Colloquium (Yale University Press, New 
Haven, 1910). 

+ COMPTES RENDUS, Jan. 30, 1911. 
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follows, by a theorem due to E. W. Chittenden, that* 8 
converges relatively uniformly on the sum of all the point 
sets of this collection. But this sum is E—EQ, 
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THE THEORY OF CLOSURE OF TCHEBYCHEFF 
POLYNOMIALS FOR AN INFINITE INTERVAL! 

BY J . A. SHOHAT (J. CHOKHATE) 

1. The Theorem of Closure. Suppose we have a function 
p(x), not negative in a given interval (a, &), for which all 
the integrals 

b 

p(x)xndx, {n — 0,1, 2, • • • ) 

exist. It is well known that we can form a normal and 
orthogonal system of polynomials 

9n(x) = anx
n H , an>0, (n = 0,1, 2, • • •)> 

uniquely determined by means of the relations 

J p(x)q>m(x)g>n(x)dx = j ^ m = n! 

We call these polynomials Tchebycheff 'polynomials corres­
ponding to the interval (a, b) with the characteristic function 
p{x). The simplest example is given by Legendre poly­
nomials, corresponding to the interval (—1, + 1 ) with 
p{x) = 1. 

The most important application of Tchebycheff poly­
nomials is their use in the development of functions into 

* E. W. Chittenden, Relatively uniform convergence of sequences of 
functions, TRANSACTIONS OF THIS SOCIETY, vol. 15 (1914), pp. 197-201. 
As Chittenden observes, this is an extension of a theorem given by 
E. H. Moore on page 87 of his Introduction to a Form of General 
Analysis, loc. cit. 

f Presented to the Society, December 29, 1923. 
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