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Some famous problems of the theory of numbers and in particular 
Waring's problem. An inaugural lecture delivered before 
the University of Oxford by G. H. Hardy. Oxford, Claren­
don Press, 1920. 8vo. 34 pp. 
The particular problems with which this lecture is concerned 

belong to the additive theory of numbers. The general prob­
lem of the latter is stated by Hardy as follows: "Suppose that 
n is any positive integer, and ai, a2, a3, • • • positive integers 
of some special kind, squares, for example, or cubes, or perfect 
kth. powers, or primes. We consider all possible expressions 
of n in the form n = ai + ai + ••• + ««, where s may be 
fixed or unrestricted, the a%$ may or may not be necessarily 
distinct, and order may or may not be relevant, according to 
the particular problem on which we are engaged. We denote 
by r(n) the number of representations which satisfy the condi­
tions of the problem. Then what can we say about r(n)^ 
Can we find an exact formula for r(ri), or an approximate 
formula valid for large values of nt In particular, is r(n) 
always positive^. Is it always possible, that is to say, to find 
at least one representation of n of the type required? Or, if 
this is not so, is it at any rate always possible when n is 
sufficiently large? " 

The number p(n) of unrestricted partitions of n into posi­
tive integral summands has been studied by many authors; 
the principal result of the investigation of this function by 
Hardy and Ramanujan has been the discovery of an approxi­
mate formula for p(n) which enables them to approximate to 
p(n) with an accuracy which is almost uncanny. Of p(200), 
for example, the value 3,972,999,029,388 is obtained with an 
(additive) error of .004 by employing eight terms of their 
series; and the result has been verified by MacMahon, without 
the use of their formula, by a direct computation which 
occupied over a month. 

The principal object of the lecture is a discussion of the 
problem of Waring of determining the number of representa­
tions of an integer n as a sum of s positive kth powers of 
integers and particularly of the (more usual) restricted form 
of this problem in which one seeks to show that for fixed k 
there exists a finite Sk independent of n such that every integer 
n has at least one representation as a sum of Sk non-negative 
kth. powers. In connection with this problem there are two 
functions of fundamental importance, whose existence has 
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been proved in recent years; they may be defined as follows: 
The number g(k) is defined to be the least number for which 
it is true that every positive integer is the sum of g{k) non-
negative &th powers of integers; the number G(k) is defined 
to be the kas t number for which it is true that every positive 
integer from a certain point onwards is the sum of G(k) 
non-negative kth. powers of integers. The existence of either 
of the functions G{k) and g(k) obviously implies that of the 
other. The existence of g(k) was first proved by Hubert in 
1909, after an interval of 139* years from the time of its enun­
ciation by Waring,! who gave the theorem without proof. 

For a long time it has been known that g(2) = G{2) = 4. 
In 1859 Liouville proved that </(4) exists and does not exceed 
53; it was shown by Wieferich in 1909 that jr(4) ^ 37, the 
most that is known at present. The number 79 = 4 • 24 + 15 • l4 

needs 19 biquadrates, and no number is known which needs 
more. There is still therefore a wide margin of uncertainty 
as to the actual value of #(4). The existence of g(3) was first 
established in 1895 when Maillet proved that g (S) ^ 17; 
Wieferich proved in 1909 that g(3) ^ 9. As 23 and 239 
require exactly 9 cubes, the value of g(3) is exactly 9. [Hardy 
remarks that it is "no doubt t rue" that 23 and 239 are the 
only integers requiring 9 cubes for their expression.] In 
1909 Landau proved the "singularly beautiful theorem" that 
the number of integers requiring 9 cubes each for its expression 
is finite. I t was in view of this fact that the number G(k) was 
introduced. I t is known that 4 =S 6?(3) =§ 8; and Hardy is 

* Corrected from Hardy's "127" on page 17, in accordance with the 
information indicated in the next footnote. 

t At the time when Hardy wrote his address he was under the impression 
that Waring first stated his theorem [that every positive integer is a sum 
of at most 4 positive squares, 9 positive cubes, 19 positive biquadrates, and 
so on] in the third edition (1782) of his Meditationes Algebraicae [pp. 349-
350], but in a letter of Jan. 4, 1921, he writes me that a correspondent has 
called his attention to its appearance in an earlier edition. On examining 
the three editions I f ail to find it in the first (1762), but find it in the second 
(1770) [pp. 204-205], and in the third (1782), as indicated. These references 
are given also in Dickson's History of the Theory of Numbers, vol. II, pp. 
xviii and 717 in connection with his elaborate history of Waring's problem. 
[Am I right in supposing (as I have done in numbering the editions above) 
that Waring, when he came to publish the third edition, treated the first 
part (pp. 1-65) of his Miscellanea Analytica (1762) as the first edition of his 
Meditationes Algebraicae, its material being reproduced in the editions of 
1770 and 1782; or was there another edition of the latter between those of 
1770 and 1782? The view which I have taken agrees with a statement 
given in an old manuscript note on the fly-leaf of a copy of the 1770 edition 
of the Meditationes Algebraicae in the library of the University of Illinois.] 
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disposed to conjecture that G(3) has the value 4 or 5, and he 
seems to lean towards the former (p. 23). A simple argument 
shows that 0(4) S 16 and Hardy and Littlewood have proved 
that ö(4) S 21, so that G (4) lies in a comparatively small 
known range. 

On pages 27-34 we have one of the most fascinating accounts 
in our literature of the fundamental idea which has guided a 
mathematical investigation, the account of that which directed 
Hardy and Littlewood in their investigation of the properties 
of G(k). The method seems to be very powerful. I t has 
brought them for the first time into relation with the series on 
which the solution in the last resort depends; it gives numer­
ical results which, as soon as h exceeds 3, are far in advance of 
any known before; and it gives a definite upper bound to 
G(k), namely, 

G(Jc) ^{h- 2)2*"1 + 5. 

[On the other side it is known that G(k) S h + 1 and that 
G(2a) ^ 2a+2 if a is a positive integer.] Hardy adds: " I t is 
beyond question that our numbers are still very much too 
large; and there is no sort of finality about our researches, for 
which the best that we can claim is that they embody a 
method which opens the door for more." 

Concerning Goldbach's assertion that every even number is 
the sum of two primes we have the following (p. 34): "Our 
method is applicable in principle to this problem also. We 
cannot solve the problem, but we can open the first serious 
attack upon it, and bring it into relation with the established 
prime number theory. The most which we can accomplish 
at present is as follows. We have to assume the truth of the 
notorious Riemann hypothesis concerning the zeros of the 
zeta function, and indeed in a generalized and extended form. 
If we do this we can prove, not Goldbach/s theorem indeed, 
but the next best theorem of the kind, viz. that every odd 
number, at any rate from a certain point onwards, is the sum 
of three odd primes. I t is an imperfect and provisional result, 
but it is the first serious contribution to the solution of the 
problem." 

I t is with genuine regret that the reviewer has to point out 
one or two historical errors in an address which is otherwise 
so charming. (We have already mentioned one of these.) On 
page 18 he refers to Fermat's "notorious assertion concerning 
Mersenne's numbers"; a letter to the reviewer indicates that 
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this error probably arose through referring to Fermât a 
statement which was in fact made by Mersenne (and stated 
by W. W. Rouse Ball to be "probably due to Fermât")-* 

From page 18 of Hardy's lecture I quote as follows: " N o 
very laborious computations would be necessary to lead 
Waring to a highly plausible speculation, which is all I take his 
contribution to the theory to be; and in the theory of numbers 
it is singularly easy to speculate, though often terribly difficult 
to prove; and it is only proof that counts." I t is hard to see 
in what sense the author can say that " i t is only proof that 
counts" when he has before him a conjecture like that of 
Waring which has certainly influenced for good the develop­
ment of a very fascinating chapter in the modern theory of 
numbers. Probably the same feeling that induced this state­
ment led to Hardy's calling by the name "theorem of 
Lagrange" the theorem that every integer is a sum of four 
non-negative squares, whereas Fermât had stated that he 
had a proof of the theorem (both Fermât and Bachet ascribing 
the theorem to Diophantus) and Euler had made repeated 
efforts for forty years to prove it before Lagrange through the 
aid of Euler's work succeeded in giving the first proof in 1772. 
[See Dickson's History, vol. II , pp. ix, x, 275-303.] I t appears 
to me to be unfortunate to have this theorem called by the 
name of Lagrange; it certainly represents one extreme of 
judgment concerning the question of attaching names of 
mathematicians to specific theorems. 

The opposite extreme of the same thing recently came to 
my attention in another connection; curiously enough, it is 
again a case of a "theorem of Lagrange." The theorem that 
the order of a subgroup is a factor of the order of the group 
containing it has been called the "theorem of Lagrange" by at 
least two authors of high repute [see Pascal's Repertorium (in 
German), vol. I, 2d edition, 1910, p. 194, and Miller, Blich-
feldt and Dickson's Finite Groups, 1916, p. 23 (in the part 
written by G. A. Miller)]* Now the facts seem to be that 

* If any one of the many mathematical propositions stated by Fermât is 
incorrect, with perhaps a single exception, I am unaware of it. The case 
of exception is that concerning the prime character of the so-called Fermât 
numbers 2fc + 1 where h — 2n; and this incorrect statement he first made 
several times as a conjecture and finally (after the lapse of several years) 
implied that he knew a proof of it. This would seem therefore to be a 
lapse of memory rather than an error in reasoning. All his other theorems 
have been proved with the one famous exception. See Dickson's History, 
vol. I, p. 375, and vol. II, p. xviii. 
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Lagrange knew the theorem only for the case of the subgroups 
of the symmetric group and that even for this case he had no 
satisfactory proof. Abbati (in 1803) completed the proof for 
subgroups of the symmetric group and also proved the theorem 
for cyclic subgroups of any group; but it was apparently more 
than seventy-five years after the publication of Lagrange's 
memoir (in 1770-1771) before the completed theorem became 
current (though it had appeared earlier in a paper by Galois 
in 1832). In this case we have attributed to Lagrange a 
theorem which he probably never knew or conjectured, on 
the ground (it would seem) that he knew a certain special case 
of it. In Hardy's paper we have a theorem referred to 
Lagrange apparently on the ground that he first published a 
proof of it though it had been in the literature long before. 
Somewhere between these two extremes lies the golden mean 
of proper practice in attaching the names of mathematicians 
to specific theorems; and this mean, in the opinion of the 
reviewer, is rather far removed from each of the extremes 
indicated. 

R. D. CARMICHAEL. 

Statics, including Hydrostatics and the Elements of the Theory of 
Elasticity. By Horace Lamb. Cambridge, University 
Press, 1916. xii + 341 pp. 
Mathematics as ordinarily taught in our colleges and 

mathematics as used in this work-a-day world are birds of 
entirely different feather, and they do not flock together. 
This may perhaps be illustrated by a simple problem (No. 20, 
p. 178) from Lamb's Statics: 

"Water is poured into a vessel of any shape. Prove that 
at the instant when the center of gravity of the vessel and the 
contained water is lowest it is at the level of the water surface." 

Let us imagine a well trained sophomore attacking this 
problem. I t is clearly a minimum problem involving integra­
tion. We measure h vertically upward from the bottom of the 
inside of the container, take the density as unity (or shall we 
keep it as p?), and let A(h) be the area of the cross-section of 
the vessel. Then the center of gravity of the water is at a 
height 

phAdh -f- I pAdh. 

Let the mass of the vessel be denoted by M, and let its center 


