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This conic is tangent to the curve at t = 0,2 = oo, and inter­
sects the curve at six other points. At one of the latter points 
a tangent to the conic is tangent to the curve at some other 
point. We may summarize with this theorem: The self-dual 
plane rational quintic admitting of the greatest possible number 
of correlations is invariant under a Gu consisting of collineations 
and correlations. 

THROOP COLLEGE, 
Februaryj 1919. 

GROUPS CONTAINING A RELATIVELY LARGE 
NUMBER OF OPERATORS OF ORDER 

TWO. 

BY PROFESSOR G. A. MILLER. 

(Read before the American Mathematical Society March 29, 1919.) 

§ 1. Introduction. 

IT is well known that every group which contains at least 
one operator of order 2 must contain an odd number of such 
operators and that there is an infinite number of groups such 
that each of them contains exactly 2m + 1 operators of order 
2, where m is an arbitrary positive integer or 0. It is also 
known that if exactly one half of the operators of a group 
are of order 2 then the order of this group must be of the 
form 2 (2m + 1) and it must be the dihedral or the gener­
alized dihedral group of this order. Moreover, it has been 
proved that a group G of order 

g = 2a(2m + 1) 

cannot contain more than 2am + 2a — 1 operators of order 2, 
a being an arbitrary positive integer, and whenever G contains 
this number of operators of order 2 it is either the abelian 
group of order 2tt and of type (1, 1, 1, • • •) or it is the direct 
product of the abelian group of order 2a"~1 and of type (1,1, 
1, • • •) and the dihedral or the generalized dihedral group of 
order 2(2m + 1).* 

* G. A. Miller, this BULLETIN, vol. 13 (1907), p. 235. 
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From these theorems it results directly that when the order 
of a group is given but no other restrictions are imposed on 
the group, it is always possible to find an integer which repre­
sents the upper limit for the number of operators of order 2 
contained in a group of this order, and also to state how many 
groups of this order contain this number of operators of order 
2. In particular, there is no group of order 1,000 which con­
tains more than 

23-62 + 2 3 - i = 503 

operators of order 2, and there are exactly three groups of 
order 1,000 which contain separately 503 operators of this 
order since there are three abelian groups of order pz, p being 
a prime number. 

When the number of operators of order 2 contained in 6? 
exceeds g/2, this excess cannot be an even number, for if it 
were an even number 2m it would result that the order of 6 
would have to be twice an odd number. In fact, if we let 
2k represent the number of the operators of order greater than 
2 in such a group, it would follow that 

2k + 2m + 1 = g/2. 

Since a group whose order is twice an odd number contains a 
subgroup of half its order composed of its operators of odd 
order, it results that m = 0 whenever 2m represents the num­
ber of the operators of order 2 in excess of half the order of 
the group. That is, whenever more than half of the operators 
of a group are of order 2 this excess is an odd number. This ele­
mentary theorem will be generalized in the following section. 

Let g/2 — k, k being a positive integer, represent the num­
ber of the operators of order 2 contained in G. When k is 
even, g is of the form 2 (2m + 1 ) and hence G contains a sub­
group of order 2m + 1. If t represents any operator of order 
2 contained in G, the product of t and an operator in this 
subgroup of order 2m + 1 cannot be of order 2 unless t trans­
forms this operator into its inverse. As all of the operators 
of a group must correspond to their inverses whenever more 
than three-fourths of them correspond to their inverses in an 
automorphism of the group, it results that when k is even 
2m + 1 ^ 4fc. In particular, there is only a finite number of 
groups which satisfy the condition that the number of their oper­
ators of order 2 is equal to half the order of the group minus a 
given even number. 
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While the number of the operators of order 2 contained in a 
group cannot be equal to one half of the order of the group 
plus a positive even number, it can be equal to one-half the 
order of the group minus an arbitrary positive number. In 
fact, there is a cyclic group such that the number of its oper­
ators of order 2 is g/2 — k,k being an arbitrary positive integer. 
The order of this cyclic group is clearly 2(& + 1). When k=2 
or 4 there is no other group satisfying the given condition, 
but when k = 6 there is also a non-cyclic group of order 18 
which involves exactly 9 — 6 = 3 operators of order 2, as can 
easily be verified. 

§ 2. Groups in Which More Than One-Half of the. Operators 
are of Order Two. 

Whenever more than one half of the operators of G are of 
order 2, this excess must be an odd number, as was noted 
above. We shall now prove that this odd number is always 
of the form 2a — 1. When G is abelian and of type (1, 1, 1, 
• - • ) it is evident that this condition is satisfied. In all other 
cases G contains a non-invariant operator Si of order 2. Let 
i?i represent the subgroup of G composed of all the operators 
of G which are commutative with Si and let G — Hi represent 
the totality of the operators of G which are not contained in 
Hi. Since each of the operators of G — Hi is non-commuta­
tive with Si it results that at least one half of these operators 
have orders which exceed 2, and hence more than one half 
of the operators of Hi are of order 2. 

When Hi is abelian it must be of order 2n and of type 
(1, 1, 1, • • •)• If it is non-abelian, it contains a non-invariant 
operator s2 of order 2, and we let H2 represent the subgroup 
composed of all the operators of Hi which are commutative 
with s2. The totality of operators Hi — H2 will again contain 
at least as many operators whose orders exceed 2 as the number 
of its operators of order 2, and the central of H2 must exceed 
that of Hi, which, in turn, exceeds that of G. By continuing 
this process we must arrive at an abelian group Hm composed 
of all the operators of H^i which are commutative with one 
of its non-invariant operators sm of order 2. The subgroup 
Hm has an order of the form 2n and is of type (1, 1, 1, • • •)• 

Since Hm is a subgroup of G it is well known that all the 
operators of G may be uniquely represented as follows: 

Hm + Hmt2 + Hmh + • • • + Hmty. 
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As Hm contains each of the operators Si, s2, • • •, sm, it is evident 
that at least half of the operators in each of these co-sets have 
orders which exceed 2. On the other hand, there is at most 
one of the co-sets Hmt2, HmU, • • •, Hmty in which the number 
of operators whose orders exceeds 2 is larger than the number 
of its operators of order 2. To prove this fact it is only neces­
sary to observe that the number of operators of order 2 in 
Hta, 2 <j a ^ 7, is equal to the order of the subgroup of Hm 

composed of its operators which are commutative with ta. If 
this order were less than 2n~1 for two values of a the number 
of operators of order 2 contained in G would be less than g/2, 
2n being the order of Hm. 

If the number of operators of order 2 in each of the co-sets 
HmU, HmU, ' * •, Hmty is equal to 2n~1 then 2n~~1 represents also 
the excess over g/2 of the number of the operators of order 2 
contained in G. If one of these co-sets Hta contains more 
operators whose orders exceed 2 than operators of order 2 
this excess is equal to the number of operators of order 2 
which are both contained in Hm and commutative with ta. 
Hence it has been proved that whenever the number of the oper­
ators of order 2 contained in a group exceeds one half of the order 
of the group this excess must be of the form 2a — 1. 

From the theorem which has just been proved it is easy to 
find the form of all the possible ratios between g and the num­
ber of operators in G whose orders exceed 2 whenever g is of 
the form 2k. In fact, this number is evidently 2k~l — 2a and 
hence this ratio is always of the form 

2k 2^ 
2*-i -T"^ = 20-1 — "Ï ' 

Moreover, there is an infinite system of such groups for every 
positive integral value of /3 > 1.* I t may also be noted that 
whenever one of the co-sets Hta} 2 <j a ^ 7, involves more 
operators whose orders exceed 2 than operators of order 2, 
this co-set is composed of all the operators of G which 
are commutative with less than one half of the operators of 
Hm. Hence this co-set involves the inverses of all its operators 
and therefore each of its operators transforms Hm into itself. 
As one of these operators is of order 2 this co-set and Hm gen­
erate a group whose order is twice the order of Hm, and hence 
the order of each operator of this co-set is a divisor of 4. 

* G. A. Miller, Annals of Mathematics, vol. 7 (1906), p. 57. 
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We proceed to prove that whenever g is not of the form 2a 

then exactly one half of the operators in each of the co-sets 
Hta, 2 ^ a ^ y, are of order 2. If this condition were not 
satisfied, Hm would involve an operator Si which would be 
commutative with an operator t of odd order contained in G 
and would transform into its inverse an operator t' of order 
4 found in the co-set in which more than half the operators 
would be of order 4. This follows directly from the fact that 
all the operators of the co-set involving t are commutative 
with exactly half the operators of Hm while V is commutative 
with at most one fourth of the operators of this subgroup. 

Let Hi be the subgroup composed of all the operators of G 
which are commutative with Si. If the product of V and an 
operator / / of order 2 which is found in Hi but not in Hm had 
an order larger than 2 then ti and t' would be commutative 
since this product would be transformed into its inverse by 
#i and hence (tfti)~~l = tr~hi. Therefore, it results that i' is 
transformed either into itself or into its inverse by all the op­
erators of the group generated by the operators of order 2 
found in Hx but not in Hm. These operators clearly generate 
Hi, since Hi involves an operator of odd order and this operator 
must be contained in each of its subgroups of index 2. 

Since t could not transform V into its inverse it follows that 
t and t' are commutative. Their product must be transformed 
into its inverse by Si and hence we are led to the contradictory 
equation 

As the assumptions that one of the given co-sets contains more 
operators of order 4 than of order 2 and that the order of G is 
divisible by an odd prime number led to a contradiction, we 
have proved that exactly half of the operators of each of these 
co-sets must be of order 2 whenever g is divisible by an odd 
prime. 

I t will now be proved that the subgroup of index 2 under 
Hm composed of all the operators of Hm which are commuta­
tive with ta is the same for every value of a from 2 to 7. If 
this were not true, the subgroup formed by the operators of 
Hm which are commutative with t would involve an operator 
sx which would transform into its inverse an operator ti not 
found in the subgroup Hi composed of all the operators of 
G which are commutative with Si. Just as before, we may 
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prove that tx is commutative with t because it is transformed 
either into itself or into its inverse by all the operators of order 
2 contained in Hi but not in Hm. 

Moreover, tt\ is transformed into t^f1 = t~H{~1 whenever 
the order of this product exceeds 2. If this order were 2, Si 
would transform (tti)2 = t\2 into tHf2 = t2ti2. As this leads 
to a contradiction and as ttx is also transformed into ttf1 by 
Si, it results that the two assumptions that G contains operators 
of odd order and that some of the operators of Hm which are 
commutative with a certain ta are not commutative with 
every ta, 2 ^a ^y, are contradictory. It therefore results 
that exactly half of the operators of Hm constitute the central of 
G whenever g is divisible by an odd prime number. 

Let K represent the central of G and suppose that g is 
divisible by an odd prime number. The quotient group G/K 
has an order which is divisible by all the odd divisors of g 
and at least one half of its operators are of order 2. If exactly 
half of these operators are of order 2, this quotient group is 
either the dihedral or the generalized dihedral group whose 
order is of the form 2 (2m + 1 ) . If more than one half of its 
operators are of order 2, we may proceed as above and find a 
second quotient group in which at least one half of the oper­
ators are of order 2. Hence we have established the following 
theorem: If the order of a group is 2a(2m + 1), m > 0, and if 
more than one half of its operators are of order 2 then this group 
contains an invariant subgroup of order 2a~~1 and the correspond­
ing quotient group is either the dihedral or the generalized dihedral 
group of order 2 (2m + 1 ) . 

The subgroup of G which corresponds to the subgroup of 
order 2m + 1 in the quotient group does not involve any 
of the operators of Hm which transform each of the operators 
of G whose orders exceed 2 into their inverses, since more 
than one half of the operators of the former subgroup have 
orders greater than 2. This subgroup must be abelian since 
all of its operators whose orders exceed 2 correspond to their 
inverses in an automorphism and the products of these oper­
ators must also correspond to their inverses. It therefore 
results from the preceding theorem that, if a group whose order 
is divisible by an odd prime number has the property thai at least 
one half of its operators are of order 2, it is either a dihedral or a 
generalized dihedral group. It also results that Hm is identical 
with Hi whenever g has an odd prime factor but this is not neces­
sarily true when g is of the form 2a, as can easily be verified. 


