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MATRICES AND DETERMINOIDS. 

Matrices and Determinoids. By C. E. CULLIS. University 
of Calcutta Readership Lectures. Cambridge University 
Press, Vol. I, 1913, xii + 430; Vol. II, 1918, xxiv + 555 pp. 
THIS treatise was designed to occupy two volumes of theory 

and one of applications to vector analysis and invariants. 
The growth of the manuscript however has brought about 
three volumes for the theory and one for applications. Con­
sequently the present volume instead of closing the theory 
leaves it still incomplete. The third volume of theory is to 
include the theory of matrices with functions as coefficients, 
if we read the indications correctly. 

The greater part of the first volume is devoted to the notion 
of determinoid and theorems connected with this. The 
matrix itself is studied mainly in connection with the notions 
of addition, subtraction, and multiplication. A study of the 
solution of matrix equations of the first degree, which includes 
systems of linear algebraic equations, also is included in this 
volume. 

The second volume deals with compound matrices, the 
minors of a matrix, some properties of square matrices, rank 
of a matrix, transformations of a matrix, equations of the 
second degree, extravagances of matrices, paratomy and 
orthotomy of matrices, and three appendices. 

As has happened in treatises from some Cambridge mathe­
maticians, a great addition to the existing mathematical 
vocabulary is to be found in this treatise. Whether so many 
new terms are necessary of course remains to be seen in their 
developmental use. One's first impression is, however, that 
the matter is overdone. Some of them are descriptive enough 
to explain themselves to some extent, but others are manu­
factured for the occasion and only to be understood by refer­
ence to the text or a glossary. There is a complete and syste­
matic notation throughout, which is highly desirable, and 
after one has accustomed himself to its method, it is quite 
intelligible, though successive abbreviation renders it more 
and more compact. 

Definition of Matrix.—The author follows the usual custom 
and defines a matrix as an assemblage of m rows of n elements 
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each (where m and n are finite for the purposes of this treatise), 
the elements being numbers in the cases actually considered, 
and so far as one observes chosen from the real domain usually, 
but sometimes from the complex domain. The number of 
rows m is the horizontal order, and the number of columns n 
is the vertical order. The smaller of these two numbers if 
unequal, or either if equal, is the efficiency of the matrix, 
which is thus the order of the maximum determinants that 
may be formed from the elements of the matrix. Long rows, 
short rows, leading element, leading line or diagonal, leading 
vertical row, and leading position, are self-explanatory. 

Regarding this definition the reviewer desires to make some 
comments which apply also to the definitions usually given of 
vector, tensor, etc. In the first place the term assemblage of 
elements almost invariably leaves out a highly essential phrase : 
in a certain prescribed order. For instance if the element 2 
occurs in any of these entities it has a very different rôle 
when it is the first element, or the third element, or the second 
of the third set, etc. This is obvious. Hence the mere 
assignment of the values of the elements does not define 
uniquely the entity, whether matrix, vector, or similar 
entity. If one speaks of the vector (2, 3, 4) he tacitly implies 
certain notions: namely, what the position of the 2 signifies, 
the position of the 3, and the 4. The position is actually of 
more importance than the element in most problems. The 
definition of a vector as a triple of elements is not sufficient, 
nor is the definition of a matrix as an m-tuple of n-tuple sets. 
There seems to be then no valid reason why the qualitative 
element which designates the rôle of the numerical element 
should not be put in evidence. For instance, the vector above 
should be written 2e\ + 3e2 + 4e3, the €i, €2, c3 being qualitative 
elements, hypernumbers of a unitary character. Likewise 
a matrix is expressible completely by the sum 2a# X#, where 
i — 1, 2, . . . , m; j — 1, 2, . . . , n. The hypernumbers 
X indicate the position and the rôle of the coefficients. By thus 
placing such " assemblages " in the domain of linear algebras, 
where they properly belong, the whole treatment becomes 
simple and clear. Particularly the multiplication of matrices 
is set forth in a much more brilliant light. Further it should 
be noticed that a matrix of m long rows and n short rows is as 
much an assemblage of m vectors in an n-dimensional space, 
or of n vectors in an m-dimensional space, as it is of mn-ele-
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ments. A matrix may be looked upon as a linear homogeneous 
substitution, which converts certain variables into others, or it 
may be considered as a linear vector operator which converts 
all vectors from the origin into others from the origin, or it 
may be considered as a dyadic, the sum of several dyads,— 
all useful definitions and yielding very important results. 
As a linear vector operator the particular elements entering 
the matrix are not of so much importance as other features of 
the matrix. Certain combinations of the elements are in­
variant, however, in various representations of the linear 
vector operator, or certain transformations of the matrix 
considered as an aggregate of elements. These combinations 
are of great importance. There are other matrices, which 
have been called covariants of the given matrix, which play a 
very important part in the theory, when we consider the matrix 
as an operator. 

These considerations lead us to conclude that the mere 
assemblage of mn numerical values out of whose combinations 
various forms arise subject to a large variety of theorems is 
far from being the whole story. 

Determinoids.—By determinoid the author means a sum of 
all the maximum determinants with specified signs that can 
be formed from the array of elements. Of course if the array 
is square there is but one such: the determinant of the matrix, 
as usually understood. If the matrix is rectangular, there 
must be assigned a rule for the addition of the maximum deter­
minants, and many pages are devoted to the exposition of 
this rule in various forms, and to various modes of writing 
out the expansions of the determinoid. 

Again the reviewer would remind the reader that out of the 
mn elements of a matrix an unlimited number of numerical 
combinations may be formed according to assigned rules, and 
the only question proper with regard to them is whether they 
are useful. Of all combinations those which are linear in 
the elements of each line or column would naturally be sug­
gested as the most useful. Of these the products which are 
such as to have a number of factors equal to the order of 
efficiency of the matrix, would take priority. Products of 
elements chosen one from each of several different lines are 
called by the author derived products. If the efficiency is r 
and products of order r are formed in every possible manner 
from the elements of the matrix, so that no line is represented 
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twice in any one product, the sum of these products with 
arbitrary coefficients would be one of the useful combinations 
spoken of above. But the choice of the arbitrary coefficients 
would have to be governed again by some pragmatic principle. 
If they are all taken equal to + 1 then the whole combination 
has a symmetry easily seen. If half are chosen properly 
positive and half properly negative, there is a skew symmetry. 
In each maximum minor we have such skew symmetry. 
The author was evidently aiming at some such result in his 
choice of coefficients for the derived products in forming his 
determinoid. But an examination of the theorems relating 
to determinoids, which he seems to think will be useful for the 
applications, makes it evident that to a large extent the coeffi­
cients of the maximum minors could just as well have been 
arbitrary and the theorems would still hold. We must then 
feel rather doubtful as to the utility of the determinoid when 
it is not a simple determinant. 

To understand just what happens we may have recourse to 
the qualitative units. The elements of the row may be looked 
upon as defining a vector as. For simplicity we will suppose 
that the efficiency is w. Then if we set up a multiplication 
of these vectors by means of an alternating multiplication of 
the qualitative units €1, e2, . . . , en (as is often done in 

Scott's Determinants, for instance), this will be an—7-, -r : 
9 ml (n — m)\ 

vector, of class m in a space of n dimensions, whose coordinates 
(coefficients) are the maximum minors of the matrix. As an 
alternating expression this product has certain properties and 
these are the properties which are to be found in the deter­
minoid. For instance the addition of a long row to another is 
equivalent to adding one of the vectors to another, which will 
not affect the product. The determinoid itself is the scalar 
product of this alternating product and another vector of the 
same order, whose coefficients are + 1 and — 1 chosen ac­
cording to the rules previouly laid down. Any other vector 
of this order might in most cases as well have been chosen. 
We may reach the reciprocal matrix also with these alter­
nating products, for if we construct a vector fij of order 1, 
linear in the arbitrary vectors Xi, X2, . . . , Am, any chosen set 
of m linearly independent vectorsf the coefficient of A* being 
the scalar product of the alternating product of au . . ., 
ay_i, aj+i, . . . , am and that of Ai, . . . , A*_i, Aî+i, . . . , Am, 
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where j runs from 1 to m, and signs follow a determinant rule, 
then these vectors ft, . . . , ft, . . . , /3W, define the reciprocal 
matrix. In the case actually chosen the vector which is used 
to give the determinoid is also chosen as a sum of alternating 
products of m out of n vectors. Any arbitrary vector of the 
same order would do. In the case of a square matrix of course 
these all become multiples of a single unitary one, and the 
reciprocal of the square matrix which is not singular is there­
fore unique. Professor Cullis gets a unique reciprocal in the 
rectangular case only because of his special choice of the 
vector which gives the determinoid. By leaving this choice 
open for different problems he would have arrived at a much 
more flexible system. The product of a matrix and its recip­
rocal is of course the mth power of its determinoid. This 
would be true for any choice of the arbitrary vector. 

Products of Matrices.—The elements of a product are formed 
by combining corresponding elements from the rows of the 
prefactor and the columns of the postfactor. These are 
the active rows of each respectively. The vertical rows of the 
prefactor and the horizontal rows of the postfactor are the 
passive rows. The passivity of either factor is the number of 
passive rows it contains. This is evidently a function of its 
place as prefactor or as postfactor. When the passivities are not 
equal they are made so by the adjunction of lines of zeros to the 
matrix with the smaller passivity. The product will then 
have the same number of horizontal rows as the prefactor, 
and vertical rows as the postfactor. The product of two 
vectors usually called their scalar product, can now be defined 
as the determinant (or determinoid equally in this case), of 
the product of two matrices, the first with one row, the second 
with one column. We may instead of inserting lines of zeros, 
strike out the redundant horizontal rows of the second or the 
redundant vertical rows of the first, and reach the same pro­
duct. The latter method is preferable since it makes evident 
at once the rule for the cancellation of factors in a product 
which vanishes. This rule is stated for the most general case 
in these terms : The equation AXB = 0 leads to X = 0 as a 
necessary consequence, when and only when the ranks of A 
and B are equal to their passivities in the given product AXB. 
From this we have that AX — AY leads to X = 7, as a 
necessary consequence, when and only when the rank of A 
equals its passivity in AX and in A F. And finally AXB = 
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A YB leads to X = Y, as a necessary consequence, when 
and only when the ranks of A and B equal their passivities in 
the two products. On the basis of these theorems we can 
proceed to solve linear equations in matrices or sets of linear 
equations in n variables, for these are reduced to linear matrix 
equations. For instance the system 

n 

^dijXj = hi, (i = 1, . . ., m), 

becomes the matrix equation 

\aij\\xj\ = \bi\, (i = 1, . . ., m;j = 1, . . ., n). 

Compound Matrices.—These are defined and treated in the 
second volume. The notations are generalizations of those 
of the preceding volume. A compartite matrix is one whose 
elements all vanish except those belonging to a number of 
mutually complementary minors. By interchanging rows 
and columns it can always be brought to a form in which there 
are minors (usually rectangular) which form a diagonal set, 
all others being zero. This is called the standard form. 
The rank of a compartite matrix is the sum of the ranks of its 
component parts. The conjugate reciprocals of certain 
compound matrices are considered, the results being of use 
later. The primaries of the minor determinant A, of order r, 
in a matrix of orders m, n are the minors of order r which 
differ from A in only one row, the horizontal primaries differing 
in one horizontal row, the vertical in only one vertical row. 
The primary superdeterminants of a minor A of order r are 
all the minors of order r plus one which contain A as a minor. 
There are several theorems on the possible ranks of a matrix 
containing a given minor. 

Relations between the Elements and the Minors.—In this 
chapter a quite considerable number of identities will be found, 
deduced for the most part by a skilful use of a matrix and its 
conjugate reciprocal. Many of them are identities well 
known in generalized vector analysis. In fact if we consider 
that the matrix of n short rows and m long rows is an aggregate 
of n vectors in an m-dimensional space, we can at once derive 
many of the formulas. Sylvester's identities satisfied by 
those primary superdeterminants of one determinant A which 
lie in another determinant D containing A are included in the 
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list. There is also a consideration of equivalent matrices, 
that is, matrices A, B such that A = BC or A = CB, where C 
is an undegenerate matrix. These are used in the theorem 
that two systems of r unconnected linear equations on n 
variables which both have finite solutions are mutually equi­
valent when and only when the related matrices of coefficients 
are equivalent. 

Square Matrices.—A large part of this long chapter is 
devoted to the properties of the square matrices whose ele­
ments are the minors of order r of a given matrix. We find 
such terms introduced as, co-joint matrices: each consisting 
of the minors which are complementary to the minors that 
constitute the other; corresponding and anti-corresponding 
minors : corresponding minors being formed in the same manner 
from corresponding elements of co-joint determinants, anti-
corresponding minors being each the cofactor in one of two 
co-joint matrices to the minor corresponding to a given minor 
in the other. Several theorems are given relating to these 
matrices. Matrices that are formed by bordering a given 
matrix are studied. Reciprocal matrices give several theorems. 
Symmetric matrices and skew-symmetric matrices have some 
pages each. However, the whole subject of the characteristic 
equation of the matrix, the general equation, the scalar in­
variants, the related matrices, which the reviewer has called 
the chi functions of the matrix, are not even mentioned. 
Indeed after going over some 600 pages of the author's treatise, 
with the expectation that somewhere the matrix as an operator, 
not necessarily a linear substitution, but only an operator on 
other matrices, will be treated, one finds with disappointment 
that apparently this phase of the subject is not to be found in 
the author's scheme of development. The reduction of a 
matrix to its canonical form, the subject of elementary di­
visors, and all related topics are not mentioned. Perhaps the 
succeeding parts of the treatise will remedy this serious defect, 
but no hint that this will happen is given. The nearest ap­
proach seems to be in Chapter XVI, which deals with the 
equigradient transformations of a matrix with constants for 
elements. 

Equigradient Transformations of a Matrix.—A transfor­
mation of this kind is equivalent to the transformation linearly 
of the variables in a bilinear form corresponding to the matrix. 
The greater part of the chapter is devoted to a consideration 
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of the various transformations that will reduce the matrix to 
a matrix consisting of square matrices down the main diagonal, 
other elements being zero. This corresponds of course to the 
reduction of the corresponding system of linear equations to a 
system which is reduced. In particular, symmetric matrices 
reduced to symmetric matrices are studied. The signants of 
the matrix are defined, and the matrix is called indefinite 
when there is both a positive signant and a negative signant, 
otherwise definite. The invariants of such transformations 
are not mentioned, nor is the significance of the transfor­
mation made clear. 

Matrix Equations of the Second Degree.—The types considered 
are of course very special. We find equations of the un-
symmetric forms 

XY = AB, XY = C. 

All others considered are symmetric, such as, for instance, 
X'X = 7, where X' is the transverse (conjugate) of X, and I 
is the identity matrix; X'X = A'A, X'X = C, X'AX = C. 
The case X'X = I evidently gives the orthogonal, unitary 
matrices. This is solved in full in the sense that methods are 
given by which any number of special solutions may be con­
structed. An application is given to the rotations of a rigid 
body in three-dimensional space. 

The Extravagances of Matrices.—The degeneracy of a matrix 
of rank r is the number by which its rank falls short of its 
efficiency, that is the number of long rows it contains. Or 
in other words, if a matrix is given by a set of vectors in a space 
of m dimensions (called a spacelet in the text) and its rank 
r is less than m, m — r is the degeneracy of the matrix. The 
extravagance of an undegenerate matrix of rank r is the de­
generacy of the self-transverse product of the matrix and its 
transverse. The extravagance is never negative nor more 
than the rank, nor more than the order minus the rank. An 
extravagant matrix is such that the sum of the squares of all 
its maximum minors is zero, that is to say, if we consider that 
the matrix is given by m vectors of an n-dimensional space, 
and form the alternant Amaia2 . . . o^, the tensor or absolute 
magnitude of this vector is zero. A real undegenerate matrix 
evidently has zero extravagance. A completely extravagant 
matrix has extravagance equal to its rank. A matrix is 
plenarily extravagant when its extravagance is equal to the 
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difference of its orders. Matrices are mutually orthogonal 
when the product of one into the transverse of the other is 
zero, and mutually normal, when mutually orthogonal and 
also with ranks whose sum is n, the number of short columns in 
each. These terms lead to several theorems, and these to 
theorems as to spacelets. In a space of n dimensions these 
notions are connected with the absolute quadric. 

Paratomy and Orthotomy.—A matrix of rank r may be con­
sidered to be an assemblage of vectors in a space of order r, 
called a spacelet, and if two spacelets have a spacelet in com­
mon as their intersection, then its rank is the mutual paratomy 
of the two. The mutual orthotomy is the degeneracy of the 
product of one matrix into the transverse of the other. There 
are several theorems involving these numbers, and these have 
evident applications to spaces of different dimensions. 

The reviewer has endeavored to give as briefly as possible 
the main features of the treatise so far as it has been published, 
although the very large number of theorems and develop­
ments make this a difficult thing to accomplish. There 
remain to be added only a few general comments. The 
treatment is complete in the sense that it appeals to no other 
discipline for its methods or its proofs. Where vectors might 
have been used as operands they are always one-rowed matrices. 
One might question whether the same theorems might not 
be reached by other methods in less space and with much 
more direct connection with the field of applications. The 
reviewer believes that a judicious use of a generalized vector 
analysis (such as has been reported on in other places) would 
assist very much. However the author of a treatise must be 
permitted to develop it along his own lines and the really 
proper question is whether he succeeds in doing what he 
sets out to do, as he desires to do it. Of this there seems 
little doubt in considering the present treatise. If the re­
mainder of the work is as full of useful theorems and ap­
plications, the completed treatise will remain for a long time 
a valuable place of reference. I t is to be hoped that a com­
plete bibliography will be added to the final volume, as well 
as a glossary. There are omissions which may be supplied 
in later volumes. For instance no work on matrices can 
be complete if it leaves out the consideration of the in­
variant regions, the projective regions, the shear regions of the 
matrix, the elementary divisors, the scalar and vector and 
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matrix invariants, the connection with dyadics and linear 
substitutions, the related triadics, polyadics, etc. This is a 
very extended field with numerous ramifications, and a com­
plete treatise is in duty bound to consider these. On the side 
of determinants, which is the really major part of the treatise, 
one might insist on a consideration of the numerous special 
forms of determinants. The related matrices have interesting 
properties. Then finally the whole subject of groups of mat­
rices leading to the field of linear associative algebra needs 
consideration, as well as the modern developments in the 
study of infinite matrices. There does not seem to be any 
indication that these are to be treated at all. 

The treatment is quite detailed, with numerous numerical 
examples, rather loose in its development, and lacking in 
synthesis, so that the reader becomes bewildered with the 
multitudinous formulas and other details. A synopsis of it 
would be useful. There are some errors easily noticed 

JAMES BYRNIE SHAW. 

NOTES. 

T H E seventy-second meeting of the American association 
for the advancement of science was held at St. Louis, Decem­
ber 29 to January 3, under the presidency of Dr. SIMON 
FLEXNER. Professor O. D. KELLOGG was vice-president and 
Professor F. R. MOULTON secretary of Section A. The 
address of Professor G. D. BIRKHOFF, as retiring vice-pres­
ident of Section A, on "Recent advances in dynamics," was 
delivered on December 30. This address was published in 
Science of January 16. Professor D. R. CURTISS was elected 
vice-president of Section A for the next two years. Among 
the societies meeting at St. Louis in affiliation with the 
Association were the Chicago and Southwestern Sections of 
the American Mathematical Society and the Missouri Sec­
tion of the Mathematical Association of America. 

T H E fifth annual meeting of the Mathematical Association 
of America was held at Columbia University, New York City, 
on Thursday and Friday, January 1-2, immediately following 
the annual meeting of the American Mathematical Society. 


