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This is the surface of revolution of a parabola of latus rectum 
8m about its directrix. A similar result was obtained by 
Flamm* who considered the surface, in euclidean three-space, 
for which the linear element is given by (2) for u2 = TT/2. 
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Dr. J. L. Walsh f bas stated the following theorem. 
THEOREM. If the double ratio, (zi, s3 | z2, z), of the four 

points zi, z2, zz, z in the complex plane is a real number X, then 
as the points zi, z2, z$ run over the circles Ci, C2y 0 3 {and their 
interiors) respectively, the locus of z is a circle {and its interior). 

This locus is evidently a covariant, under the inversive 
group, of the three given circles, which is rational in X. We 
find in (8) its equation and incidentally prove the theorem. 

In conjugate coordinates Zy Zf a circle is 

Ci{z) = aizz + aiz + âiz + b\ = 0, 

where a\9 b\ are real, and OL\9 'OLI are conjugate imaginary. 
The bilinear invariant of two circles Ci(z), C2{z) is 

[C\, C2] = «10:2 + «20:1 — di&2 — ^2&i. 

I t vanishes when the two circles are orthogonal. When they 
coincide it becomes [C1C1] = 2{OL\OLI — ai&i). This van­
ishes when Ci is a point circle, i.e. one whose equation is 

(1) P«,(*) = {z-Zi){è~Zi) = 0. 

I t is easily verified that 

[Cu i \ (* ) ] = -Cite); [PZi{z)f PZk{z)] = -PZi{zk) = -P*k{zi). 

The two point circles of the pencil C{z) + ixK{z) = 0 are 
determined by 

[G + »K,C+ ixK] = [C, C] + 2M [CK] + rf [KK] = 0. 

* PHYSIK. ZEITSCHR., vol. 17 (1916), p. 449. 
t TRANSACTIONS AMER. MATH. SOCIETY, vol. 22 (1921), p. 101. The 

geometric proof of this theorem given by Dr. Walsh is very complicated. 
The method of proof followed here is considered by Dr. Walsh (loc. cit., 
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They coincide and the circles C(z), K(z) touch when 

[KCf - [KK] [CC] = 0. 

We begin the proof with the condition 

(9\ Oi - Z2)(zs - z) 
{ ) ( z i - * ) ( z 8 - z 2 ) A' 
and set 

£i=(z2—z3)(z—zi), Z2=(z3—zi)(z—z2), J3=(zi—z2)(z~z3), 

(3) Zi + Z2 + Z8 = 0; 

qi = X(X — 1), q2 = X, g3 = 1 — X, 

(4) g2g3 + ?s?i + qiq* = 0. 

The condition (2), or (X + k/h) = 0, when multiplied by its 
conjugate, (X + h/h), is easily reduced by the use of (3) 
and (4) to the symmetrical form qikh + q2hh + q*lzh = 0. 

Again, in the notation of (1), this condition is 
qiPZi{zz)-PZl{z) + q2PZs(z{)-PZi(z) + q3PZl(z2)-PZB(z) = 0. 

For fixed values of X, z2, z3, z this is the equation which deter­
mines zi. If zi lies on a circle C\(z) = 0, then 
K=qiPH(zz)-d(z) + ?2Ci(z8)-P^(z) + g3Ci(z2).P23(z) = 0. 
For fixed z2, z3, and z\ variable in the circle C\, K(z) = 0 is 
the equation of the circle within which z lies. Now let z2 

range from its fixed position outward in all directions toward 
the boundary of a circle C2. Then the circle K{z) ranges 
outward in all directions from its original position toward the 
boundary of an envelope which is the outer part of the envelope 
of the ring of circles K (z) as z2 runs over the circumference of 
the circle C2. This envelope is the locus of points z for which 
K regarded as a circle in the variables z2, z2 touches the given 
circle C2 and therefore the equation of the envelope is 

[KC2f - [KK][C2C2] = 0. 

We shall show that [KK] is a perfect square and therefore the 
envelope factors into a pair of circles of which we want the 
outer. We notice that K(z2) breaks up into three terms, 
Zi(z2) + K2(z2) + Kz(z2). Hence 

[KK] = nKjKj] + 2L[KiKj\ (i, j = 1, 2, 3; Î * j ) . 

footnote, p. 102) but rejected because of algebraic difficulties. These 
however are not inherent. The algebraic method has, moreover, the 
decided advantage of furnishing the required envelope in covariant form. 
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To within the coefficients q the terms [KiKj\ are all alike and 
equal to — P*30) 'Ci(z) -Cifa). But according to (4) the 
sum of the coefficients of these three terms vanishes. More­
over [KiKi] = 0 (i = 1, 2) since K\{z2) and K2(z2) are point 
circles. Hence [KK] = qz2-(P.K*))2-[CiCi]. Also 
[KC2] = - qidW-Cfa) - caCxW-CaO*) + q*P *&)*[CiC2]. 
Thus for proper choice of the sign of the radicals the outer 
part of the envelope is the circle 
(5) L=-q1Cl(z)-C2(zz)-q2Ci(zz)-C2(z) 

+ çaP^aMiCiC,] - Vidcy Ac2c2]\. 
We now let s3 run over a circle Ca(z) = 0. As before the 
envelope of the circle L(z) in (5) is the tact-invariant of L 
regarded as a circle in the variable 23 and of Cs(zs) = 0. It 
is therefore 
(6) [LCzf - [LL] [C3C3] = 0. 
Again the term [LL] is a perfect square. In fact 
[LL] = ç i 2 WHC 2 C 2 ] + g2

2C2
2(2).[CiCi] 

+ 2q1q2C1(z) • C2(a) • [Gift] 
+ > ( ? i + ?2)CiW-c2(?){[CiC2] - V t d c j V[c2c2]}, 

the term in g3
2 dropping out since g3 is the coefficient of a 

point circle. Since q$(qi + q2) = — #ig2 this becomes 
(7) [ZL] = {?1Ci(a) ^[C2W+ q*C2{z) Vt^A]}2. 
Hence the final envelope (6) factors into two circles (neces­
sarily inner and outer) and the theorem is proved. 

In order to obtain the equation of the envelope we note that 
[LCZ] = - qidiz) • [C2CZ] - q2C2(z) • [CiCU 

- q*Cs(z). {[dc2] - Vidcy V[c2c2]}. 
This, together with (7), yields the factors of (6), whence 

The locus of z referred to in the theorem is, in explicit form, 
X(X- l)-&(a){[C2C8] ~ Vîftft] VïCâCâî} 

(8) + X.C2(a){[CgCi]- VtCsCs] V[CiCi]} 
+ (1 - X).C,(a){[CiC2] - V[CiCi] V[C2C2]} = 0; 

wAere the sign of the radical V[C;CJ is to be taken opposite the 
sign of the quadratic qi for given X. 

On account of the symmetry and homogeneity of this result 
the verification of sign can be made for (5) and a\ = a2 = 1. 
We have in (5) two circles which determine the pencil 
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(9) M { - qïC2(z3) • &(*) - g,Ci(a.) • C»(») + g3P,8(2) • [CiCJ} 
- {g3 V[CxCi] VfCJOj]P„(a)} = 0. 

Let Ci, C2 be small circles around the points zi, Z2 respectively 
which themselves are not on a line with the point 23. The 
pencil (9) contains the point circle PZi(z) and therefore another 
point circle P interior to the two point circles (5) since Pz8(z) 
is exterior to them. Hence in (9) we must have f or M = 0 
the point circle s3; for fx = ixR the radical axis; for ju = 1, the 
outer circle (5); f or JJL = — 1 the inner circle (5); and for 
j u = c ( — 1 < c < 0), the point circle P. Thus JUR, the param­
eter of the radical axis of the pencil (9) must be positive. But 

VLB = qz ^C[] V[C2C2]/(~ qiC2(zs) - q2C1(zs) + qz[CiC2]). 
If now the circles Ci, C2 approach the points 21, z2 as limits the 
denominator of JJL-R approaches as a limit 

(10) - (gia2 + q2{? + g37
2) 

where a, ft 7 are the lengths of the sides opposite the vertices 
zi, z2, zz of the triangle z\, z2, 23. In terms of X (10) becomes 

(11) - a2\2 + (y2 + a2 - /32)X - y2. 

The discriminant of (11) is 
(a + /3 + 7 ) ( - a + |8 + 7 ) ( - 0 + « + 7)(7 - a - j8) 

which is negative. Hence (11) is a definite quadratic form 
evidently negative for sufficiently large X. Then (10) is 
negative for all real values of X and this requires that 
qz V[CiCi] ->1[C2C2] be negative. Since qiq2qz = — X2(X — l)2 

is negative for all real values of X, the three radicals must take 
the same signs as, or opposite signs to, the three quadratics q, 

T H E UNIVEESITY OF ILLINOIS. 

ON SKEW PARABOLAS. 

BY DR. MARY F. CURTIS. 

The theorem that a real rectifiable skew parabola is a helix, 
proved in my note in this BULLETIN, November, 1918, for 
skew parabolas which can be represented in rectangular co­
ordinates by equations of the form : 

(1) Xi = at, x2 = bt2, xz = ctz, abc 4= 0, 

was extended by Professor Hayashi in this BULLETIN, Novem­
ber, 1919, to cover all real skew parabolas, whose equations 
he reduces to the form 


