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Let us see what the effect will be when the value of z
as obtained from ¢ = 0 is substituted in equations (1).
Suppose that the substitution has been made in X and Z.
It is easy to see that X, and Z, are equal to zero, and
that to differentiate X completely with respect to «, it is
necessary to differentiate with respect to x and then to
use the function of a function rule, thus X, X,(92/0x),
and similarly for the other letters. Thus using the fact that
o = 0, we may write the equations (5) in the form

(xp+§—;x,) ot 02— (2,+ Z—;z,) (XokpX) — O,

(16) (Pp—}——%il’z) (Kot pX— X+ -,f;—gx) (Po+pP) =0,

(Pﬁ—?—%ﬂ) Gt vZ)— 2t %Z) (Po+pP)=0.

It is very easy to see that these equations are now the
expanded form of the determinants of the matrix (15).
Hence the theorem is proved.
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1. Statement of the Problem. The authort has already
considered functionals of the form fly(z(), 4/ (z0)] (depending
only on a function y(z) and its derivative ¢'(v) between
0 and 1) which are invariant under an arbitrary Volterra
one-parameter group of continuous transformations. The

* Presented to the Society, December 1, 1923.

T Cf. Integro-differential expressions invariant under Volterra's
group of tramsformations in a forthcoming issue of the ANNALS oF
MareEMATICSs. This paper will be referred to as “I. D. I. V.”



1924.] INVARIANTS OF TRANSFORMATIONS 339

calculation of the invariants in question was effected in
the case of a large class of functionals known as analytic
functionals.

The purpose of this note is to consider the problem of
finding analytic functionals fy(z(), ¥/ (%0)] invariant under a
Fredholm group of transformations

1) %(x) = y(x) +J:K (@, s| a)y(s)ds,

where a is the parameter of this continuous one-parameter
group of transformations, and where @ = 0 corresponds to
the identical transformation.

We restrict ourselves to transformations (1) for which the
y/(¢)’s exist and are continuous in the interval I:0<7z<1;
K(x,s|a) and 9K/6x are continuous in z and s in the
square S:0<x<1, 0<s<1; and 8 K/9z is not identically
zero when a % 0.

The infinitesimal transformation corresponding to (1) will
be of the form

1
® o) = | [ 7, ptoyas| a0
with

1
3) 0y (x) = [J;H (e, s)y(s)ds] da,
where

Hy(z,s) = ?i(x’—S);
ox

as the extended group of infinitesimal transformations.

Here follow the well known relations* between the kernel
K(x, s|a) of the Fredholm finite transformation (1) and the
kernel H(x, s) of the corresponding infinitesimal transforma-
tion (2):

* Gerhard Kowalewski, Uber Funktionenrdume, WIENER SITZUNGS-
BERICHTE, 1911, vol. 120, ITA.

22*
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@ K(z,sla) = S,
6) Hay=|KoD] 13 Ky,

where H?and K¢ are to be interpreted according to Volterra’s
symbolic multiplication.

By methods similar to those employed in proving the
lemma of PartI of Z. D. I. V., we can prove* without
difficulty the following lemma.

LEMMA. Necessary and sufficient conditions that H(z, s)
and 0H/dx be continuous in x and s and that dH/dx be
not identically zero are that K(x,s|a) and 0K/dx be con-
tinuous in x and s and that dK/dx be mot identically zero,
when a F 0.

2. A Sufficient Condition jfor Invariance.

TueoREM 1. Let fly(vt), v/ (z0)] be an amalytic functional
of y(*) and ¥ (v), i.e., developable wm a Volterra expansiont

foo-l-Z{ ff f[ 1o) Si—te, 1t =+ 5 G5 G—totsy =+ )

J

Xny(tz) 11 y’(ti)]dtldtg e dd

i=1 i=j—k-+1

We shall assume that fj—x, x is continuous in its j arguments,
symmetric separately in the sets of arguments ty, ta, ..., tji—k
and tj—g41, ..., tj respectively; and for convenience we
assume also that

(7) lﬁ—k,k‘<77 |?/]<01, Iy’]<92’

where y, 01, 02 are positive constants. Then a sufficient
condition that fly(et), ¥/ (@] be invariant under a given
group of tramsformations (1) s that it satisfy the relation

* The proof comes by a direct calculation of the series involved.
T This is a generalization of Taylor’s series given by Volterra. See
for example his Legons sur les Equations Intégrales, 1918.
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1
®  JoH, i fi ity oy i3 Gy e, i, D
1
—EIO H(t, tiv10) fir1, k—1(C by o ooy b5 ity oo vy it x—1)d1.

The necessary and sufficient condition that fly(zt), ¥/ (v0)]
be invariant under (1) is that under (2)

(9) Ofly(z0), ¥/ (z0)] =0 in y and #/.

Since the analyticity of our functionals insures the validity
of a Volterra variation, we may use Volterra’s* form of
the variation of a functional. Then condition (9) becomes

(10) S todyat+ [ fr sy Hat = o

in y and ¢/, where fy(¢) and f,/(¢) are the partial functional
derivatives of fly(z0), &/ (z0)] with respect to y(z) and ¢/ (z),
respectively, both taken at the point ¢.

Substituting in (10) the values of dy(f) and dy/(¢) as given
by (2) and (3), respectively, rearranging and dividing through
by da, we get

A1) [y oA 9at+ f 1 OB, atlis = 0

in y. We may now apply Lemma 2 of 1. D. 1. V.; doing so,
we find

(12) St OHE, 9at = — (oA OH, s)dt.

Such operations as functional differentiations term by term
are valid since the series involved are uniformly convergent
under our hypotheses.t Calculating the partial functional
derivatives f,(f) and f,(¢), respectively, and substituting
them in (12), we get by an easy reduction]

* A more general expression for df would be in the form of Stieltjes
integrals.

+ Cf. 1. D. 1. V., Part II, and Volterra’s Legons sur les E‘quations
Intégrales, 1913, p. 18.

+ Cf. similar reductions of I. D. I. V.
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2{ __1)|fj; fl: Hl(t S)f) 1—1, l+1(t1)
- (€))

N/ S T/ R /B U]

J—1—1 J
> H y(t:) H y (m]dtl . dtj_ldt}

(13 i=j=t
= _1{]——1)Vf£(j f[ H(t 8) fi—1e, 1ty by -«
s bi—k—13 b—ty . o oy Gi—1)
J—k—1

> H y(t:) H y@)lan . .. dy_at,

Py b
where &k = (1. Equating coefficients of similar terms in
y and 3/, we find
1
fo Hi(t, ) fj—1—t 1410ty « ooy G—1—05 Gimty « o oy Gj—1, D)dE
1
E_fo H(ty S)ﬁ—l, ity e G—1—13 84—ty o v ey tj-l)dty

which can be written in the form (8).

3. Calculation of the Invariants fly(zo), v/ (z0)]. In order
that fTy(v0), ¢/ (#0)] be invariant under (1) it is sufficient that
the following recurrence formula hold

(14) f:i, k(t1, ceey biy bty oo ey bik—1, t)
_ Htw) N
T H(, ti+k)ﬁ+1’k_1(t’ B ooy G5 gty « ooy Big—1).

We shall now prove the following theorem.

TueoreM I1. A necessary and sufficient condition on (1) that
an analytic functional fly(vo), 3/ (¥6)] be invariant under (1)
when (14) holds is that the kernel H(x, s) of the infinitesimal
tramsformation be of the form

(15) H(z, 5) = p(s)e™,
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where W(s) is an arbitrary function of s, and where ¢ s
a constant.*
It is evident from (14) that

H(t, titx)
H,(t, tit1)

must be independent of ¢+, and hence it is necessary that
it be a function of ¢ alone, say ¢(f). On applying (14)
until f;, » is written in terms of f’s with second index zero,
we get the recurrence formula

(16)  Sfiwlty, tay ooy by bidny oo vy tibr—1, ©)
= (_l)qu)(t)]kﬁ+k, 0(t7 tly veey tz', ti—}-l, ey t’ll—l—k—-l)-
By hypothesis fi+x, ois symmetric in all its arguments.
Therefore, interchanging #; and #.1 leaves the right-hand
side of (16) unchanged. Hence if (16) is to hold, J;, i, must
be symmetric with respect to # and #41, and therefore it
must be symmetric in all its arguments. On interchanging
¢t and any ¢; in (16), we see at once that ¢(f) must be a
constant, say c; i. e., H(z, s) must satisfy the equation

17 C'ZM—H(% s) =0,

ox
whose most general solution is (15).

We may now remark that the arbitrariness of the coef-
ficients fi1x,0, in terms of which all the other f; x's can
be evaluated, on making use of the recurrence formula,
enables us to state immediately the following theorem.

THEOREM III. Let the kernel H(x, s) of the infinitesimal
transformation (2) be of the form Y(s)e®c, and let us take
an analytic functional fly(et), i (v0)], all of whose fi x's are
symmetric in all their arguments, and assign arbitrarily for
natial conditions the coefficients fiir o in its Volterra ex-
pansion; that is, take an arbitrary Fly(v)] such that Fly(zo)]
= fly(%)), yi(v0)], and for convenience take yi(r) = 0. Then,
if the fi,i's are calculated by the recurrence formula

* That is, if H(x,s8) =¢(s)e”’*, we may assert that invariant analytic
functionals f[y(t§) y'(z§)] always exist.
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(18)  fixlty, ooy tixr) = (—1)ecEfiqn, oty « -y titn),
we shall have an analytic functional fly(vt), y' (vo)] which

will be imvariant under a tramsformation (1) whose kernel
K(z, s|a) is given by

K(z, s|a)
t i—1
(19) —Z—lp(s)ex/c f f f oA H«p(tl)dn i,
01 =1

4. Example. We here give an easy example in which
the direct verification by means of the finite transformation
is very simple. Let us suppose that

oy(x) = [ewﬁlsy(s)ds} da

is the given infinitesimal transformation, i. e., that H (z, s)
=g¢”. By means of an easy calculation, the finite trans-
formation may be written in the form

1
(20) (@) = y(x) + (e*— l)e”j; sy(s)ds,
i. e., K(x, s|a) = (e*—1)e%s. Let us take for initial condition

Sly(z0), 0] = Fly(zo)]
1 1 1

= k[ ot [t [ fott, s,

Then the functional fy(z)), i/ (z0)] given by
1
S, a8 = foo [ Frotly)—y/ et
1 1

+ —21_![J;dt2£f 20(t1, tz){?/(tl)!/(tz) —2?/(?51)?/(152)‘}‘3/(51)3/@2)}] dt

is invariant under (20).
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