
1924.] INVOLUTORIAL TRANSFORMATIONS 101 

PROBLEMS IN INVOLUTORIAL TRANSFORMA­
TIONS OF SPACE* 

BY VIRGIL SNYDER 

1. Introduction. A report of great value and of general 
interest was presented to this Society at the Chicago meeting 
of April, 1922. While only a limited number had the oppor­
tunity to hear Professor Coble on that occasion, fortunately 
his message has reached a much wider public, by appearing 
in this BULLETIN (vol. 28 (1922), pp. 329-364). On account 
of the wider purpose there in hand, it was impossible to treat 
in detail all the many ramifications of the theory, or to show 
all their interrelations. My present purpose is to comment 
more fully on one narrow phase of this report, namely, that 
of involutions. 

In the plane the problem is almost completely solved. It 
was shown by Bertini(l)t that there are four types to one 
of which every plane involutorial transformation can be re­
duced; they are the harmonic homology (fl~), the Geiser (2) 
iff) of order 8 with 7 triple points, the Bertini(l) (J3) of 
order 17 with 8 six-fold points, and the Jonquières(3) (J) of 
order n with one fundamental point of order n— 1 and 2n — 2 
simple ones. Of these, all but the last are individual types, 
but (J) exists for every positive integral value of m For 
special (J), JH is also an involution, but this can always be 
reduced to an H. Moreover, all these involutions are rational, 
that is, the pairs of conjugate points can be mapped ratio­
nally upon a plane (xf) such that between (xf) and the given 
plane (x) there exists an algebraic (1,2) point correspondence. 

Thus, that associated with (H) may be expressed in the 
form xf2 x%—x's X2 = 0, x[ x<ix% — X2 xt = 0. The invariant 

* Presented to the Society at the Symposium held in New York City, 
December 28,1923. 

fThe numbers refer to the papers listed at the end of this article. 
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or coincident points constitute the line xi = 0. That associ­
ated with (G) has the form 

X\X\ + X'IXI + -̂ 3^3 = 0, 

in which each d = 0 is a general conic. Each cubic of the 
net formed by linear combinations of a%Cu — XkCi = 0 is 
transformed into itself. The curve of invariant points is the 
jacobian of the net, KQ (rl- • -r?), in which n is a simple basis 
point. The curve of branch points in (#')> in (1,1) corre­
spondence with K<s, is the general quartic L'^ which expresses 
the condition that the line in (x) touches the associated conic. 
Every line of (x) contains one pair of conjugate points. From 
this standpoint the system of the bitangents, the contact 
conies, cubics, etc. of L[ can all be determined directly by 
elementary methods. Their two images in (x) are conjugate 
as to (G). That associated with (B) may be expressed by the 
equations 

#i$Pl + #2<jP2 = 0, 

x'if + #8 n (fa n + fa n) = o, 
in which w = 0 is a general cubic curve, and ƒ = 0 is a 
proper sextic having eight of the points hi common to yi = 0, 
<P2 = 0 for double points. The curve of invariant points is 
the jacobian of the system <JPI = 0? ^ — 0, ƒ = 0. It is of 
order 9, and has eight hi as triple points, Kg {hi*"hi). The 
curve of branch points is also a sextic Lr

Q, having three 
branches touching each other at a common point. An arbi­
trary line in (x) contains four pairs of conjugate points; i. e., 
the simplest form of (B) is of class 4. Finally, the (1,2) corre­
spondence of form (J) can be expressed by x±xz—#2#i = 0, 
x% Mi—u' M% = 0, in which M% = 0 is a curve of order m 
with an (m—2)-fold point at (0,0,1); u' is linear in (xr). The 
jacobian is the curve of coincidences, a hyperelliptic curve 
having an (n—2)-fold point at (0, 0,1). This involution is of 
class zero. This is the easiest way to find and to classify 
the plane involutions of order 2; to find all possible ways in 
which the curves of a net can have two variable points of 
intersection. The question of reducibility or of the equiva-
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lence of two given cases is not more difficult by this method 
than by that of Bertini. The seven basis points n have for 
images in (x') seven bitangents of L±\ a point of a bitangent 
has two images, one of which is the basis point n, and the 
other describes the cubic of the net having a node at n. 
The point and the nodal cubic are conjugate in the invo­
lution ((?). 

Indeed plane involutions of every order were later shown 
to be rational, by Castelnuovo(4). For particular positions 
of the basis points the types assume special forms, but they 
are all included in the same (or simpler) categories (5). An 
interesting case of (J) is that in which all the curves of the 
net have contact of the second order on each branch at the 
multiple point. Its equation is 

Ax(—Un-1 X% + Un) + hUn-1 X\ + ^ 8 ^ - 1 #2 = 0 
in which m is binary in x±, X2 of order i. All the basis points 
are now coincident at (0, 0,1). 

The curves of coincident points characterize the type of 
the involution. Hence it follows that any surface mapable 
on a double plane is, or is not, rational according as its curve 
of branch points can be reduced to one of the above curves (6). 
Another possibility is that involutions may be compounded. 
This is particularly useful in studying irrational algebraic 
curves. A curve is hyperelliptic if it has a linear series g\. 
Thus every hyperelliptic curve is invariant under at least 
one involution. But a curve may be cut by the curves of a 
pencil in such a way that each curve cuts more than one pair 
of conjugate points from the given one. Such involutions, 
possible only on curves of genus greater than one, are usu­
ally irrational; they exist for any given genus(7). No alge­
braic curve of genus greater than 1 can belong to an infinite 
group, either continuous (8) or discontinuous. An elliptic 
curve is invariant under an infinite series of operations which 
do not form a group. It has an infinite number of central 
involutions each with four fixed points, and three without 
fixed points. A rational curve is invariant under a three-
parameter group, within which are oo2 involutions. 
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2. Transformations in Space. Of the linear transforma­
tions, only two are involutorial, the central and the axial 
involution. In the former we have a plane of invariant points, 
in the latter, two skew lines. The quadratic transformations 
may be defined as in the plane. They were all found in the 
early papers of Cayley(9), Cremona(iO), and Noether(H). 
An elementary derivation is given by Snyder and Sisam(i2). 
The involutorial forms are either perspective, such that 
every line of a bundle remains invariant, or the product of 
the perspective inversion and a central homology. A full 
discussion is given by Doehlemann(13). An application to 
the theory of electric images was given by Liouville(l4). 
For the theory and the literature, see Doehlemann(l3). One 
great application of the birational transformations of space 
is to the study of systems of curves lying on given surfaces. 
Thus, on the quadric, every algebraic curve can be expressed 
by means of an (a, b) correspondence, and only those plane 
curves which can be thus expressed are projections of space 
curves of the same order lying on a quadric. Since the sur­
faces of a homaloidal web are all rational, the transformation 
furnishes an immediate method of mapping the surface on a 
plane. On the other hand, this method does not furnish 
general criteria for determining whether a birational trans­
formation is involutorial or not. Nearly all of the earlier in­
volutions were found directly from particular geometric con­
ditions imposed by the problem considered, and none have 
been obtained by following the procedure employed by Bertini 
for the plane involutions. 

The surfaces of the system must satisfy two fundamental 
conditions; they must form a linear system with four inde­
pendent surfaces ; any three intersect in one variable point. 
Hence the surfaces must have points or curves common to 
all. But these criteria are common to all birational trans­
formations. 

3. Rational Involutions. Consider in space (x), a linear 
system of °°d surfaces, a web, having the property that 
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any three not in a pencil intersect in two variable points. 
Let the web be ̂ am = 0. By putting x\ = <fi(i — l, 2,3,4) 
the surfaces can be mapped upon the double space (#')• 
This was first studied by De Paolis (15). 

To the planes of (x) correspond the surfaces of the web 
\cp\, each of which remains invariant under the involution 
of associated points, images of the same point of {x'\ To 
the lines of (xf) correspond the curves (< ,̂ cpu), also invariant 
under L These curves are either hyperelliptic or belong 
to sub-types of hyperelliptic curves, of genus 1 or 0. Each 
surface of the web | SP | has then oo2 hyperelliptic curves, 
any two of which intersect in two variable points. The 
locus of points in (xf) having the property that the two 
images in (x) coincide is the surface L' of branch points. 
The coincident points in (x) define a surface K, in (1, 1) 
correspondence with the points of L'. These surfaces may 
be replaced by curves or by points. The system of surfaces 
in (cd), images of the planes of (x)} do not form a linear 
system, but have certain points and curves in common which 
are fundamental for the correspondence. A fundamental 
point P ' may have one or both its images in (x) fundamen­
tal (16). If its images are a point P and a curve p, then 
P is a fundamental point of the associated involution I 
in (x). If both images are fundamental, the associated curve 
in (x) may be fundamental in different ways. 

A complete enumeration of rational involutions would 
involve the various webs of surfaces with two variable 
intersections. While these are of course infinite, it is not 
known to what extent they can be reduced to a small 
number of families. Thus, in the plane, if we exclude the 
hyperelliptic curves with common multiple points there are 
only two nets of curves with two variable points, one of 
genus 1 and the other of genus 2. The equations concern­
ing a Cremona net are then sufficient to complete the 
enumeration. When the point P ' describes a locus (curve 
or surface), the images P1? P2 will each describe a locus. 
These two loci may coincide, or if distinct, they are con-
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jugate in L The necessary and sufficient condition that 
the two loci pl9 p2 are distinct is that p' touch U at 
every non-fundamental point(17). From this standpoint all 
the systems of bitangent planes, of contact quadrics, 
cubics, etc. of the general U can be found immediately 
without the use of transcendental methods. In particular 
the system of contact surfaces of the Kummer surface can 
be derived from the web of quadrics through 6 points. 
The numerous formulas derived by De Paolis are not in 
the main of greatest usefulness on account of being ex­
pressed in too many unknowns. "When the web is regular, 
and the basis elements independent, the Eiemann-Roch 
theorem for surfaces, 

r = pa-\-n — TC-\- 1, 
applies, in which r, the dimension of the system of curves 
in which a fixed surface of the system is cut by the other 
surfaces of the web, is 2, n is the number of variable inter­
sections of two curves of the system, and re is the genus 
of the variable curve. Hence this genus exceeds the arith­
metic genus of the general surface of the web by unity. Since 
each curve is hyperelliptic, the number of coincidences is 
27r + 2, hence the order of U is also 2TT + 2. 

The general discussion of De Paolis was followed by 
SchouteflS), who confined his discussion to simple cases. 
Reye(i9) gave a detailed synthetic study of the web defined 
by quadrics through 6 points, which has been treated by a 
number of writers since. Hudson(20) developed it from the 
dual of the previous standpoint; Eberhard(2l) followed 
various systems of curves on the surface, to which I added 
several (22). 

An involution is determined on a quartic surface with five 
basis points by the space cubics through these and a point P, 
but this may not be birational for all of space. In the case 
of the Weddle surface the points P, P ' are collinear with 
the sixth node. Other cases are treated by Sturm(23) ? by 
Marietta (24), and by Baldus(lG). The latter also discussed 
(1, 2) correspondences between irrational ruled surfaces, in 
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which fundamental elements appear which are not found in 
planar involutions. A particular (1, 2) correspondence asso­
ciated with a net of cubics through a space quartic curve /4 

and five coplanar basis points was studied by Pieri(25)? 

primarily for the properties of L'. An interesting property 
appears here, as the variable curves are of genus 2. The 
system of curves is irregular since the basis points are not 
independent. Three cases cited by Pieri as belonging to 
distinct types are now known to be reducible to particular 
cases of the types considered by him. Another important 
feature is the appearance of an irrational fundamental curve. 
In the plane the image of a fundamental point is always a 
rational curve of order equal to the multiplicity of the point. 
But the net of surfaces of the web which pass through an 
arbitrary point of the plane rt all pass through the cubic 
curve of the pencil determined by this point, the basis points A, 
and the four points of intersection of n and /4. The image 
of this cubic in (xf) is a point, and the point describes a 
straight line as the cubic curve describes the pencil. The 
other image of P' is a point R in (x) which depends upon 
how P ' is approached. To an arbitrary plane through P' 
corresponds a linear g% on the cubic curve. This property 
accentuates the difficulty of defining a type, as an irrational 
curve may be transformed into a point. 

Another web of cubics was considered by Bomano(26)? 

that having three skew lines and four points for basis ele­
ments. This presents six fundamental lines of the second 
kind, such that in the associated involution the image of any 
point on one of them is the whole line passing through it.* 

In every case, when simple basis points of the web appear, 
the image of each in (x) is a tangent plane to U\ the con­
jugate, in the associated involution, of the basis point is the 

*In the later discussion of the same case by Sharpe and Snyder, 
TRANSACTIONS OF THIS SOCIETY, vol. 21 (1920), p. 56, these lines are 
overlooked, so that the characteristics of the involution as there given are 
incomplete. Similar omissions occur in the later types defined by a web of 
cubic surfaces. Romano's paper was not known to the authors at that time. 
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surface of the web having a double point at that point. When 
the web has a simple basis curve, each point of the curve goes 
into a straight line in (x), and the conjugate in J is a rational 
curve. These curves generate a surface, conjugate of the 
given curve, which is a multiple basis curve in the involution. 

But when the section of the surfaces of a web by a fixed 
surface is completely accounted for by fundamental elements, 
various paradoxes may appear. This has not been com­
pletely worked out, especially when the section is made on 
an irrational non-ruled surface. 

The problem of the existence of these webs depends upon 
formulas of postulation involving contact of higher order 
at multiple points. In the original memoir of Noether(27) 
the cases are excluded in which the tangent cones to the 
surfaces of the web at a multiple basis point are composite, 
and contacts of different sheets along branches of the curve 
is not considered. Notwithstanding the recent valuable 
additions made by Hudson(28)? by Severi(29), and by 
Tummarello (30)? little progress can be made in the problem 
of reducibility and the determination of the equivalence of 
two given involutions until more is known on this subject. 

When all the points of intersection of a line or a curve 
with surfaces of the web are fixed, or are on fixed basis 
curves, the line is called a parasite by De Paolis. Since a 
net of surfaces pass through it, its image in {x') is a point. 
If the given curve belongs to a linear system, each curve of 
which is a parasite, the image point describes a straight line. 

A satellite is a line or point of contact which insists 
on coming in, unbidden, when certain conditions are im­
posed. Consider the conical surface having a cuspidal edge 
x\xz — x\, and the rational cone x1x^l~1JrAo(^x^l~k-\ = 0 
with undetermined coefficients. The number of lines of contact 
approaching coincidence with x± = 0, x2 = 0, in the plane 
xi = 0 is always an odd number. If we impose the condition 
that one more line be counted, a second insists on accompanying 
it. This is true for a cone having any superlinear branch. 

Satellites and parasitic branches will have to be considered 
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in view of fundamental elements of new and as yet little 
understood forms. The explanation given by De Paolis(15) 
is incorrect, and the relation between a line and its parasite 
may violate the theorem of. order and multiplicity, as has 
recently been shown byMontesano(3l) and byTummarello(30). 

4. Involutions by Means of (1, 2) Correspondences. The 
first comprehensive study of the (1, 2) correspondence from 
the standpoint of classification of associated involutions 
was made by Sharpe and me (32). After collecting the 
necessary formulas of postulation and equivalence we ap­
plied them to webs of surfaces of orders 3, 4, and 5. Two 
kinds of restrictions were made at the outset. Surfaces 
with higher point singularities, including monoids, were ex­
cluded, and the basis elements were assumed to be in­
dependent. The first restriction was deliberate. When the 
surfaces are monoids or, more generally, rational, then each 
surface of the web can be mapped birationally upon the 
plane, and the curves of intersection with the other surfaces 
can be treated by means of plane involutions. The two 
extreme cases of monoids, those having one non-composite 
basis curve, and those having a fixed tangent cone at the 
vertex have been determined since, but the results are not yet 
published. The former are not monoidal transformations, 
and most of them cannot be reduced to the monoidal type. 
Those of the other form are always monoidal, of a very 
particular type. The other restriction was less deliberate. 
In the plane the basis elements are independent, and the 
fundamental curves are uniquely fixed by the position and 
multiplicity of the basis points through which they are to 
pass. If the elements are chosen in a particular way, for 
example three collinear points among the seven which define 
a Geiser net, the resulting involution can be reduced to a 
simpler form in which the elements are independent. 

Within these limitations, the webs of cubic, quartic and 
quintic surfaces have been determined. Among them appear 
the focal surfaces of all the line congruences of order 2 and 
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class 2 to 7, and several related surfaces, together making 
an unbroken sequence. Incidentally, configurations of curves 
on these surfaces can be determined much more directly by 
this method than by those by which they were first dis­
covered. The category also includes surfaces invariant under 
infinite discontinuous birational groups, both those known 
previously, as the Kummer surface and the Fano surface, 
and new surfaces not previously studied. 

What was not accomplished was to determine how many 
of the involutions appeared more than once in a transformed 
form. It was proved, for example, that there are different 
involutions having a Kummer surface for surface of branch 
points L' in (xf). Each focal surface of a line congruence 
of order 2 appears at least twice. Of course one will meet, 
in the study of webs of higher order, all the involutions 
associated with simpler webs, which can be transformed 
birationally into webs of the given order. Thus, Osborn(33) 
has studied the webs of order 6, and has refound many of 
the existing types. The webs of singular cubics have recently 
been studied by C. Moffa(34) by the method of plane mapping 
without the use of the double space, and the results in the 
other webs confirmed by the same method. Miss Moffa shows 
that fundamental lines of the second kind must exist in every 
case. This paper, together with the correction to the result 
obtained by Pieri(25)? completes the list of involutions which 
leave each surface of a web of cubics invariant. 

5. Bases of Classification. Another scheme of classification 
is to divide the involutions into families, expressed as a 
function of the order n, like the Jonquières forms in the 
plane. The first attempt of this kind was made by De Pa­
olis (35)? who classified all the forms that leave aline con­
gruence of order one invariant. The lines may belong to a 
bundle, or meet a line and a rational curve of order m, with 
m — 1 points on the line, or be the bisecants of a cubic curve. 
The second and third cases are treated exhaustively, but 
from the standpoint of classification the results are of little 
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importance, as all of them can be reduced to the monoidal 
form. The involution of order 7 defined by a web of quadrics 
through six basis points belongs in this category. Most of 
its properties are much more easily obtained, however, in 
the form of the web of quadrics, than expressed in terms of 
the nodal projection of the Kummer surface upon itself. 

Another important family was mentioned by Noether(36) 
and more fully treated by Montesano(37). In this family the 
images of the planes of space are surfaces of order n with a 
common (n — 2)-fold line and a basis curve of order 3n —4. 
This will be discussed later. Another family, also discussed by 
Montesano(38)? consists of surfaces of order 2w + l, having 
as basis elements a space elliptic quartic to multiplicity n, 
and 2n of its bisecants for simple lines. This case was also 
previously cited by Noether(39). It includes a number of 
particular cases previously mentioned by others. Thus, the 
type discussed by Pieri(25) is this one when w = 5 . The case in 
which the conjugates of planes are surfaces of order n with 
a fixed {n — l)-fold line was also studied by Montesano(40). 

A number of families of involutions, generalizations of the 
preceding, were found by Sharpe and meUT), the results of 
which can perhaps be best expressed by the theorem: There 
exists an involution of order 12w + 5 having a fundamental 
quartic y± of genus 1 to multiplicity 6n—1 and a fundamental 
curve A$w+i, genus 9n — 3, to multiplicity 4, meeting n in 
12n—4 points. It has also 12n + 16 simple fundamental 
lines meeting y A, AW+I each twice and 6n—2 fundamental 
double conies meeting y4, j86n+i each in 4 points. In symbols, 

h ~ < W Ö : rT-x + fa+i + (12n + 16)1^ + ( 6 n - 2 K 
b4, 4>*+J = 12n—4; [ui9 r4] = [ui9 fi6n+1] = 2. 

Similarly, 

*1 ~ *4» + 9 = r? + 1 + fiin + 5 + dB» + 10K + 2< 

These various types are not reducible to each other. 
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6. Monoidal Transformations. The monoidal transforma­
tions were discussed by De Paolis (41) and the product of 
the perspective monoidal and a harmonic homology was 
treated by Martinetti(42)? who thought there could be no 
other non-perspective types. All the forms were derived 
synthetically by Montesano(43)? who showed that every type 
could be reduced to one in which the bundle of lines through 
the vertex remains invariant, and that the lines of the bundle 
are either invariant (perspective type) or are interchanged 
in pairs according to one of the four ternary involutions Hr 

G, P , J. Of these, the latter contains two parameters, the 
order n of J", and the order m of the perspective monoid. 
The equations of all the types were derived by me (44). 

Let O = (0, 0, 0, 1) be the vertex of the monoid. Since the 
bundle of lines O is transformed into itself, and is involu-
torial, it must be either the identity, or H, G, P, or X In 
the first case, called the perspective, the conjugate of any 
point P is on OP and is harmonic with regard to P and the 
pair of points in which OP meets a fixed surface 

Un-2Xl+2un-lX* + Un = 0> 
m being ternary in xl7 x2, x$ of degree i. 

The equations of the transformation are 

r • i o o f \Un —1%4: ~r Un) 
rxi = Xi, i = 1, 2, 3; rx± = ; — • 

Every plane through O is invariant and contains a perspective 
^involution from 0. Itun-2 is identically zero, the fixed 
surface is itself a monoid, and P' is the harmonic conjugate 
of P as to O and the residual point of intersection with OP. 
The basis curve consists of the lines common to the two cones 
tin—i = 0, un = 0, which are fundamental of the second 
kind, that is, the image of any point on any one of them is 
the whole line passing through it. The image of a point on 
a k-îold basis line is the whole line counted &-fold. 

Of the other types, any one is expressible in the form 
X4,(pil-\-V 

rx'i = (pi, i = 1, 2, 3; x± = 
wx± — ux 
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in which the gp* define an involutorial Cremona net of cones 
with common vertex at 0, y is a linear function of the 
<Pi and x is the same linear function of the xi. The u, v, w 
are algebraic polynomials in functions k% that are invariant 
under the ternary involution. 

In particular, take BM. The gp* are of order 17, and have 
eight basis lines each to order 6. Now suppose n = 6, and 
v, w are identically zero. The result is of order 18, the 
image of 0 is the plane x = 0 passing through 0, and every 
line joining a pair of conjugate points meets the funda­
mental line m : x = 0, xà = 0. The conjugate of an arbitrary 
line is a rational curve of order 18, which passes simply 
through 0. If the given line meets m, then the image of 
the point of intersection is a component of the conjugate; 
the proper image is a plane curve of order 17 in the plane 
of m and the given line. It is a plane B transformation. 
The line meets the invariant cone B9 = 0 of B in 9 points, 
which also lie on the conjugate Ci7. Hence the line meets C17 

in four pairs of conjugates. In this particular monoidal 
transformation any line joining a pair of conjugate points 
belongs to a special linear complex and contains three other 
pairs of conjugate points. This probably includes irrational 
involutions. 

In connection with the monoidal types of birational trans­
formations we have an immediate example of the existence 
of (n, n2) types, found synthetically by Tummarello(45) for 
every value of n, although earlier writers supposed they 
could not exist for w>-3(46). 

The equations of the transformation are of the form 

%i = <Pi, Ü = 1? 2, 3) ; Xé = Un-lXé-\-lin, 

in which | y | is a Cremona net of cones of order n with 
vertices at (0, 0, 0,1). 

7. Classification. The first proposal was to classify in­
volutions, like other birational transformations, according 
to the order of the surfaces conjugate to the planes of 
space. This was done for those of order 2 in the earliest 

8 
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memoirs. It was soon found that those of order 3 could be 
expressed by means of three symmetric bilinear equations 
in the coordinates of two variable conjugate points (47). 
The types arising from three polarities have been estab­
lished by Morris (48), but a number of interesting additional 
types appear when one or two of the polarities are replaced 
by linear complexes, either one or both of which may be 
general or special. These types offer no new difficulty, but 
no enumeration is complete without them. 

But this method was early recognized to be impracticable, 
as no general criteria are known, to insure the involutorial 
character of the transformation when n^3. A real advance 
was that of classifying involutions according to the genus 
of a general plane section of the conjugate surface of a 
plane (49). The first category is that of genus zero. The 
conjugate surface must be either a quadric, a Steiner quartic, 
or a ruled surface of order n with an (n—l)-fold line. 
Those of the first category were first obtained by Aschieri(50) 
and by Martinetti(42)? those of the second by Montesano(5i), 
and those of the third by Montesano(40). This method has not 
been developed further, on account of lack of knowledge of 
forms of rational surfaces with plane sections of given genus. 
Those of genus 1 have recently been made by Nobile(80). 

8. Line Complex containing the Involution. The next 
procedure is that of considering the system of lines obtained 
by joining conjugate points. This system may be either a 
congruence or a complex. In the former case each line of 
the congruence contains an infinite number of pairs of con­
jugates. These congruences are always of order 1(35), 
and the transformations reducible to monoidal types. When 
the lines form a complex, each line contains one or more 
pairs of conjugate points. The linear complex, each line 
containing one pair, was considered by Montesano(52). 

This does not give an extensive list of involutions, but 
each involution is determined by a particular curve of 
order 10 and genus 11. Given a hyperelliptic curve C| of 
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order 6 and genus 3. Two quartic surfaces through it deter­
mine a C\l through which pass oc4 quartic surfaces. Of 
this system, the web passing through a point P also inter­
sects in its conjugate P'. The lines PP1 generate a linear 
complex. An arbitrary plane meets (7*J in 10 points lying 
on a cubic curve. The curve may break up into a par­
ticular (53) c\ and a cubic. The involution is of order 11, and 
may be particularized to orders 10 • • • 3. Types belonging 
to a special linear complex were later studied by Pieri(54)? 

but not all such types were found. They can all be ex­
pressed by a single formula, given by Sharpe and me(17). 
All of the monoidal types JM are included in this cate­
gory, as well as the simple M. 

Involutions belonging to the tetrahedral complex were 
derived by Montesano (55), and later from another stand­
point by Wimmer(56). This type occurs incidentally in 
the discussion of Sharpe and Snyder (17). The involution 
is of order 19. Each surface of a web of quartics having 
a basis CJJ is left invariant by the involution. Other cases 
of involutions belonging to special quadratic complexes 
were studied by Pieri(57), and of involutions belonging to 
complexes of tangents by Pieri(58)? and by Montesano (59). 
They can all be reduced to monoidal types. The question 
now arises whether an involution belongs to every quadratic 
complex, and the answer is No. (60) The study of the 
complex to which an involution belongs is of great service, 
but it does not furnish a satisfactory basis for classification. 
Montesano (61) showed that involutions in which each conic 
of a linear system is self conjugate belonged to the type 
studied by De Paolis (35), hence reducible to monoidal forms. 

In all these cases, each line of the complex contains 
a single pair of conjugate points, but involutions exist in 
which each line of the complex contains two, three, or 
four pairs of conjugate forms(44). Montesano has proposed 
to me to classify involutions according to the minimum 
product of the order of the complex to which it belongs and 
the number of pairs of points on each line of the complex. 

8* 
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9. Irrational Involutions. It is known that irrational 
involutions in space exist. The first example was given 
by Enriques(62)? and later simplified by Aprile(63). But 
both of these are of order higher than two, and it is not 
known whether irrational involutions of order 2 exist or 
not. But there are three that make it seem very probable. 
The first was discussed by Montesano(64). Consider the 
group of order 32, Xi — ^r X% which leaves the equations 
£x2i = 0, ]£aiX2i = 0 invariant. Think of the xi as line-
coordinates, and map the quadratic complex defined by 
them on the points of space. The central perspective 
transformations go into six perspective monoidal ones of 
order 3, all the invariant cubic surfaces passing through 
a common space quintic of genus 2. The product of two 
of the central perspectives corresponds to cubic involutions 
which leave every plane through the line joining the centers 
invariant, and every point of an elliptic space quartic re­
mains fixed, the curve being the residual to the quintic, 
intersection of the invariant cubic surfaces of the monoidal 
components. The ten products by threes (123 = 456) are 
more complicated. This depends upon the representation of 
the lines upon the point space, and the configuration is 
included in the next case, also considered by Montesano (37). 
The following outline is based upon a study being made 
by Professor Sharpe and me, not yet completed. Consider 
the involution I in which the conjugate of a plane is a 
surface of order n, having a line p to multiplicity n—2. 
There is also a basis curve of order 3n—4 meeting p in 
3n — 7 points. Planes through p are transformed into 
planes through p, either each into itself, or the pencil is 
in involution, with two invariant planes. If p is defined 
by x± = 0, x2 = 0 we may write 

x[ — Mxi, xf2 = — Mx2, x's = E, xi = F. 

Since the transformation is birational and involutorial, it 
follows that XB, X± are connected with xz, x\ by a bilinear 
equation. It is now easy to get the equation of the complex 
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to which the involution belongs. It is always a particular 
form, being most nearly general for n = 3. It has been 
shown by Fano(65) that the general cubic complex is ir­
rational. In some particular cases the spatial, surface, and 
arithmetic genera were all found to be zero, but these con­
ditions to not insure the rationality of the involution, since 
a three-dimensional variety may have all its genera zero and 
still be irrational (65). The third illustration is furnished by 
the general cubic variety Vm four space (67), Pass a plane 
through any point P on V and any line I lying on it. The 
plane section consists of I and a conic meeting it in two 
points, A, B. The lines AP, BP are tangent to V at points 
on I Conversely, given any tangent to F at a point of I It 
meets F in a residual point P, hence there is a (1, 2) corre­
spondence between the points of V, and its tangents at points 
of I. If the tangents are now mapped on the points of an 
auxiliary three space, we obtain an involution belonging 
to F(68). It is of order 6, and belongs to the type JM, 
hence also to a linear complex, but every line joining a pair 
of conjugate points contains one other pair. Thus it is mapped 
on a special linear complex doubly. But we have practically 
no criteria of rationality of varieties which can be mapped 
doubly on rational three spaces(66). 

10. Curves and Surfaces Invariant under Involutions. In 
every rational involution every surface of a web remains in­
variant, and also the curves of intersection of pairs of sur­
faces of the web. In this way many properties of curves can 
be obtained which belong to given irrational involutions of 
any given genus. Associated with every curve of (xf), not 
a contact curve of L', is a curve of (x) which is invariant 
under the involution, the pairs of conjugate points belonging 
to the given curve in (#')• And we may have surfaces be­
longing to more than one web, each of which defines an in­
volution. On this surface, the two involutions generate a 
group which may be finite or infinite. Numerous examples 
of such surfaces have been given (69), but many of them are 
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disposed of by the theorem of EnriquesOW that such a surface 
has a pencil of elliptic curves, except when pa = P2 = 1. 
In every case thus far found, all the operations can be ex­
pressed in terms of Cremona transformations. A surface 
having pa = P% = 1 but not containing a pencil of elliptic 
curves was found byFano(7D, and its group discussed by 
Severi(72). That it belongs to two webs connected with (1,2) 
correspondence was shown by Sharped) and me. A second 
example was found by us (73), having similar properties, defined 
by the web of quartic surfaces through a space curve of order 8 
and genus 2. A detailed discussion of all these types, with 
particular reference to their groups, was given by Fano(74). 

But another quartic surface exists (73), for which pa~P^ = 1? 
which has no elliptic curves, and is invariant under an in­
finite discontinuous group, but not generated by involutions (75). 
The operations of this group may also be expressed by Cre­
mona transformations. The surface is defined by containing 
a sextic curve of genus 3. 

PROBLEMS. 

1. What is the definition of a type of space involution? 
2. Can rational involutions be classified in a finite number 

of types? 
3. Do irrational involutions of order two exist? 
4. Do all surfaces invariant under infinite discontinous 

groups belong to Cremona groups? 
For example, given a quartic surface with five nodes. 

The space cubic determined by them and a point P on 
the surface meets it again in P', defining an involution 
under which the surface is invariant. Can this be ex­
pressed as a Cremona transformation? Now take a 
quartic with six nodes. There are six such involutions. 
Do they generate an infinite group? These illustrations 
may be trivial, since the surface contains pencils of 
elliptic curves. 

5. Can the equivalence of two given involutions be ex­
pressed in terms of rational invariants? 
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This is a short list, but will probably suffice for some 
time. Encouraged by recent contributions to the theory of 
postulation and equivalence, as given by Hilda Hudson (76) 
and by Severi, and illustrated by Tummarello and by 
MissMoffa, and by the important theorem of Montesano(?7) 
concerning multiple parasitic lines, let us continue to hope 
that a final answer may be found to some of them. The 
recent researches of Chisini(78) on the singularities of 
algebraic surfaces, and the proposal of Severi(79) con­
cerning classification of space curves will be of fundamental 
assistance. 
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