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A QUALITATIVE DEFINITION OF THE 
POTENTIAL FUNCTIONS* 

BY PHILIP FRANKLIN 

1. Introduction. In this paper we aim to set up postulates 
completely characterizing the potential functions, which do 
not involve derivatives or integrals, and are thus of a more 
qualitative nature than the definitions previously given. 
Incidentally, we may interpret all of our postulates as state­
ments of properties of such physical quantities as give rise 
to potential functions, and when so interpreted, we see from 
physical grounds that they hold for the quantities in question. 
They thus furnish a means of going directly from certain 
physical problems to the potential functions, without the use 
of Laplace's equation. Our results will be stated in full only 
for potential functions of two and three variables, although 
they may evidently be extended to the n-dimensional case. 

2. Postulates for Two Dimensions. Consider a class of 
functions of two variables, x and y, thought of for con­
venience as Cartesian coordinates, and let each function 
have associated with it a region B of the plane. Our assump­
tions are: 

(1) Each function is continuous in both variables at all 
interior points of its region B. 

(2) If Bt and R2, the regions for two functions of the 
class / i (x, y) and f2 (x, y), have a region Rs in common, 
then any linear combination of these functions, such as 
Afx (x, y) + Bf2 (x, y), is a function of the class, whose 
region contains all the points of i4< 

(3) If an orthogonal transformation of the variables (i. e., 
a change of Cartesian axes) converts the function ƒ (x, y) 
with region B into F (a/, y), this latter function is a member 
of the class, its region being the region B expressed in the 
new variables. 

* Presented to the Society, April 28, 1923. 
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(4) The function ƒ(x, y) = 1 is a function of the class, 
its region R being the entire plane. 

(5) If a given circle lies entirely inside each region R^ 
belonging to fi(x, y), these fi(x, y) constituting an infinite 
sequence of functions of the class, and if, for points xc, yc on 
the circumference of the circle lim _̂>oo fi(xc, yc) = 0, the 
limit being approached uniformly over the circumference, then 
the sequence of values of the functions fi (x, y) at the center 
of the circle cannot approach a limit different from zero. 

We shall show that any family of functions satisfying these 
five postulates is necessarily a class of potential functions, 
each function being harmonic at any interior point of its 
region R. Since every linear class of harmonic functions 
satisfies the above postulates, the widest class of functions 
satisfying them is the totality of harmonic functions. 

By way of motivating our choice of postulates, we note 
that postulates 1, 2, and 4 are natural requirements since 
the functions we are trying to define satisfy a linear homo­
geneous partial differential equation. Postulate 3 is allied 
to the fact that the Laplacian operator is the only linear 
differential operator of the second order invariant under 
orthogonal transformations of coordinates. The last postu­
late is added as a fairly weak condition which completes 
the characterization, since the preceding ones are not by 
themselves sufficient for this. 

It is illuminating to consider the significance of the postu­
lates for a physical example, say the functions giving the 
temperature of points of a set of thin plates, when various 
boundary temperatures are assigned. The postulates state, 
essentially, that these functions are continuous point func­
tions, as a class independent of the choice of coordinates, 
which possess the property of combination by superposition; 
that if the boundary temperatures are constant, the tempera­
ture inside will be this same constant, and finally that if 
the temperatures at the circumference of a circular plate are 
altered so that they approach zero uniformly, the tempera­
ture at the center of the circular plate will approach zero. 
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3. Deduction of the Mean-Value Property. We shall now 
prove that the class of functions which satisfy the postulates 
of § 2 have the mean-value property, that is, if x0, yo is 
the center of a circle C lying entirely inside of R, the 
region for fix, y), any function of the class, then fix0, y0), 
its value at the center of C is equal to the average value 
of fix, y) taken over the circumference of C. 

To show this, we first form a series of positive constants 
€i such that lim^oo n = 0. We select a particular e^ and 
divide the circumference of the circle C into Ni equal parts, 
taking Ni so large that the oscillation of fix, y) on any 
one part is less than eit This is possible since postulate 1 
makes fix, y) continuous, and therefore uniformly continuous 
on the circumference of C. We next form Ni — 1 new 
functions, existing in and on C, obtained from fix, y) by 
rotating the axes about the center of C through an angle 
2k TV I Ni (0 < & < Ni). These functions, by postulate 3, are 
members of the class, as is also the function f(x, y), de­
fined as the sum of these Ni — 1 functions and the original 
function, divided by Ni, by postulate 2. Finally, from 
postulates 2 and 4, we see that the function Fi ix, y) 
= A (xi y) —fc, where fc denotes the average value of the 
original function on the boundary of (7, is also in the class. 

The function Fi{x, y) satisfies the inequality 
(1) \Fiixc, yc)\«<£ù 
where xc, yc denote any point on C. For, if pu is the average 
value of fix, y) in the Mh subdivision of C, we have 

(2) fc = Zpu/Ni, 
k = l 

and from the choice of JVi, for xc, yc in the Mi subdivision 
(3) \fixc, yc) — pk\<£i. 
Recalling the method of forming fix, y), we deduce from 
(2) and (3) that 
(4) \fi(ooc, yc)—fc\<£i, 
for all points on the circumference of C, and this is equi­
valent to (1) above. 
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Moreover, at x0, y0, the center of the circle C, we have 
(5) Fi (x0, yo) = fi (%o, yo) —fc = f(xo, yo) — U 
Thus the values of the functions Fi(x,y) at x0,y0 are the 
same for all values of i, and consequently approach a limit 
when i becomes infinite. But from (1) and postulate 5, 
this limit must be zero, and (5) gives 
(6) f(xo,yo)=fo 
which is the mean-value property. 

4. The Harmonic Char ader of the Functions. We may now 
readily prove that the functions of our class are harmonic 
at all interior points of their regions B. For, with any 
interior point of a region B as center, let us draw a circle 
lying wholly inside B, the region for the function f(x, y). 
We also form, by Poisson's integral or otherwise, a harmonic 
function h (x, y) having the same values along the circum­
ference of the circle as the given function f(x, y). Since 
both h(x, y) and f(x, y) possess the mean-value property, 
their difference f(x,y) — h(x,y) will also possess it. Con­
sequently this function takes on its maximum and minimum 
values on the circumference of the circle; and since it is 
zero on the circle, it must be zero identically. Hence ƒ (x, y) 
agrees with h(x, y) in a neighborhood of the center of the 
circle and is harmonic at this point. 

5. Postulates for Three Dimensions. It is fairly obvious 
what revisions we must make in the postulates of § 2 to 
make them applicable to potential functions in three-dimen­
sional space. Here we deal with a class of functions of 
three variables, or Cartesian coordinates, x, y and z, where 
each function has associated with it a three-dimensional 
region JB, of space. Our assumptions now are: 

(1) Each function is continuous in all three variables 
at all interior points of its region B. 

(2) If i?i and B2, the regions for two functions of the 
class f (x, y, z) and f2 (x, y, z\ have a region JK3 in common, 
then any linear combination of these functions, such as 
Aft (x, y, z) + B f2 {x, y. z), is a function of the class, whose 
region contains all the points of E3. 
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(3) If an orthogonal transformation of the variables (i. e., 
a change of Cartesian axes) converts the function ƒ(x, y, z) 
with region R into F(x, y', z'\ this latter function is a member 
of the class, its region being the region R expressed in the 
new variables. 

(4) The function ƒ (as, y) = 1 is a function of the class, 
its region R being the whole of space. 

(5) If a given sphere lies entirely inside each region Ri, 
belonging to fiix, y, z), these ƒ*(#, y, z) constituting an in­
finite sequence of functions of the class, and if, for points xs, 
y a, zs on the surface of the sphere lim*_> <*> fi(xs, ys, zs) = 0, 
the limit being approached uniformly over the surface; then 
the sequence of values of the functions fi (x, y, z) at the 
center of the sphere cannot approach a limit different 
from zero. 

Any class of functions satisfying these five postulates is, 
as we shall show presently, a class of Newtonian potential 
functions. Consequently the widest class of functions satis­
fying them is the totality of Newtonian potential functions. 
The remarks made about our earlier set of postulates at 
the end of § 2 apply here, mutatis mutandis. 

Our reason for writing out the postulates at length and 
carrying out the proof of their sufficiency for the three-
dimensional case, is that the transition to the three-dimen­
sional case requires an essential modification in the proof. 
For, in the earlier proof of § 3, use was made of a series 
of regular polygons approximating a circle. As no analogous 
configuration exists in space, we must resort to a property 
of functions on a sphere, to which we next proceed. 

6. Functions on a Sphere. If we are given a function 
on a sphere, we may form a new function from it by the 
following process. We select a particular diameter of the 
sphere as an axis, and so determine the second function 
that its value is constant on every circle on the sphere 
whose plane is perpendicular to the axis, and is equal to 
the average of the original function on this same circle. 
We define this process as that of averaging the original 
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function about an axis. We may now state the following 
lemma. 

LEMMA. If a continuous function on a sphere is averaged 
about one axis, the resulting function about a second axis 
perpendicular to the first one, this third function about the 
first axis, and so on, indefinitely, using the two axes alter­
nately, the sequence of functions so obtained will approach 
a limit. Furthermore, this limit will be constant over the 
whole sphere, and equal to the average of the original function 
over the sphere. 

To prove this, we first observe from the continuity of 
the function that it possesses a maximum and a minimum 
value, which are actually reached, since the surface of the 
sphere is closed. Also, from the nature of the averaging 
process, the successive functions are all continuous, and 
the maximum values Mi form a never increasing sequence, 
while the minimum values mi form a never decreasing one. 
Hence these quantities approach limits, which we denote 
by M and m respectively. 

Another consequence of the character of the averaging 
process is that if we determine a positive ô such that the 
oscillation of our original function is less than a preassigned € 
in every circle on the sphere of radius d, which we may 
do since this function is continuous and therefore uniformly 
continuous on the sphere, the same d will retain its relation 
to s after the averaging, and hence for all subsequent 
functions in the series. This follows from the fact that 
the oscillation in a circle of radius ö after averaging cannot 
exceed the maximum oscillation in +he set of circles of 
equal radius having their centers in the plane perpendicular 
to the axis containing the center of the original circle. 

Let us now select an s and determine a ô in the way 
described above, and let us set 

where r is the radius of the sphere. We next consider the 
result of averaging the original function i times, taking i so 
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great that Fi, the resulting function, has its maximum and 
minimum values each within rj of their respective limits, i. e., 

( 8 ) IMSMiSM+ij, 
\ m — rj <̂  mi fS m. 

Let E be the constant value of the function Fi on the 
equator, i. e., on the great circle perpendicular to the axis 
about which we have just averaged, and consequently having 
as one diameter the other axis which we must use to get 
Fi+i. From the way we selected d, Fi cannot differ from E 
by more than € in the zone of width 2 à bounded by small 
circles parallel to and at distances è above and below the 
equator. Hence, if we construct two lunes lying entirely 
in this zone, each of angular width 2 d/r, bounded by planes 
through the new axis, the value of Fi will be at most 
E-{- e inside these lunes. The remaining portion of the sphere 
consists of two limes each of angular width n — 2 d/r, and 
in these lunes, the function is at most Mi or M ~\-rj by (8). 
Consequently, if we average once more to get Fi+i, since 
this function cannot exceed the average of the upper bounds 
in the lunes in question, we must have 

4d / 4d\ 

(9) Fi^ S — W - ^ ' 
Since i^+i is at least as great as M at some point, this 
implies that 

(10) MS M-\- n + — (E+ £ — M— n), 

from which, using (7), we get 
(11) E^M + y — 2e> M— 2e. 
By an entirely analogous argument, using the minimum 
values of Fi and Fi+i, we show that 
(12) J£<;m + 2*. 

These last two equations give 
(13) E+2e^M^rn~^E—2e, 
which shows that M = m, since e can be made arbitrarily 
small. 
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Hence the value of the function at all points approaches 
this constant value, and since the averaging process leaves 
the average of the function taken over the entire sphere 
unchanged, the constant must be equal to this average, or 
the average of the original function over the sphere. 

7. Deduction of the Mean-value Property. We are now 
in a position to prove that the class of functions which 
satisfy the postulates of § 5 have the mean-value property. 
That is, if x0, y0, Zo is the center of a sphere S lying 
entirely inside of B, the region for f(x, yy z) any function 
of the class, then f(x0, y0, 20), its value at the center of S, 
is equal to the average value of f(x, y, z) taken over the 
surface of S. 

Since the process of averaging about an axis discussed 
in the preceding section involves limiting processes not 
covered by our postulates, we cannot directly apply it; 
but we can obtain a function of our class from f(x, y, z) 
having the same value at the center of S, and on S 
approximating the result of averaging f(x, y, z) about any 
axis as closely as we please. For we have merely to 
select an N so large that the oscillation of the original 
function in any circle of radius nrlN is less than e, form 
functions obtained from the original function f(x, y, z) by 
rotating the coordinates about the chosen axis through 
angles 2k nlN (0 < k < N), sum these functions and divide 
by N. The proof that this is the desired function is en­
tirely parallel to the argument given in § 3. 

Let us now form a series of positive constants ^ such 
that linu-_>oo H = 0. For each ^ we shall form a function 
fi {x, y, z) as follows. First form a function fn(x, y, z) which 
has the same value at the center of S as ƒ (as, y, z) and 
which, on the surface of S, differs from the result of 
averaging f(x, y, z) about a fixed axis by less than ^/4, 
which can be done by the method just described. Next 
select a second axis perpendicular to the first, and form 
fi2(x,y,z) which, on the surface of S, differs from the 
result of averaging fu{x, y, z) about this second axis by 
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less than ^/8. Then form fis(x, y, z) differing on the sur­
face of 8 from the result of averaging ƒ#(#, y, z) about 
the first axis by less than ^/16 and so on; fu(x, y, z) 
differing on the surface of 8 from the result of averaging 
fij-i(x,y, z) about the first or second axis, according as 
t is odd or even, by less than *i/2*+1. The functions on 
the surface of 8, Fi(x, y, z), . . . , Ft(x, y, z), . . . obtained 
from f(x, y, z) by actually averaging about the two axes 
in succession, will be related to the set just constructed, 
in that, on the surface of 8, 

(14) | F1 —fix | < «</4, | F2 —fa | < ^/22 + et/2*, 

and for all values of t, 

(15) | Ft —fu | ̂  **(l/22 + 1/28 + • • • + l/2*+1) < «i/2. 

But, by the lemma of § 6, the limit of Ft(x, y, z) as t be­
comes infinite is fs, the average of fix, y, z) over the surface 
of 8. Hence, by taking t large enough, we may make 

(16) \Ft—fs\<êi/2'} t^T. 
We put 
(17) fi(x, y, z) = fiT(x, y, z\ 
Then, from (15) and (16), we have 
(18) \Mx, y, z)—fs\< ei. 
Furthermore, fi{x0, y0, z0) is equal to f(x0, y0, ZQ), since all 
the processes used to obtain f(x, y, z) from f(x, y, z) left 
its value at the center of S unchanged. Thus the sequence 
of functions 
(19) Gi(x, y, z) = fi(x, y, z)—f8 

satisfies all the conditions of our fifth postulate. Since its 
value at the center of S is constant, this constant must be 
zero, and we have 

(20) f(x0, yo, Zo) = fi(x0, 2/o? z0) = fs 

which is the mean-value property. 
8. The Harmonic Charade}" of the Functions, We may 

now apply the reasoning of § 4 to show that inside any 
sphere 8 entirely within its region B, any function of our 

4 
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class f(x, y, z) is identical with the harmonic function set 
up by Poisson's integral which has the same values on the 
boundary of S as f(x, y, z). Thus all the functions of our 
class are harmonic at all points interior to their regions. 
Also since every linear class of harmonic functions in three 
variables satisfies them, the widest such class of functions 
is the totality of Newtonian potential functions. 

9. Concluding Remarks. We might extend our postulates 
to the case of n dimensions, the proof being accomplished 
by a proper generalization of the lemma of § 6. 

It should also be noticed that the postulates for two 
dimensions apply to functions on a sphere* (and for three 
dimensions to functions on a hypersphere) provided we replace 
the orthogonal transformations which correspond to a rotation 
of the plane (or 3-space) by the transformations on the sphere 
(hypersphere) corresponding to rotations about a diameter, 
as the proof given still applies with but slight modifications. 

Moreover, since postulate 5 is a consequence of the 
maximum-minimum property, which is, of course, much more 
restrictive, we may obtain a set of postulates, by postulating 
the maximum-minimum property, which, though more strin­
gent than ours, is stated in terms of more familiar properties. 
Since this substitution enables us to dispense with postu­
late 4, the new assumptions may be stated in the following 
form: 

A linear family of functions of two (three) variables, in­
variant as a family under orthogonal transformations of the 
variables, each function being continuous at all interior 
points of some region^, and such that for any subregion of JB 
it takes its maximum and minimum values on the boundary 
of this region, is necessarily a family of harmonic functions. 

This statement is of interest, because it shows one set of 
conditions which, on being added to the maximum-minimum 
property, characterize the class as harmonic. 

HAEVAED UNIVEESITY 

* This extension was called to my attention by Dr. Norbert Wiener. 


