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REPORT ON CONTINUOUS CURVES FROM THE 
VIEWPOINT OF ANALYSIS SITUS* 

BY E. L. MOOKE 

1. The Characterization of a Continuous Curve. A continuous 
curve is the set of points represented by the pair of equations 

x = fi(t), 2/ = /2(0, 
where fi(t) and/2(tf) are continuous functions of t on the interval 
/ : (0 S < S 1). Thus a continuous curve is the image of 
the straight line interval I under a continuous f transformation 
which transforms each point X of the interval I into a single 
point T(X) of the curve. In case this transformation does 
not throw any two distinct points of / into the same point of 
the curve T(I), then T(I) is a simple continuous arc. Thus a 
simple continuous arc is in one to one continuous corre­
spondence J with a straight line interval. If T(0) — T(l), 
but no point of T(J) except T(0) is the transform, under T, 
of more than one point of I, then T(I) is a simple closed curve. 
It easily follows that a simple closed curve is in one to one 
continuous correspondence with a circle. 

It is clear from the above definition that every continuous 
* Presented before the Southwestern Section of the Society, in somewhat 

different form, at the Symposium held in Lawrence, Kansas, Dec. 2,1922. 
t The point P is said to be a limit point of the point set M if, for every 

positive number €, there are points of M, distinct from P, at a distance 
from P less than e. A transformation T which throws a point set M into 
a point set T(M) is said to be continuous if, in case the point P of M is a 
limit point of a point set N which is a subset of M, then T(P) is a limit 
point of T(N). 

Ï Two point sets M and N are said to be in one to one correspondence 
if there exists a correspondence in which (a) to each point P of M there cor­
responds just one point P' of N, (b) no two distinct points of M correspond 
to the same point of N, (c) if the point P' of N corresponds to the point 
P of My then the point P of M corresponds to the point P' of N and con­
versely. Such a correspondence is sometimes called a one to one reciprocal 
correspondence. For so-called one to one correspondences which are not 
reciprocal I prefer to use the term transformation which seems to me to 
be more suggestive of an operation which is thought of as taking place in 
one direction. 

19 
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curve is a bounded continuum.* That it is not, however, 
very easy to determine directly from this definition whether 
or not even some of the simplest continua are continuous 
curves will, I think, be admitted if one recalls the interest 
aroused by Peano's discovery of the fact that a square plus 
its interior is such a curve and the proofs of this fact that 
were given by Peano, Hubert and E. H. Moore.f 

In 1908, Schoenflies established a theorem which embodies 
a point set theoretic characterization (definition) of a contin­
uous curve. This is, apart from minor matters of phraseology, 
etc., as follows: In order that a bounded continuum M should 

* A set of points is said to be closed if it contains all its limit points. 
A point set is said to be connected if, however it be divided into two mutu­
ally exclusive subsets, one of them contains a limit point of the other one. 
(Cf. N. J. Lennes, AMERICAN JOURNAL, vol. 33 (1911), pp. 287-326.) 
A set of points is said to be bounded if it lies wholly in the interior of some 
circle. A continuum is a closed and connected point set. 

f Peano, Sur une courbe, qui remplit toute une aire plane, MATHEMA­
TISCHE ANNALEN, vol. 36 (1890); Hubert, Ueber die stetige Abbildung einer 
Linie auf ein Flachenstück, ibid., vol. 38 (1891), pp. 459-460; E. H. Moore, 
On certain crinkly curves, TRANSACTIONS OF THIS SOCIETY, vol. 1 (1900), 
pp. 72-90. That a square plus its interior is not a simple continuous arc 
had been proved by Netto about ten years before. (E. Netto, Beitrag 
zur Mannigfaltigkeitslehre, JOURNAL FÜR MATHEMATIK, vol. 86 (1879), 
pp. 263-268.) On page 329 of the 1907 edition of his The Theory of Func­
tions of a Real Variable, Hobson gives a proof of this theorem. Referring 
to the proofs of Netto and of Loria, he says: "In the proof given by these 
writers it is assumed that a closed curve corresponds to a linear sub-interval 
of (0, 1); this is not necessarily the case, for a non-dense closed set may 
correspond to the closed curve." This statement of Hobson's (which is 
repeated in the 1921 edition of his treatise) is manifestly incorrect. Neither 
a simple closed curve nor any other sort of connected point set could 
possibly be in one to one continuous correspondence with a non-dense 
closed set or any other set which is not connected. As far as I know, I 
have never seen anywhere in the literature the following extremely simple 
proof of Netto's theorem. Let X denote a point, other than an end-point, 
of the interval I. Suppose there exists a continuous one to one correspond­
ence between I and the point set K constituted by a square plus its interior. 
Let X' denote the point of K which corresponds to X. The set / •— X is 
not connected. Hence K — X' is not connected. But clearly K — X' is 
connected. Thus the supposition that the correspondence in question 
exists leads to a contradiction. The same proof shows that there is no 
one to one continuous correspondence between the interval / and the set 
of points constituted by a simple closed curve. 
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be a continuous curve it is necessary and sufficient that (a) 

for every given positive number e there are not more than 

a finite number of complementary domains * of M of diameter 

greater than e, (b) the boundary of every complementary 

domain of M is accessible f at each of its points, from all 

sides, with respect to that domain. 

That the same class of point sets would not be characterized 

by this définition if accessibility from all sides were replaced 

by mere accessibility may be seen with the help of the fol­

lowing example. Let Mi denote the point set composed of 

the straight line intervals AB, BC, CD, where the coordinates 

of the points Ay B, C, and D are (0, 1), (0, - 2), (1/TT, - 2) 

and ( l / r , 0) respectively. Let M2 denote that portion of the 

curve y = sin (I/o;) which lies between the lines x = 0 and 

x = l / r . Let Mz denote the point set Mi + l /2 . The point 

set Mz separates the plane into two domains K and H, where 

H is bounded. Let M denote the continuum H + üf3. The 

only domain complementary to M is K. Furthermore MSy the 

* A connected point set K is said to be a domain if for each point P 
of K there exists a positive number 8p such that K contains every point 
whose distance from P is less than ôp. The boundary of a point set K 
is the point set composed of all points [X] such that for each positive 
number e there is at least one point of K and at least one point which does 
not belong to K, at a distance from X less than e. A complementary 
domain of a closed point set M is a domain K which contains no point 
of M but whose boundary is a subset of M. The diameter of a bounded 
point set K is a number d such that (a) if X and Y are any two points of 
K then the distance from X to Y is not greater than d, (b) for every positive 
number e there exist points X and Y belonging to K such that the distance 
from X to Y differs from d by less than e. 

t The boundary B of a domain K is said to be accessible at the point 
P with respect to K (and P is said to be accessible from K) if, for every 
point A in Ky there exists a simple continuous arc AP which lies, except 
for the point P, wholly in the domain K. Suppose that XYZ is a simple 
continuous arc whose end-points X and Y lie on B, but every other point 
of which lies in the domain K. If B is connected then K is simply connected 
and is separated by the point set XYZ — (X + Y) into two mutually 
exclusive domains, K\ and Ki} such that K = XYZ — (X + F) + K\ 
+ K2. At least one of these domains (call it DXYZ) has the point P on its 
boundary. If, for every arc XYZ satisfying the conditions stipulated, 
the point P is accessible from DXYZ, P is said to be accessible from K from 
all sides and B is said to be accessible at P, from all sides, with respect to K. 
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boundary of K, is accessible at each of its points with respect 
to K. That it is not however accessible at every point from 
all sides with respect to K may be seen as follows. Let E 
denote the point {Ijir, 2) and let AED denote the simple 
continuous arc composed of the straight line intervals AE and 
ED. The origin 0 is not accessible from both of the domains 
into which K is divided by the point set AED — (A + D), 
although 0 lies on the boundary of each of these domains. 
Thus 0 is not accessible from all sides with respect to K. 
Hence, by Schoenflies' theorem, M is not a continuous curve. 

While Schoenflies' definition holds good for continuous 
curves in the plane, it does not hold for those in three dimen­
sions. In fact I have recently shown * that, in order that, in 
space of three dimensions, a continuum M should be a con­
tinuous curve, it is not sufficient that it should have the two 
properties, (a) and (6), stipulated in Schoenflies' definition and 
it is not necessary that it should have either of them. 

In 1914 Hans Hahn showed that in order that, in space of 
any number of dimensions, a bounded continuum should be 
a continuous curve, it is necessary and sufficient that it should 
have a property which he designates as that of connectedness 
im kleinen.^ A continuum is said to be connected im kleinen 

* On the relation of a continuous curve to its complementary domains in 
space of three dimensions, PROCEEDINGS OF THE NATIONAL ACADEMY, 
vol. 8 (1922), pp. 33-38. On page 38 of this paper there is a theorem, 
involving conditions concerning the complementary domains of a bounded 
continuum M, in space of three dimensions, which are sufficient, but not 
necessary, in order tha t M should be a continuous curve. 

t Hans Hahn, Über die allgemeinste ebene Punktmenge, die stetiges Bild 
einer Strecke ist, JAHRESBERICHT DER VEREINIGUNG, vol. 23 (1914), pp. 
318-322. See also, however, S. Mazurkiewicz, Sur les lignes de Jordan, 
F U N D AMENTA M A T H E M A T I C S , vol. 1 (1920), pp. 166-209. In this paper 
Mazurkiewicz introduces the same conception and establishes the same 
result, and refers, in this connection, to earlier papers of his own as follows: 
O arytmetyzacji kontinuow, C. R. Soc. Se. VARSOVIE, vol. 6 (1913); O 
arytmetyzacji kontinuow, I I , ibid., vol. 6 (1913); O pewnej klasyfikacji 
punktow lezacych na kontinuach dowolnych, ibid., vol. 9 (1916). I do not 
have access to these papers. The conception of connectedness im kleinen, 
as applied to a simple closed curve, was used by Pia Nalli, in the paper 
Sopra una definizioni di dominio piano limitato da una curva continua, 
senza punti multipli, RENDICONTI DI PALERMO, vol. 32 (1911), pp. 391-401. 



1923.] REPORT ON CONTINUOUS CURVES 293 

at the point P if for every positive number e there exists a 
positive number 8Pe such that if X and Y are any two points 
at a distance from P less than ôP€ then they lie together in a 
closed and connected subset of M every point of which is at 
a distance less than e from the point P. This definition of a 
continuous curve has, for many purposes, a decided advantage 
over that of Jordan. For instance, it is easy to see that a 
square plus its interior (or, in three dimensions, a cube plus 
its interior) satisfies this definition and is therefore a continuous 
curve. Consider, on the other hand, the point sets Mi, M%, 
Ms, described as follows: 

Let Mi denote the point set obtained by adding to the 
interval from ( 0 , - 1 ) to (0, 1) that part of the curve y = sin 
(1/x) which lies to the right of the ?/-axis and is bounded on 
the right by the line x = 1. Let M2 denote the point set 
consisting of the intervals OB, OBi, OB2, OBz, • • • where 0 is 
the origin of coordinates, B is the point (0, 1) and, for every 
n, Bn is the point (1/n, 1). Let M$ denote the point set 
obtained by adding to the set Mi the set of all the intervals 
AmnBmn where, for every pair of positive integers m and n, 
Amn and Bmn denote the points (0, m/ri) and (m/n, m/n) 
respectively. I venture to surmise that one who is acquainted 
with no other characterization of a continuous curve than 
that of Jordan would probably not be able to decide, 
without some difficulty, the question, which of the sets Mi, 
M2, Mz is a continuous curve and which are not.* It is easy, 
however, to see that neither Mi nor M2 is connected im 
kleinen at the point (0, 1/2), while Mz is connected im kleinen 
everywhere. The set Mz is accordingly a continuous curve, 
while Mi and M2 are not. 

Mazurkiewicz, Tietze, and I, working, as far as I know, 
entirely independently of each other, have shown f that, in 

* For examples in space of three dimensions see my paper On the rela­
tion of a continuous curve to its complementary domains in space of three 
dimensions, loc. cit. 

t S. Mazurkiewicz, loc. cit., H. Tietze, Ueber stetige Kurven, Jordansche 
Kurvenbogen und geschlossene Jordansche Kurven, MATHEMATISCHE ZEIT-
SCHRIFT, vol. 5 (1919), pp. 284-291; R. L. Moore, A theorem concerning 
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order that a bounded continuum should be a continuous curve 
it is necessary that it should be arc-wise * connected. That 
this condition is not sufficient is shown by the existence of the 
above-described point set M2, which, though arc-wise con­
nected, is not a continuous curve. However, I have recently 
established the following theorem which embodies a generali­
zation of the above-mentioned result. 

THEOREM A. In order that a continuum M should be a 
continuous curve it is necessary that every maximal connected 
subset of an open subset of M should be arc-wise connected.^ 

Less than a week before the date of the delivery of this 
address, Mr. R. L. Wilder showed J that this condition is 
also sufficient. I t therefore affords a complete characterization 
of a continuous curve. I t may be of interest to see just how 
this condition fails to hold true for the set M2. Let C denote 
the point (0, 1/2). Though the set M2 is arc-wise connected 
and M2 — C is an open connected subset of M2, the points O 
and B cannot be joined by a simple arc which is a subset of 
J f 2 - C. 

Sierpinski has shown § that a continuous curve may be 
characterized as a bounded continuum M such that, for every 
positive number e, M is the sum of a finite collection of closed 
and connected point sets each of which is of diameter less 
than €. 

Thus we have five characterizations of the notion continuous 
curve, that of Jordan (or perhaps it should be called a modifi-
continuous curves, this BULLETIN, vol. 23 (1917), pp. 233-236. This paper 
was presented to the American Mathematical Society, October 28, 1916. 

* A point set M is said to be arc-wise connected if every two distinct 
points of M are the extremities of a simple continuous arc which lies 
wholly in M. 

t R. L. Moore, Concerning continuous curves in the plane, MATHEMA­
TISCHE ZEITSCHRIFT, vol. 15 (1922), pp. 254-260. The point set K is said 
to be an open subset of the set M if K is a subset of M and M — K is either 
vacuous or closed. A maximal connected subset of a point set K is a con­
nected subset of K which is not a proper subset of any other subset of K. 

% This result forms a part of Mr. Wilder's dissertation for the degree 
of Ph.D. at the University of Texas. 

§ W. Sierpinski, Sur une condition pour qu'un continu soit une courbe 
jordanienne, FUND AMENTA MATHEMATICS, vol. 1 (1920), pp. 44-60. 
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cation of that of Jordan), that of Schoenflies, that of Hahn 
and Mazurkiewicz, that of Sierpinski, and lastly a characteri­
zation whose sufficiency and necessity have been established 
by Mr. Wilder and by the author, respectively. Of these 
characterizations, all but that of Schoenflies hold good in 
space of any number of dimensions. 

2. The Relation of a Continuous Curve to its Complementary 
Domains, in Space of two Dimensions. Returning to Schoen-
flies' characterization, we may picture any continuous curve 
in the plane as the point set complementary to a finite or 
countably infinite set of simply connected domains such that 
(a) one of these domains is unbounded and contains, as a 
subset, the exterior of some circle which encloses the contin­
uous curve, (b) for every positive number e there are not more 
than a finite number of these domains of diameter greater 
than e, (c) the boundary of each of these domains is, at each 
of its points, accessible from all sides with respect to that 
domain. Miss M. Torhorst has shown that the boundary of 
every complementary domain of a continuous curve is itself a 
continuous curve.* I have recently found that the outer 
boundary of every bounded complementary domain of a 
continuous curve is a simple closed curve and that if two 
points are separated from each other by a continuous curve 
M then they are also separated by some simple closed curve 
which is a subset of If. f From this result, with the aid of 
the fact J that every simple closed curve separates the plane, 
it follows that in order that a non-dense continuous curve 

* Cf. Marie Torhorst, Ueber den Rand der einfach zusammenhàngenden 
ebenen Gebiete, MATHEMATISCHE ZEITSCHRIFT, vol. 9 (1921), pp. 44-65. 
In his thesis Mr. Wilder has shown that, indeed, every closed and connected 
subset of such a boundary is a continuous curve. This result extends, 
to the case of any such boundary, a proposition previously established by 
Mazurkiewicz for the case of a continuous curve which contains no simple 
closed curve. Cf. S. Mazurkiewicz, Un théorème sur les lignes de Jordan, 
FUND AMENTA MATHEMATICS, vol. 2 (1921), pp. 119-130. 

f Concerning continuous curves in the plane, loc. cit. 
{ Cf. O. Veblen, Theory of plane curves in non-metrical analysis situs, 

TRANSACTIONS OF THIS SOCIETY, vol. 6 (1905), pp. 107-112; and L. E. J. 
Brouwer, Beweis des Jordanschen Kurvensatzes, MATHEMATISCHE ANNALEN, 
vol. 69 (1910), pp. 169-175. 
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should separate the plane it is necessary and sufficient that it 
should contain a simple closed curve. 

I will say that a point set M has property S if, for every 
positive number e, M is the sum of a finite number of connected 
subsets all of diameter less than e. As applied to closed (and 
bounded) point sets this property is * equivalent to that of 
connectedness im kleinen. But, as applied to point sets which 
are not necessarily closed, it is f stronger than that of con­
nectedness im kleinen and weaker than that of uniform J 
connectedness im kleinen. Every domain is connected im 
kleinen. In order that a bounded and simply connected 
domain should have a continuous curve as its boundary it is § 
necessary and sufficient that it should have property S, while 
in order that it should have a simple closed curve as its bound­
ary it is necessary and sufficient that it should have the 
stronger property of being uniformly connected im kleinen.|| 

In his thesis Mr. Wilder makes a detailed study of the 
continuous curve which is the boundary of a domain. He has 
found that in order that the boundary B of a simply connected 
domain should be a continuous curve it is necessary and suffi­
cient that every connected subset of B should be arc-wise 
connected. 

3. A Characterization of Continua which are not Continuous 
Curves, I have found the following theorem very useful in 
the study of continuous curves. 

THEOREM. In order that a bounded continuum M should fail 
to be a continuous curve, it iè necessary and sufficient that there 
should exist two concentric circles h\ and k2 and a countable 

* Cf. W. Sierpinski, loc. cit. 
t Cf. my paper, Concerning continuous curves in the plane, loc. cit. 
t A point set M is said to be uniformly connected im kleinen if, for 

every positive number €, there exists a positive number ö€ such that if X 
and Y are two points of M at a distance apart less than ôe then X and Y 
lie in some connected subset of M of diameter less than e. Cf. Hans 
Hahn and S. Mazurkiewicz, loc. cit. 

§ R. L. Moore, loc. cit. 
|| See my paper, A characterization of Jordan regions by properties having 

no reference to their boundaries, PROCEEDINGS OF THE NATIONAL ACADEMY, 
vol. 4 (1918), pp. 364-370. 
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infinity of continua M, Mi, M2, Ms, • • •, such that (1) each of 
these continua is a subset of M and contains at least one point 
on k\ and at least one point on k2, and is a subset of the point 
set H which is composed of the two circles hi and k2 together with 
all those points of the plane which lie between these circles, (2) 
no two of these continua have a point in common, and, indeed, 
no one of them is a proper subset of any connected point set 
which is common to M and H, (3) the set M is the sequential 
limiting set of the sequence of sets Mi, M2, M3, • • • ,* (4) there 
exists a connected subset of M which contains all the sets of the 
sequence Mi, M2, M%, • • •, but which contains no point of the 
greatest connected point set which is common to M and H. 

For an indication of a proof of all but part (4) of this theo­
rem see my papers, Continuous sets that have no continuous 
sets of condensation, and A characterization of Jordan regions by 
properties that have no reference to their boundaries.^ The im­
portant part (4) has been supplied recently by Mr. Wilder. 
With its aid he established the above-mentioned theorem that 
in order that a bounded continuum M should be a continuous 
curve it is sufficient that every maximal connected subset 
of an open subset of M should be arc-wise connected. I have 
made use of parts (1), (2), and (3) on several occasions. 

4. A Continuous Curve in the Rôle of a Space. It is of 
interest to note that if the set of points S which constitute a 
continuous curve is viewed as a space and certain terms are 
properly defined, then many of the theorems which hold true 
in ordinary space continue to hold true in S. For each point 

* The point set M is said to be the limiting set of the sequence of point 
sets Mi, M2, M3, • • • provided that (a) each point of M is the sequential 
limit point of an infinite subsequence of some sequence of points Pi, P2, 
P3, • • • such that, for every n, P„ belongs to Mni (b) if Pi, P2, P3, • • • is 
a sequence of points such that, for every n, P„ belongs to Mn, then M 
contains the sequential limit point of every subsequence of Pi, P2, P3, 
that has a sequential limit point. If the further condition is satisfied that 
every infinite subsequence of the sequence Mi, M2, M3, • • • has the same 
limiting set M, then M is said to be the sequential limiting set of the 
sequence Mu M2, Ms, 

fThis BULLETIN, vol. 25 (1919), pp. 174-176; and PKOCEEDINGS OF 
THE NATIONAL ACADEMY, loc. cit. 
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P in S and each positive number e, let RPe denote the set of 
all those points of S which lie, together with P, in a connected 
subset of S which lies wholly within a circle with center at P 
and radius equal to e. For every P and e the point set RPe 

will be called a region with respçct to S. With the use of the 
fact that S is connected im kleinen, it may be seen that a 
point X in S is a limit point of a point set M which lies in S if 
and only if every region (with respect to 8) which contains X 
contains also a point of M distinct from X. It follows that 
if S is identified with the S of my set Si of axioms * for plane 
analysis situs then the point X is a limit point of M in the 
ordinary sense if and only if it is a limit point of M in the sense 
defined in F. A. With the help of this fact it may be seen 
that Axioms 1, 2, and 4, and a number of the theorems of that 
paper hold true in the space S, the terms (other than region) 
that are used in the statement of those axioms and theorems 
being given meanings which are ordinarily attached to them 
when S is considered as a subset of ordinary space. Thus, 
corresponding to Theorem 15 of F. A., we have the previously 
mentioned theorem that every two points of a connected 
open subset f of a continuous curve can be joined by a simple 
continuous arc lying wholly in that subset. 

In his thesis, in addition to other results in this connection, 
Mr. Wilder has established the following theorem. 

THEOREM. If S is a continuous curve in space of two dimen­
sions, D is a domain with respect to 8, B is the boundary of D 
with respect to S, and P is a point of D, then in order that P 
should be accessible, in S, from every point of D it is sufficient 
either (a) that B should be connected im kleinen, or (6) that B 
should contain no continuum of condensation % which contains P. 

5. The Non-Cut Points of a Continuous Curve. A point P of 
* On the foundations of ylane analysis situs, TRANSACTIONS OF THIS 

SOCIETY, vol. 17 (1916), pp. 131-164. This paper will be referred to here­
after as F. A. 

t A connected open subset of S is called a domain in F. A., and such a 
subset of a continuous curve S may be called a domain with respect to S. 

| A sub-continuum K of a point set M is said to be a continuum of 
condensation of M if every point of K is a limit point of M — K. 
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a connected point set M is said to be a non-cut point of M or 
a cut point of M according as M — P is or is not connected. 
A cut point of M is said to disconnect M in the strong sense 
(or, merely, to disconnect M). A point set M is said to be 
connected in the strong sense if every two points of M lie 
together in some closed and connected subset of M. If 
M — P is not connected in the strong sense then P is said to 
disconnect M in the weak sense. According to this definition, 
if a point P disconnects a point set M in the strong sense 
then it also disconnects it in the weak sense ; but the converse 
is not always true. By Theorem A of § 1, if i f is a continu­
ous curve, then it is true, conversely, that if P disconnects M 
in the weak sense it also disconnects it in the strong sense. 

In my paper Concerning simple continuous curves,* I proved 
that if a bounded continuum M does not contain more than 
two non-cut points then it is a simple continuous arc. But a 
simple continuous arc contains two non-cut points, namely its 
end-points. Thus we have the following theorem. 

THEOREM C. Every bounded continuum contains at least two 
non-cut points {i.e., two points neither of which disconnects it).^ 

In his paper, Un théorème sur les lignes de Jordan, $ Mazur-
kiewicz has established the following theorems. 

THEOREM C. Every continuous curve contains at least two 
points neither of which disconnects it in the weak sense. 

THEOREM D. If M is a continuous curve which contains a 
simple closed curve k then k does not contain an uncountable set 
of points each of which disconnects M in the weak sense. 

Theorem C is a logical consequence of Theorems A and C. 
Let D ' denote the theorem obtained from Theorem D by 

the substitution of the word strong instead of the word weak. 
I have recently established the following theorems, § of which 

* Loc. cit. Concerning the close relationship between this result and a 
result announced sometime before by Janiszewski see page 340. 

t J. R. Kline has shown that if a continuum has no non-cut points it is 
connected im kleinen. Cf. this BULLETIN, vol. 27 (1921), p. 399. That 
such a continuum is unbounded follows from Theorem C. 

{ Loc. cit. 
§ For proofs of the first three of these theorems see my paper, On the 
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the first includes Theorem D' as a special case but is much 
more general than Theorem D \ 

THEOREM D. NO closed and connected point set M (whether 
it be a continuous curve or not) contains a closed and connected 
subset K (whether K be a simple closed curve or not) which 
contains an uncountable set of points each of which disconnects * 
M but not K. 

THEOREM E. In order that a bounded continuum M should 
be a continuous curve which contains no simple closed curve, it 
is necessary and sufficient that every sub-continuum of M should 
contain uncountably many points each of which disconnects M 
in the strong sense. 

THEOREM F. In order that the continuous curve M should 
contain no simple closed curve it is necessary and sufficient that 
if K denotes the set of all those points of M that are not cut 
points of M, then no subset of K disconnects f M, even in the 
weak sense. 

THEOREM G.J In order that a bounded continuum M should 
be a simple closed curve, it is necessary and sufficient that it 
should be disconnected by the omission of any two of its points. 
cut points of continuous curves and of other closed and connected point sets, 
PROCEEDINGS OF THE NATIONAL ACADEMY, vol, 9 (1923), pp. 101-106. 

* That this theorem does not remain true if the word disconnects is 
replaced by the phrase disconnects in the weak sense may be seen if one 
considers the example of a point set M which is composed of a circle K 
together with a suitably selected simple spiral which has every point of K 
as a limit point. In this example, no point of K disconnects K either in 
the strong or in the weak sense but every point of K disconnects M in the 
weak (but not in the strong) sense. This example also shows that 
Mazurkiewicz' Theorem D would not remain true if the phrase continuous 
curve were replaced by the phrase bounded, closed, and connected point set. 

f If N is a subset of M and M — N is not connected then N is said to 
disconnect M. If M — N is not strongly connected then N is said to 
disconnect M in the weak sense. 

î Cf. my paper Concerning simple continuous curves, loc. cit. In a 
paper presented to the Society but, as far as I know, not as yet published, 
J. R. Kline has shown that in this theorem the stipulation that the set M 
is bounded may be replaced by the stipulation that M has no cut point. 
He also characterizes a simple closed curve as a continuum which is not 
disconnected by the omission of any proper connected subset. Cf. this 
BULLETIN, vol. 27 (1921), p. 399, and vol.28 (1922), p. 8. 
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6. Concluding Remarks. Beyond certain propositions which 
hold true for both two and three dimensions, comparatively 
little is known concerning continuous curves in three-dimen­
sional space. Various results obtained by Schoenflies, Miss 
Torhorst and others concerning the relation of a continuous 
curve to its complementary domains in the plane do not hold 
true in three-space.* For instance Schoenflies has shown that 
if a bounded plane continuum divides its plane into just two 
domains Si and S2 such that every point of M is accessible 
from both Si and S2 then M is a simple closed curve. In three-
dimensional space however there exists a bounded continuum 
M which divides space into just two domains Si and S2 such 
that (a) every point of M is accessible from both Si and S2 

and (b) the domain Si is uniformly connected im kleinen, 
but M is neither a simple closed surface nor any sort of con­
tinuous curve. I have shown,f that such a point set M 
would be a continuous curve if both Si and S2 were uniformly 
connected im kleinen. I t seems to me conceivable that some 
results concerning continuous curves and their complementary 
domains may be modified that they will hold true for three-
space if, in addition to other changes, one replaces in certain 
connections the diameter of a point set by what I have called 
the two-dimensional extent of a point set. 

DEFINITION. A point set M is said to have a two-dimen­
sional extent greater than e if there exists a right circular 
cylinder a with bases of diameter greater than e such that (a) 
neither base of a contains a point of M, (b) M contains at 
least one point in common with every simple continuous arc 
which has one end-point on one base of a, and its other end-
point on the other base of a and lies, except for its end-points, 
wholly within a. 

Every simple closed curve in a space S2 of two dimensions 
can be thrown into any other simple closed curve in S2 by a 
continuous one to one reciprocal transformation of S2 into 

* See my paper, On the relation of a continuous curve to its complementary 
domains in space of three dimensions, loc. cit. 

f Loc. cit. 
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itself.* In other words in S2 every two simple closed curves 
are equivalent to each other, in the strong sense, from the 
viewpoint of analysis situs. This proposition does not hold 
true for a space $3 of three dimensions, as may be easily seen 
if one considers two simple closed curves in S3 of which one 
is knotted and the other one is not. A knotted simple closed 
curve may be defined, from the viewpoint of analysis situs, 
as a simple closed curve (see definitions above) which is not a 
part of any simple closed f surface. It seems likely (a) that 
there exists no knotted simple continuous arc, that is to say, 
no simple continuous arc which does not lie on some simple 
closed surface, and (6) that any simple continuous arc in S3 
can be transformed into any other simple continuous arc in 
S3 by a continuous one to one reciprocal transformation of S3 
into itself, But, as far as I know, no one has ever proved this. 
Indeed, as far as I know, there is nowhere in the literature any 
indication that anyone has even considered the question whether, 
if AB is an arc in a three-space S, and X is a point of S which 
does not belong to AB, then there exists an arc XB which has 
in common with AB only the point B. In other words, is an 
arc accessible at each of its ends from every point which does 
not lie on it? 

A fruitful field for future investigation is afforded in that 
branch of analysis situs which has to do with various special 
types of continuous curves such as simple continuous arcs, 
simple closed curves and simple closed surfaces, in space 
of three dimensions. Little is known concerning the re­
lation of such point sets to their complementary domains. 

THE UNIVERSITY OF TEXAS 

* Cf. A. Schoenflies, MATHEMATISCHE ANNALEN, vol. 62 (1906), p. 324. 
Also J. R. Kline, A new proof of a theorem due to Schoenflies, PROCEEDINGS 
OF THE NATIONAL ACADEMY, vol. 6 (1920), pp. 529-531. 

f By a simple closed surface is meant a point set which is in one to 
one continuous correspondence with the surface of a sphere. For a 
topological characterization of such a point set, see the abstract of an 
unpublished paper by J. R. Kline and the author, this BULLETIN, vol. 28 
(1922), p. 380. As far as I know, there does not exist in the literature 
a proof that a simple closed surface is the image of a sphere under a one 
to one reciprocal continuous transformation of S into itself. See, how­
ever, an abstract by J. W. Alexander, this BULLETIN, vol. 28 (1922), p. 10. 


