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We find thus Baire's well known theorem to the effect that 
the limit of a sequence of continuous functions is at most 
point-wise discontinuous. 

In connection with convergent sequences of continuous 
functions, the saltus function here considered can be related 
with the measure of non-uniform convergence introduced by 
Hobson and Osgood.* These two functions vanish at the 
same points, which fact shows, of course, that the above proof 
of Baire's theorem is not fundamentally distinct from that 
based on the measure of non-uniform convergence. There is 
no other relation of equality between the two functions. 
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1. Introduction and Summary. In the preceding number 
of this BULLETIN (p. 312) I gave reasons why due caution 
should be observed toward the literature on the solution of 
homogeneous equations in integers. The valid knowledge 
concerning this subject is much less than has been usually 
admitted. The lack of general methods is even greater than in 
the subject of non-homogeneous equations. The chief aim of 
the present paper is to suggest such a method, based on the 
theory of ideals. The method is applicable in simple cases 
(§§ 2-4) without introducing ideals. 

For the sake of brevity we shall restrict attention to the 
problem of finding all integral solutions of the equation 

Xi2 + axz2 + bx$2 = #4
2, 

an equation admitted t to be difficult of treatment by any 
known methods, and previously solved completely in integers 
only in the single case a = b = 1. 

Let us write 
#4 — Xi = Z, X± + Xi = W. 

Then from the integral solutions of ax2 + by2 = zw we must 
* Hobson, loc. cit., p. 484. 
t Carmichael, Diophantine Analysis, 1915, p. 38. 
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select those for which z = w (mod 2). The trouble in making 
such a (simple) selection is avoided when a = l , 6 = 4fc—1, 
by a reduction* to 

x2 + xy + hy2 = zw. 

Further, any solution of 

ax2 + by2 = zw 

yields a solution X = a#, Y — y, Z = az, W = w, of 
Z2 + abY2 = ZW in which Z and Z are divisible by a, and 
conversely. Hence our problem leads to the canonical equa­
tion N = zw, where N is x2 — my2 or #2 + #y + %2. We 
shall see that the theory of algebraic numbers is admirably 
adapted to the complete solution of N = zw in integers. 

2. Definition of Integral Algebraic Numbers. Let m be an 
integer other than 0 and 1, and such that m is not divisible 
by a perfect square. The numbers r = r + s Vm, where r 
and s are rational, form a domain of rationality (or field) 
R( Vm). Evidently r and its conjugate r' = r — s Vm are the 
roots of the equation 

x2 — 2r# + r2 — ms2 = 0. 

If the coefficients of this quadratic are all integers, r and r ' 
are called integral algebraic numbers of jR(Vm). A simple 
discussion! leads to the following theorem. 

THEOREM 1. The integral algebraic numbers of I?(Vra) are 
x + yd, where x and y are integers, and where 

(1) 0 = Vm if m s= 2 or m = 3 (mod! 4), 

(10 ö = | ( l + A/^),02-0 + î ( l - m ) = O , # m = l(mod4). 

The conjugate to £ = # + 2/0 is £' = a; + t/0', where 
0' = — Vm in case (1), and 0' = ^(1 — Vm) in case (1'). 
The product {£' is called the norm of £ and denoted by JV(£)« 
Hence, in the respective cases, 

* Details are given in the writer's address before the International 
Mathematical Congress at Strasbourg, in which he described the present 
method for the simplest cases, including the solution, by use of the arith­
metic of quaternions (see PROCEEDINGS LONDON MATH. Soc, 1921), of 
x2 H- y2 + r2 + v2 — zw and hence of xi2 + • • • -f xh

2 = x&2. 
t See this BULLETIN, vol. 13 (1906-7), p. 350, or any text on algebraic 

numbers. 
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(2) or (20 N(x + yd) = x2 - my2 or x2 + xy + 1(1 - m)y2. 

3. All Rational Solutions of N(x + yd) = zw. If z =(= 0, 
we may write 

x __ a y __b 
z c' z c' 

where a, b, and c are integers without a common factor greater 
than 1. Then we have 

w N(x+yd) .T(x yd\ fa+bd\ N(a+b6) . iv(|+Ç)= iv(^±Aö) = ^ 
2 2f 

If we take p = s/c2, where p is rational, we obtain 

(3) x = pac, y = pbc, z = pc2, w = pN(a + bO). 

But if s = 0, then N(x + i/o) = 0 and x = j / = 0, and this 
solution is the case c = 0 of (3). 

THEOREM 2. 4̂ZZ rational solutions of N(x + yd) = sw are 
0Ïitë7i by (3), wÂ rtf a, 6, c are integers without a common factor 
and p is rational. 

4. Integral Solutions without the Use of Ideals. Not all 
integral solutions of N(x + yd) = zw are obtained from (3) by 
restricting p to integral values, as was shown in § 4 of my 
preceding paper. To obtain further solutions, note that the 
norm of the product 

(4) x + yd = (a+bd)(c+dd) 

of two numbers of our field R(d) equals the product of their 
norms. Hence N(x + yd) = zw has the solution 

(5) z = N(c+dd)9 w = N(a + bd), x, y by (4) ; 

or explicitly, 

(5i) x = ac + mbd, y = ad + be, z = c2 — md2, 

w = a2 — mb2, m = 2 or 3 (mod 4) ; 

(52) x = ac H -7 bd, y = acü + &<? + bd, 

z = c2 + cd + 1(1 - m)d2, w = a2 + a& + 1(1 - m)62, 

where m = 1 (mod 4). 

We shall restrict attention to integral values of a, b, c, and d 
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without a common factor. The products of the resulting 
numbers (5) by an arbitrary rational number p give all 
rational solutions of N(x + yd) = zw, since those products 
reduce to (3) when d = 0. 

When the field Rid) is such that its integral algebraic 
numbers x + yd obey the laws of divisibility of arithmetic, 
we shall prove that all integral solutions of N(x + yd) = zw 
are given by the products of the numbers (5) by an arbitrary 
integer p, where a, b, c, and d are integers without a common 
factor. We have merely to show that when the products of 
the numbers (5) by an irreducible fraction n[p are integers, 
so that the numbers (5) are divisible by p, then the quotients 
are expressible in the same form (5) with new integral param­
eters in place of a, b, c, and d. It suffices to prove this for the 
prime factors (equal or distinct) of p, since after each of them 
has been divided out in turn, p itself has been divided out. 

Let therefore p be a prime which divides the four numbers 
(5). If p divided both d and b, it would divide also c and a, 
in view of z and w, contrary to the hypothesis that a, b, c, 
and d have no common factor. By the interchange of a 
with c and b with d, x and y remain unaltered, while z and w 
are interchanged. Hence we shall be treating one of two 
entirely similar cases if we assume that d is not divisible by p. 

The prime p divides the product z of c + dB and c + dd', 
without dividing either factor. For, if c + d6 or c + dd' 
= c + d(a — 0), where a = 0 or 1 in the respective cases (1) 
or (1'), were the product of p by k + Id, where k and I are 
integers, then ± d = pi, whereas d is not divisible by p. 
Since the laws of divisibility of arithmetic were assumed to 
hold for the integral numbers of R(d), it follows that p is not 
an algebraic prime, but decomposes into p = TIT', where w 
and 7T' are conjugate primes.* By choice of the notation 
between w and irf, we may assume that w is the one of the two 
prime factors T and x' of p which divides c + dd, and we may 
write 

(6) c + dd = TT(C + Dd), z =» pN(C + Dd), 

where C and D are integers. Since x and y are divisible by pf 

* Otherwise, p would be a product of three integral algebraic numbers, 
no one a unit, and its norm p2 would be a product of three integers no one 
of which is =h 1. A unit u is an integral algebraic number which divides 
unity, whence N(u) = ± 1 (-f~ 1 if m is negative). 
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and c + dB is divisible by x, but not by the product p = WT', 
it follows from (4) that a + bO is divisible by x', i.e. 

(7) a+bO= T\A + BO), w = pN{A + BO), 

where A and B are integers. 
Comparing the product of (6) and (7) with (4), we have 

x + yO = p(€ + riO), £ + lyfl s (A + B0)(C + DO). 

Hence the integral quotients £ = x[p, r\ = y/p, z/p, w/p are 
of the form (5) with a, b, c, and d replaced by the integers 
A, B, C, and D. This proves the following theorem. 

THEOREM 3. All integral solutions of N(x + yO) = zw are 
obtained by multiplying an arbitrary integer by the numbers 
(5) in which a, b, c, and d are integers without a common factor 
(in brief by the formula which expresses the fact that the norm of 
the product of two numbers a + bO and c + dO of the field R(0) 
equals the product of their norms), provided the integral algebraic 
numbers of the field R(0) obey the laws of divisibility of arith­
metic, and this condition is satisfied only for the following 45 
values* of m numerically ^ 100, m having no square factor: 

m = - 1, - 2, - 3, - 7, - 11, - 19, - 43, - 67, 2, 3, 5, 

6, 7, 11, 13, 14, 17, 19, 21, 22, 23, 29, 33, 37, 38,41, 43, 46,47, 

53, 57, 59, 61, 62, 67, 69, 71, 73, 77, 83, 86, 89, 93, 94, 97. 

5. Definition of Ideals. Known Theorems. When the laws 
of divisibility fail for the integral algebraic numbers of a 
field, we may restore those laws by the introduction of ideals, 
as was first done by Kummer for a field defined by a root of 
unity, and by Dedekind for any algebraic field. By an ideal 
of a field R(0) is meant any set S of integral algebraic numbers 
of R(0), not composed of zero only, such that the sum and 
difference of any two (equal or distinct) numbers of the set 8 
are themselves numbers of this set, while every product of a 
number of the set S and an integral algebraic number of the 
field R(0) is a number of the set S. 

* The cases in which all ideals of the field are principal ideals, J. Sommer, 
Zahlentheorie, 1907, tables, pp. 346-358. Dickson, this BULLETIN, vol. 17 
(1910-11), pp. 534-7, proved that if m = — P is negative, 163 is the only 
value of P between 67 and 1,500,000. 



358 A NEW METHOD IN DIOPHANTINE ANALYSIS. [ M a y , 

If s ranges over the numbers of an ideal S, and Si ranges 
over the numbers of an ideal Si, where S and Si are ideals of 
the same field R(6), then the products ssi and their linear 
combinations with rational integral coefficients form an ideal 
of R(8), called the product of the factors S and Si, and denoted 
by SSi or by SiS. 

For quadratic fields, the case in which we are here interested, 
the theory of ideals has been developed quite simply.* Two 
notations are needed. First, [k, /] denotes the totality of 
linear homogeneous functions of k and I with rational integral 
coefficients. Second, {k} denotes a principal ideal, defined as 
the totality of the products of k by integral algebraic numbers 
x + yd of our field R(0), where x and y are rational integers. 
Hence we have 

{k} = [ft, led]. 

THEOREM 4. In a quadratic field R(6), where 6 is defined by 
(1) or (!'), all ideals are given by [ne, n{f + 6)], where n, e, ƒ 
are rational integers such that 

(8) or (80 ƒ* s m (mod s), f + ƒ + 1(1 - m) s 0 (mod e), 

in the respective cases (1) or (1'). 
THEOREM 5. In a quadratic field R(0), the product of the 

ideal [ne, n(f + 6)] by its conjugate [ne, n(f + 0')] equals the 
principal ideal {n2e}. 

The positive integer n2\e\ is called the norm of [ne, n( ƒ + 0)]. 
The norm of any principal ideal {ft} is \N(k) \. 

An ideal S is said to be divisible by an ideal T when there 
exists an ideal Q of the same field such that S = TQ. An 
ideal, which is different from the principal ideal {1} and is 
divisible by no ideal other than itself and {1}, is called a prime 
ideal. 

THEOREM 6. If a prime ideal divides AB, it divides A or B. 
Every ideal which is neither {1} nor a prime can be expressed 
in one and but one way as a product of a finite number of prime 
ideals. Hence ideals obey the laws of divisibility of arithmetic. 

Two ideals A and B are called equivalent if there exist 
principal ideals {a} and {/?} such that {a}A = {j3}5; we 
write A ^ B. If A is equivalent also to C, with {S}A = {y}C, 

* Dickson, this BULLETIN, vol. Ï3 (1906-7), pp. 353-6; and, for a very 
detailed treatment of the case m = — 5, ANNALS OF MATH., (2), vol. 18 
(1917), pp. 169-178. 



1921.] A NEW METHOD IN DIOPHANTINE ANALYSIS. 359 

then {j8S}jB = {ay}C and B is equivalent to C. Hence all 
the ideals of a field which are equivalent to a given one are 
equivalent to each other, and are said to form a class of ideals. 
The principal class contains all the principal ideals and no 
others. For, if A ^ {1}, {a}A = {j3}, so that the number /3 
of the product is in {a}, whence /3 is divisible by a, and 
A= W/a}. 

6. Application of Ideals to our Problem. We now dispense 
with the assumption made in § 4 that the integral algebraic 
numbers of our quadratic field R(d) obey the laws of divisi­
bility of arithmetic. We shall examine by means of the theory 
of ideals our assumption that the solutions (5) of 

(9) N(x + yd) = zw 

are all divisible by the prime p. The prime ideal {p} therefore 
divides the product {z} of the principal ideals {c + dd} and 
{c + dd'}, without dividing either of the latter. Hence {p} 
is not a prime ideal (§ 5). Thus {p} = PP', where P and P' 
are conjugate prime ideals (which may coincide). By choice 
of the notation between P and P', we may assume that P 
is the one dividing {c + dd}, i.e. 

(10) {e + dd} = PL, 

where L is an ideal of our field R{6). By hypothesis, p divides 
x and y, whence, by (4), {p} = PP' divides the product of the 
principal ideals {c + dB] and {a+bd}. Since {c + dd} is 
divisible by P, but not by PP' = {p}, it follows that {a+bO} 
is divisible by P ' : 

(11) {a+bO} = P'T, 

where T is an ideal of our field R(d). 
(a) First, let L be a principal ideal. Then, by (10), P 

is equivalent to the principal ideal {1} and hence P is a princi­
pal ideal. Evidently its conjugate P ' is a principal ideal. 
Then, by (11), T is equivalent to, and hence equal to, a prin­
cipal ideal. Hence equations (10) and (11) between principal 
ideals yield* equations (6) and (7) between numbers of our 
field, from which we conclude as in § 4 that the quotients of 

* After inserting or removing unit factors, since {x} = (X) implies 
that X is the product of ir by a unit and conversely. 
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x, y, z, and w by p are the form (5) with a, b, c, and d replaced 
by new integers A, B, C, and D* 

(b) Second, let L be equivalent to an ideal S which is not 
a principal ideal. If S' is the conjugate to S, SS' = {e}, 
where e is a rational integer (Theorem 5). Then we shall 
have LS' ^ SS' = {e}> so that LS' is a principal ideal {S}. 
Multiplying (10) by S'y we get 

(12) S'{c+d$) = P{S}. 

Multiplying (12) by S, and using SS' — {#}, we see that 
$P{S} is a principal ideal, so that SP ~ {1}, whence SP is a 
principal ideal. Its conjugate S'P' is a principal ideal. But 
the product of (11) by SS' = {e} shows that S'P'-ST is a 
principal ideal. Thus ST ^ {1} and SÎ7 is a principal ideal 
{e}. Hence, by (11), 

(13) S{a+b6} = P'{e}. 

By the norms of the members of (12) and (13), in connection 
with (5), we get 

\ez\ = \eN(c + dO)\ = p|2V(8)|, 

| ^ | = | ^ ( a + 6 ö ) | = p|iV(e)|. 

By hypothesis, x, y, z, and w are divisible by p. Hence N(5) 
and N(e) are divisible by e. By comparing the product of 
(12) and (13) with (4), we get 

{e}{x+y6} = {p}{Ôe}. 

Hence e(x+ yO)/p = Sew, where u is a unit. Replacing eu 
by €, we conclude that the quotients of x, y, z, and w by p are 
integers X, 7, Z, and IF, such that 

(14) X+F0=A Z - ± ™ , ÎF-=b^. 

The requirement that Se, iV(S), N(e) be divisible by ^ may 
be expressed by congruential conditions modulo e upon the 
four coordinates of S and e (cf. § 7). In the future we shall 
retain only the upper sign in (14) and understand that the 

* If we attend only to the numbers z of our solutions, we see that our 
discussion, with omission of the details leading to (11) and (13), leads to 
the quadratic forms of all divisors of the numbers represented by the 
quadratic form AT. 
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simultaneous change of signs of Z and W in any solution leads 
to a companion solution which will not be listed. Our initial 
solution (5) is the case e = 1 of (14). The removal from (5) 
of a prime factor led us to the solutions (14). Bearing in 
mind that we must remove froüi (5) in succession the various 
prime factors of the common factor of the numbers (5), we 
may state the following lemma. 

LEMMA. From each class of ideals of the field R(d), where 6 
is defined in terms of m by (1) or (1), select a representative 
ideal and call its norm e. For each e impose on the coordinates 
of 5 and e the conditions that the divisions indicated in (14) are 
possible and derive the resulting solution (14) in integers. 
Similarly, examine the conditions that the four numbers in any 
such formula (14) shall be divisible by an arbitrary one of the 
numbers e and derive the resulting solution in integers. Delete 
one of two such solutions if they are equivalent, i.e. if they differ 
only by a change of integral parameters. Repeat the process until 
closure results, so that the final sets of solutions Si, ••• ,$& are 
such that, when the numbers of any Si are divisible by any e, 
the resulting solution is equivalent to one of Si, • •• ,$&. Then 
all integral solutions of N(x-\- yd) = zw are integral multiples 
of Si, — -, Sk. 

The theory of the correspondence* between classes of ideals 
and classes of quadratic forms and the theory of the composi­
tion of classes would seem to entitle us to pass from the 
preceding result to the following conjectured theorem. 

THEOREM 7. Select a representative S = [e, f + 6] of each 
class of ideals of the field B( Vm), and define 6 by (1) or (1'). 
Then all integral solutions of N(x+ yd) = zw are integral 
multiples of 

x = eln + fnq — fir — gqr, y = Ir + nq, 

(15) z = el2 + 2flq + gq2, w = en2 — 2fnr + gr2, 

m SE 2 or 3 (mod 4), p — eg = m, 
or of 

x = eln+fnq— (ƒ+ l)fr — gqr, y == lr+ nq, 

(16) z =el2+(2f+l)lq+gq2, w=en2-(2f+l)nr+gr2, 

ra=l (mod 4), (2/+1)2—4eg=m. 
* To S and its conjugate S' correspond z and w, while to their product 

(a principal ideal) corresponds N(x + 2/0), which therefore can be obtained 
from z and w by composition. This suggests another, but more technical, 
approach to our whole subject. 
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When S is the principal ideal {1}, e = 1, ƒ = 0, (15), and 
(16) with n replaced by n + r, become (5i) and (52) for I = c, 
q = d, n = a, r = b. 

I have verified Theorem 7 f or ra = — 14, — 17, — 46, 
when there are 4 classes of ideals; for ra = — 26, when there 
are 6 classes; for all values of ra numerically < 100 for which 
there are 2 or 3 classes (§ 7) ; and when there is a single class 
(§4). A general proof is being sought by one of my students, 
who is also applying the method to other types of Diophantine 
equations. 

7. Cases of 2 or 3 Classes of Ideals. The following result, 
in connection with Theorem 3, disposes of all positive values 
of m < 100, except ra = 82, in which case alone the number 
of classes of ideals exceeds 3. 

THEOREM 8. For the 37 values of ra between — 100 and + 100 
and without a square factor for which there are exactly 2 or 3 
classes of ideals in the field jR(Vra), all integral solutions of 
Nix + yQ) = zw are integral multiples of (5) and (15) or (16), 
where e and ƒ take the one set or the two sets of values in one or 
two ideals [e, ƒ + 6] which together with {1} give representatives 
of the 2 or 3 classes of ideals. 

For ra = 2 or 3 (mod 4), 0 = Vra, we write 

5 = D + qet e = E+rd. 

N(ô) = D2 - mq\ N(e) = E2 - mr\ 

de = DE + mqr + (Dr + Eq)d. 

First, consider an ideal S = [e, f + 6] for which e is a prime 
factor of m. By (8), ƒ = 0 (mod e) and we may take ƒ = 0. 
Note that every ideal, not a principal ideal, is equivalent to S 
when * m = - 6, - 10, - 22, - 58, 10, 26, 30, 42, 58, 70, 
74, 78 with e = 2, and when m = 51 or 66 with e = 3. The 
numbers (18) are divisible by e if and only if D and E are. 
For D = el,E = en, (14) become (15) with ƒ = 0. 

Second, f or m s 3 (mod 4), let S == [2, f+0]. By (8), 
we may take ƒ = 1. Note that every ideal, not a principal 
ideal, is equivalent to S when m = — 5, — 13, — 37, 15, 35, 
39,55,87,91,95. Since (18) shall be divisible by 2, D = q + 2/, 
E = - r + 2n, and (14) with e = 2 become (15).; 

(17) 
Then 

(18) 

* Sommer, Zahlentheorie, 1907, pp. 346-358. (Tables.) 
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Third, for m = 2 or 3 (mod 4), m = 1 (mod 3), let S = 
[3, ƒ + 6]. By (8), we may take ƒ = 1 or - 1. For m = 31 
or 79, the three classes of ideals are represented by {1} and the 
two S's; for m = 34, the two classes are represented by {1} 
and S with ƒ = + 1. The numbers (18) are divisible by 3 
if and only if D = ± g , J S s =Fr(mod3). ForZ> = ±q+3l, 
E= T r + 3 n , (14) with e = 3 become (15) with ƒ = db 1. 

These three main cases cover all the values of m between 
— 100 and + 1 0 0 for which m = 2 or 3 (mod 4) and for which 
there are exactly 2 or 3 classes of ideals. 

It remains to verify closure. Let x, • • -, w in (15) be divis­
ible by e. For our first case, ƒ = 0 and g = — mje is not 
divisible by e, whence q = r = 0 (mod e). The last is true 
also in our second case e = 2, ƒ = 1, g = (1 — m)/2 odd. 
For q = ed, r = eb, the quotients of (15) by 0 are of the form 
(5i) with a = n — fb, c = I + fd. In the third case e = 3, 
ƒ = ± 1, either g s r = 0 (just treated) or I = /#g, n = — /#r 
(mod 3). 

First, let g = — 1 (mod 3) and hence replace I by — fq + 3/, 
and n by/ r + 3n; the quotients of (15) by 3 are of the form 
(15) with e replaced by 9, ƒ by — 2/, and g by (g + l)/3. 
For m = 31, we apply to z = (9, - 2/, - 3), with ƒ = ± 1, 
in succession the substitutions 

( - 1 5 ) ' s = ± 2 > = F 1 , ± 1 , =F5, 

and obtain ( - 3, ± 4, 5), (5, zh 1, - 6), ( - 6, db 5, 1), 
(1,0, — 31). The product of these substitutions is Z= 2(^11^, 
q = =F 5c + 28d. Using also n = 2a ± 116, r = ± 5a + 286, 
we see that our solution becomes (5i). 

Next, let g = + 1 (mod 3) and hence replace I by fq + 3Z, 
and 7i by — ƒr + 3n; the quotients of (15) by 3 are 

x = 9/ft + 4:fnq — 4/Zr — Agr, y = Zr + wg, 

(19) s = 9Z2 + 8/Zg + /^2, w = 9n2 - 8/nr + /*r2, 

A= (jf+5)/3. 

For m = 79, apply to z = (9, ± 4 , - 7 ) in turn 

(_? ! ) ' * - ± i . »-=FI. 
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We obtain 

z = 10*2 ± Ust - 3*2 s (j> for 1= - s =F *, 

q = =F ^ — 22. But our initial 2 in (15) with e = 3, ƒ = db 1, 
g = — 10, becomes — <£ f or £ = — t±2s, q — $. Eliminat­
ing s and t, we see that if we replace I by ± / — 3g, g by 
2Z =F 5g, ft by =F n — 3g, and r by 2n ± 5r in (19), we obtain 
#> "~ y y ~~ s, ~~ w of our initial (15). But by the change of the 
signs of q and r in (15), Î/ is changed in sign, while the effect on 
x, z, w is to change the sign of ƒ. 

Finally, let m = 34, e = 3, ƒ = + 1. In (19) we take 
I — — c + 6d, g = tf ~- 5d, w == c + 66, r = a + 56, and ob­
tain (5i) with z and w changed in sign. 

Let m = 1 (mod 4), 0 = 1(1 + Vm), and consider an ideal 
S of the field R(6) for which 0 is a prime factor of m. By (8'), 
we may take 2/ + 1 = e. Note that every ideal, not a prin­
cipal ideal, is equivalent to S when m = — 35, 65, 85 with 
e = 5; m = — 51, e = 3; and m = — 9, e = 7. By (2') 
and (17), 

N(S) = D2+Dq+ 1(1 - m)g2, 

(20) 2V(e) = £2 + Er + J(l - m)r2, 

Ô€ = DE+ J (m - l)gr + (Dr + Eg + r?)0. 
Thus 

4N(5) s (22) + g)2 s 0, 4iV(€) s (2E + rf s 0 (mod *). 

Hence write D = /g + d, E = - h(e + l)r + en. Then (14) 
give (16). To prove closure, let the numbers (16) be divisible 
by e. Since m is not divisible by e2, g is not divisible by e. 
Hence q = r ss 0 (mod 0). For g = ed, r = 06, the quotients 
of (16) by e are of the form (52) for a = n — (ƒ + 1)6, 
c=l + fd. 

Let m ss 1 (mod 4e), where e is a prime. By (80? we may 
take ƒ = 0 or ƒ = — 1, and obtain conjugate ideals. The 
conditions that (20) be divisible by e are 

D(D + q) s 0, E(E + r) s 0, D£ s 0, 

( D + g ) ( E + r ) = 0 (mod*). 

Hence either D s E + r s 0 or E s D + g == 0. For D = ^, 
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E = - r + en, (14) become (16) with ƒ = 0. For E = en, 
D = — q+ el, (14) become (16) with ƒ = •— 1. We may 
restrict the proof of closure to the first case. For, our two 
cases are interchanged by the substitution s = (DE)(qr)(nl), 
which by (17) and (14) gives rise to the interchange of S with e, 
and z with w. But s replaces x, y, z, w of (16) with ƒ = 0 
by x, y, w, z of (16) with ƒ = — 1. The numbers (16) with 
ƒ = 0 are divisible by e if and only if either q s= r = 0 (treated 
above), or I s= — gq, n = gr (mod e). 

First, let g = 0 (mod e). Replacing I by el and n by en 
in (16), we see that the quotients by e are of the form (16) with 
e replaced by e2 and g by g/e, while ƒ remains zero. For 
m = — 31, e = 2, whence g = 4, we replace / by g, g by — /, 
n by — r, and r by n, and obtain (16) with ƒ = <- 1. For 
m = — 15, e = 2, we replace /by — eu, g by c + d, n by b, and 
r by — a, and obtain (52). 

Next, let g s ± 1 (mod #). Write / = =F g + #Q, 
ft = ± r + eiî. The quotients of (16) with ƒ = 0 by e are 

x = 02QJR — (1 =F 0)rQ =F eqR — crgr, y = Qr + Rq, 

(21) z = e2Q2+(1^2e)Qq+aq2, w = e2R2~(1^2e)Rr+ar2, 

cr= 1 + G / T 1 ) / * . 

For m = —- 23, e = 2, we have # = 3 and may choose the 
upper signs. Replacing Q by — q, q by / — q, R by r, and r 
by — ft — r, we obtain (16) with ƒ = — 1. 

For e = <r = 3, the upper signs give g = 7, m = — 83, 
and the lower signs give g = 5, m = — 59. Replacing Q by g, 
g by — I ± g, R by r, and r by — ft ̂ F r, we obtain — x, — y, 
z, woî (16) with ƒ = - 1. 

These values - 15, - 23, - 31, - 35, - 51, - 59, - 83, 
— 91, 65, 85 are the only ones of m between — 100 and + 100 
which are == 1 (mod 4) and for which there are exactly 2 or 3 
classes of ideals. Hence Theorem 8 is proved. 
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