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T H E purpose of this paper is to present in detail the contents 
of an introductory lecture given by the writer at the sym­
posium of the American Mathematical Society held in Chicago 
in April of this year on the subject of Lebesgue integrals. I t 
would be impossible to have selected a subject for that occa­
sion more characteristic of present mathematical tendencies. 
Volterra has pointed out, in the introductory chapter of his 
Leçons sur les Fonctions des Lignes, the rapid development 
which is taking place in our notions of infinite processes, 
examples of which are the definite integral limit, the solution 
of integral equations, and the transition from functions of a 
finite number of variables to functions of lines. In the field 
of integration the classical integral of Riemann, perfected by 
Darboux, was such a convenient and perfect instrument that 
it impressed itself for a long time upon the mathematical 
public as being something unique and final. The advent of 
the integrals of Stieltjes and Lebesgue has shaken the com­
placency of mathematicians in this respect, and, with the 
theory of linear integral equations, has given the signal for 
a reexamination and extension of many of the types of 
processes which Volterra calls passing from the finite to the 
infinite. 

I t should be noted that the Lebesgue integral is only one 
of the evidences of this restlessness in the particular domain 
of the integration theory. Other new definitions of an integral 
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have been devised by Stieltjes, W. H. Young, Pierpont, 
Hellinger, Radon, Fréchet, E. H. Moore, and others. The 
definitions of Lebesgue, Young, and Pierpont, and those of 
Stieltjes and Hellinger, form two rather well defined and 
distinct types, while that of Radon is a generalization of the 
integrals of both Lebesgue and Stieltjes. The efforts of 
Fréchet and Moore have been directed toward definitions 
valid on more general ranges than sets of points of a line or 
higher spaces, and which include the others for special cases 
of these ranges. Lebesgue and Hahn, with the help of some­
what complicated transformations, have shown that the inte­
grals of Stieltjes and Hellinger are expressible as Lebesgue 
integrals. It seems unfortunate that these reductions should 
have been interpreted by some as an attempt to establish 
the Lebesgue integral in the unique position so long occupied 
by the integral of Riemann. Van Vleck has in fact remarked* 
that a Lebesgue integral is expressible as one of Stieltjes by a 
transformation much simpler than that used by Lebesgue for 
the opposite purpose, and the Stieltjes integral so obtained is 
readily expressible in terms of a Riemann integral, as is shown 
in § 6 below. Furthermore the Stieltjes integral seems dis­
tinctly better suited than that of Lebesgue to certain types 
of questions, as is well indicated by the original " problem of 
moments " of Stieltjes,t or by a generalization of it which 
Riesz has made in his remarkable discussion of a problem 
analogous to the determination of a function whose Fourier 
constants are given.J 

The conclusion then seems to be that one should reserve 
judgment, for the present at least, as to the final form or forms 
which the integration theory is to take. It is probable 
that the outcome may be a general theory of the type of those 
of Fréchet and Moore, having not one but a number of special 
instances with forms more adaptable to problems of various 
special types. However this may be, there can be no question 
as to the wide influence which the work of Borel, Lebesgue, 
and their followers is having upon the mathematical thought 
of the present time, and no question as to the notable advances 

* " Haskins's momental theorem and its connection with Stieltjes's 
problem of moments," Transactions of the American Mathematical Society, 
vol. 18 (1917), p. 327. 

t " Recherches sur les fractions continues," Annales de la Faculté des 
Sciences de Toulouse, vol. 8 (1894). 

% Riesz, "Sur certaines systèmes singuliers d'équations intégrales," 
Annaels Scientifiques de VEcole Normale Supérieure, vol. 28 (1911), p. 33. 
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which have been made in the many domains of real function 
theory to which the Lebesgue form of integral is especially 
adapted. Not all of these can be recounted here, but it is 
hoped that the selection made will indicate the tendencies of 
the theory, and make the approach to its further results an 
easy one. 

The theory of Lebesgue integrals has had an able expounder 
in the person of de la Vallée Poussin, who has published 
systematic treatments of portions of it at some five different 
times and places, indicated in the list of references at the 
end of this paper. I t is characteristic of the formative state 
of the subject at the present time that each of his presenta­
tions has signalized new theorems, new points of view, or 
improved methods of proof. The account given in his recent 
lectures at the Collège de France, designated by the number 
VII in the reference list at the end of this paper, is especially 
complete and satisfying, though somewhat more sophisticated 
than those of his earlier disquisitions. 

The latest device of de la Vallée Poussin in approaching the 
theory of measure is to develop first of all the theory of the 
measures of denumerable sums of intervals and of closed sets 
of points, and then to define in terms of them the measures 
of more general sets.* A closed and bounded set is always the 
portion of an interval remaining after the extraction of the 
interiors of a denumerable sum of non-overlapping intervals. 
I have been interested here to attempt to return again to the 
more direct methods of Borel and Lebesgue,! which found the 
theory of measure entirely upon the measurability of denumer­
able sets of intervals. With the aid of the improved methods 
of proof devised by de la Vallée Poussin it is possible to 
approach the subject in a way which seems to me to be espe­
cially concise and clear, and possible at the same time to 
establish without added complication the foundations of the 
theory of the positive additive functions of a point set, of 
which the measure function is a special case. 

The notion of a function g(e) real, single-valued, and additive 
on a class of point sets e, was first emphasized by LebesgueJ 
in his search for something which might be called the indefinite 
integral of a function of several variables, and the theory 
of such functions of a point set was subsequently much 

* VII, Chapitre II. 
11, p. 46; II, p. 238; III, p. 106. 
t IV, p. 361. 
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perfected by de la Vallée Poussin* and Radon.f A function 
g(e) is said to be continuous if its value approaches zero with 
the diameter of e, and it is absolutely continuous if its value 
approaches zero with the measure of e. Every function which 
is absolutely continuous is clearly continuous, and it seems 
a waste of effort therefore to develop their common properties 
separately, as has usually been done. It turns out that it 
is as easy to proceed directly to the theory of functions which 
are only continuous, as it is to found the theory of continuous 
functions upon the absolutely continuous case. A number of 
the properties of these functions which de la Vallée Poussin 
establishes independently in order to prove the formula (33) 
of § 8 are immediate consequences of this formula when it is 
proved directly. 

1. Definition and Existence of Lebesgue Integrals. 

The relation between the integral of Lebesgue and the clas­
sical integral of Riemann may be seen somewhat intuitively 
by considering first a function f(x) which is continuous and 
has only a finite number of maxima and minima on an interval 
ab. Let 4 (k = 0, 1, • • -, n) be a set of values with the 
properties 

(1) k<n, M<ln, 0 < 4 ~ 4 - i ^ € (fc= 1,2, . . - , n ) , 

where fx and M are the lower and upper bounds, respectively, 
of the values of ƒ(#) on ab. If the points 4-i, 4 are marked on 
the 2/-axis, as in the figure, a corresponding set of points ek 
is determined on the #-axis consisting of all the abscissas x 
for which the values of fix) lie between 4-i and 4. Let rjk 
be a value arbitrarily selected on the interval 4-i4> and let 
m(ek) denote the sum of the lengths of the ^-intervals in the 
point set ek. Then 

(2) S^J2 Vhm(ek) = £ ƒ(&)&*,, 

where the totality of intervals Axi {i = 1, 2, • • •, p) is that 
defined by the sets ek (k = 1, 2, • • -, ri), and where & is chosen 
in each interval àxi of ek so that ƒ(&) = rjk. The maximum ô 
of the lengths of the intervals Axi will approach zero with €, 
and it follows that 

* VI, and VII, Chapitre IV. t VIII, p. 1299. 
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lim 2 ^m(^) = lim 2/(&)Aa 
6=0^=1 0=0 4=1 

*• = I f(x)dx. 

The only value of this argument for the purposes of the 
present paper is to show how the usual definite integral limit 
may be obtained in a special case by a partition on the ^/-axis, 
as well as by the usual subdivision of the ^-interval ab. A 
difficulty at once presents itself when it is attempted to extend 
this method of procedure to functions not necessarily con­
tinuous or having a finite number of maxima and minima. 
For such less special functions the set of points ek will not in 
general consist of intervals, and hence will not have a well-

FIG. 1. 

defined measure, unless some adequate definition of the meas­
ure of a point set has been previously set down. 

The notions of the measure of a point set and measurable 
functions, which lie at the root of the Lebesgue theory of 
integration, will be examined in detail in later sections. For 
the present suppose that a definition of measure has been 
given which may not apply to all point sets, but which does 
apply to some at least, and let such sets be called measurable 
sets. Further suppose that the measure m{e) of a measurable 
set e is always positive or zero, and that when e\, e2, • • •, en 
are measurable and distinct, the set e± + e2 + • • • + en con-
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sisting of all their points taken together is also measurable, and 

mOi + e2 + • • • + en) = raOi) + m(e2) + • • • + m(en). 

Let ƒ (x) be well defined and bounded at the points of a set e, 
and denote by e[A ^ f(x) < B] the points of e where 
4̂ ^ f(x) < -B« Then ƒ is said to be measurable on e if the 

set e[A ^ ƒ(#) < -B] is measurable for every pair of con­
stants A, B. 

DEFINITION OF A LEBESGUE INTEGKAL.* Let f(x) be a real 
single valued function which is measurable and has bounds ju, M 
on a point set e. Select a set of values lk (k = 0, 1, • • -, n) 
with the properties (1), and let rjk be a value anywhere on the 
interval 4-i4. Denote the set of points e[4-i Sf(x) <-4] by 
ek. Then by definition 

/» n 

(3) I f(x)dx = limJ2r)km(ek). 

To prove that the integral limit always exists under the 
circumstances described in the definition, consider first two 
sums S, £' like the one in the second member of (3), and 
suppose that the ladder of Z-values for S' includes all of those 
of S. For simplicity of proof let the interval 4-i4 of S be 
divided by only two points V, I" in forming S', so that ek 
is decomposed into three parts ek = ef + e" + e'n. Then the 
portions of S and S' corresponding to the interval 4-i4 are 

S: r)km(ek) = n*m(e') + i?*m(e") + i?*m(0> 

S': rfmie') + r)"m(e") + ri'"m(e'"), 

and they differ by less than e ek since 

h * - l / | < 6 , U * - 1 ? ; , | < € , h*-1? , , ,| <€ . 
This result would be the same if there were more or less than 
two new values V, l". It follows then that 

| S — S'\ < X) eraOfc) = em(e). 
k 

The constant e of the definition may be called a norm for the 
sum S. All sums of this type lie between (ju — e)m(e) and 
(M + e)m(e). Hence out of an arbitrarily selected sequence 
of sums with norms approaching zero, a sub-sequence {Sn} 

* VII, p. 39; V, vol. 1, 3d edition, p. 257; III, p. 112. 
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may be chosen which has a limit I, and the corresponding 
sequence of norms {en\ will still have limit zero. 

For every sum S with norm e it follows then that 

| S-I\ £ | JST — S'\ +\ S' - Sn\ + | Sn- I\ 

< em(e) + enm(e) +1 Sn — I \, 

where S' is formed by using all the I-values of both S and $n. 
But by taking € sufficiently small and n sufficiently large, 
each term on the right can be made less than S/3, from which 
follows 

THEOREM 1. The Lebesgue integral limit (3) always exists 
for a function f(x) which is measurable and bounded on the set e. 

§ 2. Preliminary Properties of Point Sets.* 
All of the point sets e to be considered are supposed to lie 

on a finite interval ab. It has been found convenient to 
define the sum e\ + #2 of two sets ei, e2 to be the totality of 
their points, the difference ex — e2 to be the set of points which 
are in e\ but not in e&, and the product eie2 to be the totality 
of points which e\ and e2 have in common. Addition and 
multiplication are readily seen to be commutative and associa­
tive, and to satisfy the relations 

(ex + e2)ez = exe% + e2e3, (ei ~" e*)es ^ e^ "~ e*e*-

But one must be careful about subtraction. The sets 

FIG. 2. 

(ei + e2) — es and e\ + (e2 — e$) are not necessarily the same, 
as a glance at the accompanying figure for plane sets will show. 

* VII, pp. 5 18; V, vol. 1, 3d edition, p. 59. 



8 INTEGRALS OF LEBESGUE. [Oct . , 

The complement Ce of a set e is the totality of points of the 
interval ah which are not in e. The difference and product of 
two sets e\, e2 are expressible in terms of addition and com­
plements. For 

(4) C(e± — e2) = Cei + e2, Ceie2 = Gex + Ce2. 

Hence theoretically the only operations which need to be 
considered are addition and the taking of complements. The 
others are, however, frequently found to be of great conven­
ience. 

The complete limit c of a sequence of sets {en\ is defined to 
be the totality of points each of which occurs in an infinity 
of the point sets en. I t is representable by the formula 

(5) c = Oi + e2 + • • •)(<& + es+ • • • ) • • • • 

The restricted limit r is the set of points for each of which 
there is a place in the sequence {en} beyond which the point 
occurs in every en. A formula for r is 

(6) r = Oi02- • •) + (e^3- • 0 + 

The set r is always a part of the set c, and when the two are 
identical the sequence en is said to have a unique limit 

(7) lim en = c = r. 

A particular case of the limits c and r is illustrated graph­
ically for plane sets in Fig. 3. If all the sets en of odd index 
are identical with the vertical rectangle in Fig. 3, and all of 
even index identical with the horizontal rectangle, the complete 
limit is the totality of points of both, and the restricted limit 
is the square common to the two rectangles. On the other 
hand, if the sets of odd index shrink successively as indicated 
by the dotted lines, and similarly for those of even index, the 
complete and restricted limits are both identical with the 
corner square, and the sequence {en} has this square as its 
unique limit. 

There are two special cases for which the limit of a sequence 
{en} is easily seen to exist. These are when each element en 

is contained in the following, and when each en is contained in 
the preceding. The limits are then 

lim en = ei + e2 + • • •, lim en = exe2 - • •, 
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It follows that for every sequence {en} what-

lim (eie2- -en), 

respectively, 
soever 
ei+ e2+ • • • = lim (ei + • • • + en), exe^ • « 
and furthermore from formulas (5) and (6) 

(8) c = lim On + en+1 • • •), r = lim {enen^x • • • ). 

LEMMA 1. If every point of a closed set e on the interval 
ab is interior to one of a set of intervals I, then there exists 
a finite number of the intervals I with the same property. 

FIG. 3. 

A closed set is one which contains all of its limit points. 
Every point £ of ab is either in e, and therefore interior to an 
interval of I, or else is interior to an interval containing no 
point of e, since e is closed. When this remark is applied 
first at £ = a, it is seen that there exists an interval ax such 
that all the points of e on ax are surely interior to a finite 
number of the intervals I . Let J next be the least upper bound 
of the values x defining such intervals. The same remark 
shows that if £ = b the lemma is true, while £ < b is impossible. 

Consider now a function P(x) which is continuous and 
monotonically increasing on the interval ab. If a is an interval 
with the end points Xi < x2, the notation p(a) will be used 
for the expression 

(9) p(a) = P(x2) - P(x,). 
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LEMMA 2. If the intervals ak (k = 1, 2, • • •) are non-over­
lapping, and their points all among those of a second set 
ft (Jfe = 1,2, •••) , then 

2pfob) £ 2p(ft). 

The first series is surely convergent since the terms are all 
positive and the sum of the first m of them always less than 
P(b) — P(a). If the second is finite then, since P(x) is con­
tinuous, each ft can be enlarged at each end to form an 
interval ft7 such that 

P ( A 0 < P(ft) + jk, Sp(ft') < zp(fc) + 6. 

The intervals ai, a2, • • •, am form a closed set of points each 
interior to one of the intervals ft. Hence, by Lemma 1, 
these intervals are all enclosed in a finite set of intervals 
ft', ft', • • •, ft/, and it follows that 

m n oo 

E vWi Û E POV) < E POÏ») + «• 
i = l A=l *=1 

Since this is true for every m and e the inequality of the lemma 
must hold. 

Point sets consisting of a denumerable set of intervals play 
an essential rôle in the definition of measure, as will be seen 
in the following pages. Let A and B always denote such sets, 
composed of the intervals ak and ft (k = 1, 2, • • •), respec­
tively, the range of h being either finite or denumerably 
infinite. 

LEMMA 3. A set of the type A is always expressible as a 
sum of a denumerable set of non-overlapping intervals. 

For if the sum of the first n intervals ah a2, • • •, an of A 
is represented by an, it follows readily that 

A = ai + («2 — <h) + (as — (h) + 

Furthermore each term in parenthesis can be expressed as a 
sum of a finite number of intervals not overlapping each other 
or the similar sums which precede. 

The notation p(A) will be used for the expression 

vU) = 2 pteib), 
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where the intervals a& are supposed to be non-overlapping. 
The number p{A) so defined is uniquely determined by the 
set A. For Lemma 2 shows that 

2p(ak) ^ 2p(fc), Zp(fc) S 2p(a*), 

when the sums 2a& and Sft both consist of non-overlapping 
intervals and both define the same set of points A. Hence 
the value p(A) is the same whatever set of non-overlapping 
intervals representing A is used to compute it. 

THEOREM 2. The totality of sets of the type A is closed under 
multiplication and addition, even for sums of a denumerable 
infinity of elements. The function p(A) has the properties 

(10) p(A) + p(B) = p(A + B) + p(AB), 

(11) p(A1 + A2 + • •.) S p(Ai) + p(A2) + • •.. 

It is evident that the sum of a denumerable infinity of sets 
of the type A is a similar set, and the product AB also, since 
it is the sum of the product sets anbn, where an and bn are the 
sums of the first n intervals of A and B respectively. Further­
more the definition (9) of the function p for intervals shows 
that 

p(an) + p(bn) = p(an + bn) + p(anbn), 

where the intervals of A, as well as those of B, may be sup­
posed non-overlapping. But as n approaches infinity the 
terms of this equation approach as limits the corresponding 
terms of the equation (10), since A + B, for example, is the 
sum of the finite number of non-overlapping intervals consti­
tuting an + bn, plus others which must be added to form 
a>n+i + bn+i, and so on. The final conclusion of the theorem 
follows since every interval in the expression for A\ ~\-A% + • • •, 
as a sum of non-overlapping intervals, occurs as a part or the 
whole of an interval in at least one of the sums Ak. 

COROLLARY. If A and B are entirely on the interval ab and 
include between them all of the points of ab, so that A + B is 
the interval ab, then 

(12) p(A) + p(B) = P(6) - P(a) + p(AB). 

This follows from the property (10) above and the fact 
that p(ab) is by definition equal to the first two terms on 
the right. 
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§ 3. The Measure Function m(e) and Similar Functions. 

In the preceding section a monotonically increasing con­
tinuous function P{x) gave rise to a function p(e) which was 
well defined for all point sets consisting of a finite or de­
numerably infinite system of intervals. When P(x) = x the 
value of p(e) for one of these sets is called the measure m(e) 
of e. The purpose of the present section is the extension of 
the definition of p(e), or ra(V), to a larger class of point sets 
than those of the special type A. 

An arbitrarily selected point set e can be enclosed in in­
finitely many ways in a set of intervals of the type A on ab. 
The greatest lower bound of the values p(A) for such sets is 
called the exterior value of p on e* or in the special case 
P(x) = x the exterior measure of e,j and may be denoted by 
p(e). I t follows immediately from this definition that 

p(e) ^ 0, p(fii) ^ pfa) when e\ contains e2, 

p(ex + e2+ • • •) ^ p(e{) + p(e2) + • • •. 

The last of these properties is valid for a finite or denumerably 
infinite sum, and is a consequence of the second conclusion 
of Theorem 2. 

The exterior value p(e) could equally well be defined as the 
greatest lower bound of the values p{A) on sets A restricted 
to contain the points of e as interior points. For when the 
intervals of A are enlarged slightly, as in the proof of Lemma 2, 
so that p(A) is only slightly increased, the result is a set 
containing e in its interior. 

The value p(e) might be taken as the measure of the set e, 
in the special case P{x) = x, if it surely possessed the property 
of additivity which was essential in the existence proof of § 1, 
and which is moreover characteristic of all notions of measure. 
The requirement that the measure of the whole shall be the 
sum of the measures of its parts is a fundamental one. I t 
turns out that the class of point sets possessing the special 
additive property of the following definition is a class in 
which as a whole the function p(e) is additive. 

DEFINITION OF A MEASURABLE SET.J If the exterior values 
p(e) and p(Ce) satisfy the relation 

(14) p(e) + p(Ce) = P(b) - P{a)y 

* VII, p. 101. 
t VII, p. 22; V, vol. 1, 3d edition, p. 61; III, p. 104. 
% VII, pp. 22, 101; V, vol. 1, 3d edition, p. 62; III, p. 106. 
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then p(e) is said to be well defined on e and its value is by definition 

p(e) = p(e) = P(b) - P(a) - y (Ce). 

When this happens for the special case P(x) = x the set e is 
said to be MEASURABLE. 

If a set of the type A encloses Ce then all points of the set 
ab — A are interior to e. Lebesgue accordingly defines the 
interior measure of e in the case P(x) = x to be 

p(e) = P(b) - P(a) - v{Ce), 

and calls the set e measurable i fp(e) = pie). The definition of 
the preceding paragraph is clearly equivalent to this. 

LEMMA 4. A necessary and sufficient condition that p(e) be 
well defined on a set e is that there exist sets A, B enclosing e 
and Ce such that p(AB) < e. 

The condition is clearly necessary. For suppose the rela­
tion (14) of the definition satisfied, and let A, B be chosen 
enclosing e, Ce, respectively, so that the first members of (12) 
and (14) differ by less than e. Then a comparison of the 
second members shows that p(AB) < e. Conversely, suppose 
A and B can be chosen enclosing e and Ce for every e so that 
p(AB) < e. Then the equation (12) shows that 

p(e) + p(Ce) ^ P(b) - P(a) , 

while the third of the relations (13) shows that 

p(e) + p(Ce) ^ p(ab) = P(b) - P{a). 

I t is important to note, as a consequence of this lemma, 
that the value p(A) of § 2 is precisely the value which would 
result from the definition last given. For from Lemma 2 
and the fact that A encloses itself, it follows that p(A) is the 
p{A) of § 2. Furthermore the portions B of the interval ab 
which are left after extracting the intervals «i, a2> • * *, otn 

enclose CA, and 

p(AB) = f) p{ak) < e 

provided that n is sufficiently large, so that A is a set satisfying 
the requirements of Lemma 4. 

The criterion of the lemma just proved is not always 
convenient of application. Another more useful one is that 
of the following theorem. 
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THEOREM 3. Let Abe a denumerable set of intervals enclosing 
e, and let e' be the part of A not in e, so that 

e + e' = A. 
Then a necessary and sufficient condition that p{e) be well 
defined^ is that for every e > 0 there exists a set A enclosing e 
with p{ef) < e. Under these circumstances the values p(e), 
p(A) satisfy the relation 

pie) ^ p(A) < p(e) + e. 

The condition of the theorem is necessary. For if A and B 
have been determined as in Lemma 4. so that p(AB) < e, 
then e' is in AB and will necessarily have p{e') < e. To 
prove the sufficiency, suppose that a set A exists for which 
p{e') < e. Then ef is enclosable in a set JBi with p(Bi) < e. 
The rest of Ce exterior to A is enclosed in the intervals B2 

remaining in ab after ai, a2, • • •, an have been extracted, and 
p(AB2) < e if n is sufficiently large. Hence Ce is enclosed in 
B = Bx + B2, and by (13) 

p{AB) S piABÙ + p(AB2) < 2e. 

A class ê of point sets is said to be closed if it contains the 
complement of every one of its elements, and also the sum of 
every sequence {en) whose elements are in 5. From the 
results of § 2 it follows at once that a closed class ê is also closed 
under the operations of subtraction, multiplication of a finite 
or denumerably infinite set of elements, and taking complete 
or restricted limits of sequences. 

A function p(e) is said to be continuous if for every e a 8 
can be found such that p(e) < e for all sets e of diameter less 
than 8, and it is absolutely continuous if in this definition 
the word diameter is replaced by the word measure. I t is 
said to be additive in ê if 

p(ei + e2 + • • •) = p(e{) + p(e2) + • • • 

for every finite or denumerably infinite set \en} whose elements 
are distinct and in ê. 

THEOREM 4. The totality ê of point sets e for which p(e) is 
well defined according to the definition given above contains all in-
tervals on ab and is closed. The function p (e) itself is non-nega­
tive, continuous, and additive on ê. Furthermore for every set e of S 
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and every constant e > 0 there exists a sum A of intervals en­
closing e such that p(A — e) < e. 

It has been proved above that p(e) is well defined on all 
denumerable sets of intervals A, and therefore also on every 
sub-interval of ah. Furthermore every element en of a se­
quence of sets in 8 is enclosable in a set An such that 

(15) en + en' = Ani p(en') < j n . 

Hence 

(* + * + • • • ) + W + e2' + • •.) = (At + A2 + • •.), 
and from (13) and (15) 

p(*' + fc' + •••)<*, 
which proves that p{e) is well defined on the sum of the ele­
ments en. 

The continuity of p(e) follows from the fact that P(x) is 
continuous, and from the second of the relations (13), which 
says that p(e) ^ p(a) whenever e is contained in the interval a. 

To prove the additive property, consider first only two 
distinct sets e\ and #2 of 8. According to Theorem 3, they can 
be enclosed in sets A\, A2 in such a way that 

ei + ei' = Au e2 + e2' = A2, 

p(ei') < e, p(e2
f) < e. 

Then p(ex), p(e2), p{ex + e2) differ from p(A{)9 p(A2)f p(Ax + A2) 
by less than e, e, 2e respectively. Furthermore, since e\ and 
e2 have no points in common, 

p(AiA2) = p(e1
,(e2 + e2') + e^) < 2e, 

(16) p(Ai) + p(A2) - p(A1 + A2) = p(AxA2) < 2e. 

It follows that 

(17) p(ei) + p{e2) - p{ei + e2) = 0, 

since the first member of this equation differs from the corre­
sponding member of (16) by less than 4e, and therefore from 
zero by less than 6e, and e is arbitrary. 

The equation (17) implies the additive property for p(e) for 
every finite number of sets e. When the sequence {en} con-
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tains an infinity of elements, the series 

PM + p(e2) + • • • 
surely converges since 

pM + • • • + p(en) = p{ei + • • • + en) ^ p(ab). 

From (17) also 

p(ei + e2 + • • •) = p(ci + • • • + en) + p(en+1 + en+2 + • • •)> 

and with the help of (13) 

p(en+i + 0n+2 + ' ' •) ^ P(«n+l) + P(^n+2) + ' ' • < € 

if n is sufficiently large, which proves the desired property. 
The last statement of the theorem follows at once from 

Theorem 3. 
COROLLARY. If e2 is contained in e\ and both are in S, then 

pifii — e2) = p(ei) — p(e2). 

If e is the limit of a sequence {en} in &, then 

pifi) = lim p(en). 

The first conclusion is a consequence of the equation 

ei = (ei — e2) + e2 

and the additive property of p(e). The second follows readily 
from the additive property when each en contains all the 
preceding, since then 

e = ei + {e2 — e{) + tea — e2) + • • •. 

I t is provable in a similar way when each en is contained in 
the preceding. For under that hypothesis 

e = e\e2 • • •, 

(18) Ce = Cex + (Ce2 - Cet) + (Cez - Ce2) + • • . . 

As a consequence of the inequalities 

p(enen+i- • •) ^ 2>(0 <£ p(^n + ^n+i + • • •) 

the theorem follows for every limit e, since from the two special 
cases just considered and the relations (7) and (8) 

p(e) = lim p{en + en+1+ • • •) = lim p(enen+x- • •). 
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It is important to note that the limit of p(en) is zero when 
each en contains the succeeding and all the sets together 
have no point in common. For then the set Ce in equation 
(18) is exactly the interval ah. The additive property applied 
to this equation shows that the limit of p(Cen) is p(ab), and 
the relation 

p(en) + p(Cen) = p(ab) 

shows the truth of the statement just made. 
Every class S having the properties described in Theorem 4 

contains all sets which are formed from intervals by addition 
and taking complements, or by repetition of these processes 
a finite or denumerably infinite number of times. These are 
the sets to which Borel* first extended the definition of measure, 
and are called measurable (JB). They are important because 
they are necessarily contained in every class S which is closed 
and contains all intervals. 

§ 4. Measurable Functions. 
The definition of a measurable function given in § 1 is 

adequate for the purposes of the proof there given of the 
existence of the Lebesgue integral limit for a bounded function. 
It is unsatisfactory, however, for functions f(x) which at 
some points have infinite values, because it takes no account 
of the abscissas x where this happens. It will be evident in 
the following pages that the application of Lebesgue integrals 
to non-bounded functions is a feature of the theory compar­
able in importance with the generalizations of the notions of 
measure and integration which have already been described, 
and it is highly desirable, therefore, to modify the definition 
of § 1 so that it may be more widely applicable. The defini­
tion given in this section is equivalent to the earlier one for 
bounded functions and has the necessary generality. 

DEFINITION OF A MEASURABLE FUNCTION^ Let e be a 
set of points x at each of which f(x) has either a single finite 
value, or else one of the values + <x> and —• oo. Then f(x) is 
measurable on e if e is measurable, and if furthermore the set 
e[f ^ a] is measurable f or every constant a. 

If a bounded function is measurable according to the defini­
tion of § 1, it is also measurable according to this definition. 
_ _ _ _ _ _ 

t VII, p. 27; V, vol. 1, 3d edition, p. 69; III, p. 110. 
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For let M be greater than all the values of ƒ (a;) on e, and let b 
be greater than M. The sets e[f ^ a] and e[a ^ f(x) < b] 
are the same, and the measurability of the latter implies that 
of the former. Conversely, the equation 

e[a £f<b] = e[a £f\- e[b £f\ 

shows that a function measurable under the definition of this 
section is also measurable according to that of § 1. 

THEOREM 5. If for a function f(x) of the kind described 
above all the sets of any one of the four types 

elftal e[f>al e[f < a], e[f ^ a] 

are measurable for every a, then those of the other three have the 
same property, and ƒ is measurable on e. 

Suppose that the sets of the first type are all measurable. 
It follows that e[f = a] is measurable for every a, since the 
sum of the sets e[f ^ a + 1/n] (n = 1, 2, • • •) is measurable, 
and e[f = a] is the difference between e[f ^ a] and this sum. 
Hence the sets of the second type are also measurable. 
Furthermore the sum of the first and third sets is the measur­
able set ey and the fourth is the sum of the third and e[f = a]. 
In a similar manner the measurability of any one of the types 
implies the measurability of the other three. 

COROLLARY. If f(x) is measurable on e then e[f = a] and 
e[a ^ ƒ < b] are measurable for all values of the constants a 
and b. 

LEMMA 5. If ƒ and <p are both measurable on a set e then 
e[f > <p] is measurable. 

For there is always a rational number r between ƒ and p 
when f><p, and the set e[f > <p] is therefore the sum of the 
denumerable infinity of product sets e[f > r]-e[r > <p], where 
r is a rational number. 

THEOREM 6. Iff and <p are both measurable on a set e, then 
each of the functions f, <p,f+ (p,f — <p, f<p, \ ƒ |, and 1/fis measur­
able on every measurable sub-set of e where it is well-defined, and 
on the whole of e if an arbitrary constant value is assigned to it 
at all points where it is not defined. 

If a function ƒ is measurable on e it is also measurable on 
every measurable sub-set e' of e, since er[ f ^ a] is the product 
of e' and e[ f ^ a]. 
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The points where ƒ =*= <p is not well-defined are those of the 
set where the values of ƒ and =*= <p are opposite infinities. 
This set is measurable since e [ ƒ = + °° ] is the product of the 
measurable sets e [ ƒ ^ n] (n = 1,2, • • • ), and since e [ ƒ =* — <*>], 
e[<p = =±= oo ] can be similarly shown to be measurable. On 
the measurable remainder e' of e it follows at once from the 
definition of a measurable function and Theorem 5 that the 
measurability of <p implies also that of <p + c and c<p, where c 
is any constant. Hence the functions ƒ =fc <p are measurable 
on e' since the sets 

are measurable for every a, by Lemma 5. Furthermore f2 is 
measurable when ƒ is so, since for every a ^ 0 

e [ f è « ] = e [ / ^ Va] + e[ / ^ - Va], 

and the formula 

4fc= ( /+^) 2 - ( / -^) 2 

shows that f<p is measurable on the sub-set of e where ƒ and <p 
and therefore f<p are finite. On the remainder of e the product 
f<p is definitely infinite on sets which are measurable, or else 
the product of an infinity by zero and indeterminate. The 
measurability of | ƒ | follows from the measurability of ƒ2 and 
the formula 

e[\S\ Za,] = eWP^a) = e[F^a?], 

which holds also for every a ^ 0. Finally 1// is measurable 
on the sub-set e' of e where ƒ 4= 0, on account of the formulas 

a > 0 : e ' [ y ^ a ] = ^ [ i ^ / ] • * ' [ ƒ > 0], 

a = 0 : e ' [ i ^ o ] = * ' [ ƒ > ( ) ] , 

a < 0 : e ' [ ^ a ] = « ' [ / > 0 ] + e ' [ / ^ ] . 

The last statement of the theorem follows since every set 
where one of the functions is indeterminate is measurable. 

THEOREM 7.* The upper bound <p(x) of a set of functions 
* VII, p. 29; VI, p. 42; V, vol. 1, 3d edition, p. 71. 
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fn(x) (n = 1, 2, •••) measurable on e, is measurable on e. 
Similarly the upper and lower limits of a sequence of functions 
{fn} are measurable. If the sequence has a unique limit, the 
limit is measurable. 

For the set e[<p> a] is the sum of the measurable sets 
e[fn > a\ for the values n — 1, 2, •••. Furthermore let 
<pn(x) be the measurable upper bound of the set fn, fn+u 
The upper limit L(x) of the sequence {/n} is by definition the 
lower bound of the functions <pn(%), and hence also measur­
able. The sequence is said to have a unique limit, equal to 
both the upper and the lower limit, when the upper and lower 
limits are everywhere the same. 

THEOREM 8.* Let f(x, y) be a function having a single real 
value at each point of the region a^x^.b,0<y^d. Sup­
pose furthermore that f is continuous in y for every fixed x, and 
measurable in x for every fixed y. Then the functions 

<p(x) = limf(x, y), \//(x) = lim ƒ(#, y) 

are measurable on ab. 
Since f(x, y) is continuous in y, the upper bound <pn(%) of 

the values ƒ (x, y) when x is fixed and 0 < y ^ 1/n, is the same 
as the upper bound of the denumerable set of values f(x, r) 
where y = r is a rational value of y on the interval 0 < y ^ 1/n. 
Hence by the first part of Theorem 7, <pn(x) is a measurable 
function of x. Further the function <p(x) of the theorem is 
the limit of <pn(%) as n approaches infinity, and therefore 
measurable. Similar reasoning holds for yp(x). 

§ 5. Properties of Lebesgue Integrals of Bounded Functions. 
The integral of Lebesgue has properties similar to those 

of the classical integral of Riemann, but with two very im­
portant extensions. An integral of either type, regarded as a 
function I( ƒ, e) of the function ƒ to be integrated and of the 
domain of integration e, has additive properties with respect 
to each argument similar to those described in the statements 
2) and 4) of the theorem below. For the Riemann integral 
the domain of integration is usually an interval, and the 
additive property 2) is true for a finite number of them; 
whereas the additivity of the Lebesgue integral holds even 
when the domain of integration is decomposed into a de-

* VII, p. 30; VI, p. 442. 



1917.] INTEGRALS OF LEBESGUE. 21 

numerable infinity of parts. The additive property with 
respect to the argument ƒ is valid for a Riemann integral when 
ƒ is the sum of a finite number or an infinite series of bounded 
integrable functions, provided that the series converges uni­
formly.* The only requirement prescribed below for this 
property of a Lebesgue integral is that ƒ shall be the sum of a 
convergent series of measurable terms fn for which the partial 
sums up to n terms have common bounds fx, M. It is 
one of the most remarkable characteristics of the integrals 
of Lebesgue that the requirement of uniformity of convergence 
is unnecessary for the establishment of this property. In § 6 
some examples are given to illustrate these generalizations. 
The property 5) of the theorem is one which both integrals 
have in common, but the recognition of its validity for the 
Riemann integral was a consequence of the development of 
the newer theory. No proof of this property is given in this 
section because it is a special case of a similar theorem for 
summable functions which will be proved later. 

THEOREM 9.f The Lebesgue integrals of functions which 
are bounded and measurable have the following properties : 

1) If ƒ is bounded and measurable, with bounds ix, M on e, 
then 

fxm(e) ^ I fdx ^ Mm(e). 

The integral is well defined and absolutely continuous as a 
function g(e) on the measurable sub-sets of e. 

2) If f is bounded and measurable on the sum e of a finite 
number or an infinite sequence of distinct measurable sets en, then 

ffdx= ffdx+ ffd, \x+ .... 

3) If f and cp are bounded and measurable, and satisfy f ^ <p 
on e, then af and | ƒ | are also bounded and measurable on e and 

I afdx = a I fdx, I fdx ^ I <pdx, | I fdx | ^ I \ f \ dx. 
ts e »Je *Je *se *Je *Je 

4) If each of a finite number of functions fn is bounded and 

* Hobson, Theory of Functions of a Real Variable, p. 540. 
t VII, pp. 39-45; V, vol. 1, 3d edition, pp. 258-259; III, pp. 112-116. 
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measurable on e, then their sum has the same property and 

J fdx = I fxdx + I f2dx + • • •. 

T7/̂  theorem remains true for the sum of a convergent series of 
functions fn, provided that the partial sums up to n terms all 
have absolute values less than a constant M. 

5) If f is bounded and measurable on the interval ab, the 
function 

F(x)= f fdx 

has ƒ as derivative at all the points of ab except those of a set of 
measure zero. 

The sum S of § 1 whose limit is the Lebesgue integral satisfies 
the inequalities 

(M - e)m(e) ^ S ^ (M + e)m(e), 

since every value rjk having m(^) =f= 0 lies between JJL — e and 
M + e. Hence at the limit as e approaches zero the inequali­
ties of 1) are true. The absolute continuity of the integral as 
a function of e is an immediate consequence of this mean value 
theorem. 

To prove the property 2) consider first the sum e = e' + e" 
of two sets on each of which ƒ is bounded and measurable. 
If 8, S', S" are sums for ƒ on the sets e, e\ e" respectively, 
formed with the same ladder of values 4, then 8 = 8' + 8" 
and the additive property for two sets, or indeed a larger finite 
number of sets, is an easy consequence. The sum e of a 
sequence {en} may be written in the form 

e = ei + e2 + • • • + en + r», 

where m(rn) approaches zero as n approaches infinity. Hence 
from the additive property for a finite number of sets 

ffdx= f fdx+ -"+ f fdxf+ f fdx, 

and with the help of the property 1) the last integral is seen 
to have the limit zero as n increases. 

If a sum S is formed for ƒ with values h, and a sum 8; 

for af with values ah, it is easily seen that S' = a8, so that the 
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first of the properties 3) also holds when e approaches zero. 
It is useful to note that a quite similar proof shows that 

(19) ( (a+f)dx = am(e) + f fdx. 
Je Je 

To prove the second part of 3), let e be decomposed into the 
sets eh = e[h-i ^ ƒ < 4]. Then by 2) and the mean value 
theorem of 1) 

I <pdx = Z) I <pdx ^ 'jLtlh-imiek). 
Je k=l J ek k=l 

But the last expression is a sum S for the function ƒ, and the 
property desired is a consequence when e approaches zero. 
The last part of 3) follows with the help of the first part 
when the result just obtained is applied to the pairs/, <p = | ƒ] 
and— ƒ, <p = \f\. 

The properties 2) and 3) with equation (19) justify the 
inequalities 

I ( ƒ + <p)dx ;> 2 I (4-i + (p)dx = Z) lb-im(ek) + <pdx, 
e k=l Jek *=1 Je 

s* n s* n r* 

I ( ƒ + <p)dx ^ ]C f (4 + <p)dx = S 4m(^) + I ^&, 
t/e k=lJek k=l Je 

from which it follows at the limit that 

I (ƒ + <p)dx = i fdx + I <pdx. 
Je Je Je 

This establishes the property 4) for every sum of a finite 
number of measurable functions. To prove that a similar 
property holds for series the following lemma is useful. 

LEMMA 6. If a sequence sn(x) of functions measurable on e 
converges to a bounded limit ƒ, then for every e the sets 
Vn = e[\ ƒ — sn\ > e] are such that lim m(en) = 0. 

w=oo 

The complete limit c of the sets en can contain no point, 
since a value x in c would be in an infinity of sets en, and 
therefore | ƒ — sn \ would exceed e for an infinity of values 
of n. This is not possible if ƒ is the limit of the sequence 
{fn} at x. It follows therefore from formula (8) and the 
corollary to Theorem 4 that 
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m(c) = lim m(en + en+i + •••) = 0, 

and hence that lim m(en) = 0. 
It is now possible to prove the additive property 4) for 

an infinite series of functions fn. For let sn be the sum of 
the first n terms of the series, and en the set described in the 
lemma. Then with the help of 3), 4), 2), and 1), 

I fdx— I sndx hg I (ƒ — sn)dx + I (ƒ — Sn)da 
I Je Je I I Je—en | | Jen 

£em(e) + 2Mm(en), 

and this can be made arbitrarily small by taking e sufficiently 
small and n sufficiently large. 

COROLLARY. If a sequence {sn} of functions measurable on e 
has a limit ƒ, and all the elements of the sequence haw the same 
bounds /x, M, then 

lim I sndx = I fdx. 
n=«o Je Je 

§ 6. Examples of Measurable Sets and Functions. 

The definition of measure commonly accepted before the 
ideas of Borel and his followers were developed was the 
following well-known one of Jordan.* Let the interval ab be 
divided into a finite number of sub-intervals of norm 5, and 
let s, S be the sums of the intervals entirely in e, and of the 
intervals containing points of e but not necessarily entirely 
in e, respectively. Then s and S have limits as ô approaches 
zero which are called the interior and exterior measures a, S 
of the set e. If the two are equal the set e is said to be measur­
able (J), and its Jordan measure is the common value a = 2. 

It is provable that the totality & of sets measurable (J), 
and the Jordan measure function, have properties similar to 
those described in Theorem 4, the principal and very important 
difference being that & is additively closed, and the Jordan 
measure function is additive, for a finite number of sets only. 
A very simple example can be given to illustrate the greater 
power of the new definition of measure in this respect. A 
set consisting of a single point has measure zero according to 
either definition. It is provable directly from the definition, 

* IX, p. 28. 
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as will be indicated just below, or from the additive property 
of the class & described in Theorem 4, that the set of rational 
points on the interval 0 ^ x ^ 1, which is denumerable, must 
have Borel-Lebesgue measure zero. But it is evident also 
that the Jordan measure of this set is not well defined, since 
the exterior measure of the set is 1 and the interior measure 0. 

It is reasonable to ask whether or not all sets have measure 
according to the definition of § 3, but it seems impossible to 
give a conclusive answer to the question at present. Sets 
not measurable have been constructed by Van Vleck and 
Lebesgue with the help of principles from the theory of 
aggregates which have been in dispute, and which so far 
remain unproved. 

THEOREM 10. Every denumerable set of points has measure 
zero according to the definition of measure of § 3. Further 
every closed set of points is measurable (J5). 

If the elements of the denumerable set are denoted by xn 
(n = 1, 2, • • -), each Xfi c a n be enclosed in an interval of length 
e/2w, and the sum of the lengths of these intervals is e. Con­
sequently the measure of the set is zero. 

A point which is exterior to a closed set e is enclosable in an 
interval containing no point of e in its interior, but whose 
end points are in e. The totality of such intervals is denumer­
able, since there is but a finite number of them with lengths 
greater than 1/n. The complement of e is therefore this 
measurable set consisting of a denumerable set of intervals 
2cen, which implies that e is measurable (B) also. 

The Riemann integral of a bounded function on an interval 
ab is a notion closely allied to that of Jordan measure. For 
let ab be divided into a finite number of intervals Axk 
(k = 1, 2, • • -, n) of norm 5, and let mk, Mk be the lower and 
upper bounds of the values of f(x) in Axk. The two sums 

n n 

s = X rnkAxkf S = X) MkAxk 

have limits cr, S as S approaches zero, and when the two are 
equal the function f(x) is said to be integrable (iî) on ab, the 
value of the integral being the common limit cr = S. If 
f(x) = 1 at every point of a set e and f(x) = 0 elsewhere, the 
limits o-, S are exactly the Jordan interior and exterior meas­
ures of e, so that the existence of the integral of this particular 
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function, and the measurability of e according to the Jordan 
definition, imply each other. 

A necessary and sufficient condition that f(x) be integrable 
(jR) is that 

(20) lim (S - s) = 0.* 
5=0 

Lebesguef has transformed this condition in a most interesting 
and useful way, as indicated in the following theorem. 

THEOREM 11. A necessary and sufficient condition that a 
bounded function f{x) be integrable in the sense of Riemann 
on ab, is that the set of discontinuities of fix) have measure zero. 

The proof of this theorem by Lebesgue made no use of the 
properties of Borel-Lebesgue measure except the concept of 
a set of measure zero. A proof of Theorem 12 below which has 
recently been given by de la Vallée PoussinJ makes use of 
reasoning which, with the help of the theorems of the preceding 
section, leads more directly to the desired result. Let M(x) 
be the limit as 8 approaches zero of the maximum of ƒ on an 
interval of norm 5 with x as interior point. Furthermore 
let <£(#) be a function having the value Mk at interior points 
of each interval Axjc of a partition of ab, and having an arbi­
trarily assigned value, say zero, at the division points of the 
partition. Then 

Jab 

where the integral is to be interpreted in the sense of Lebesgue. 
Consider now a sequence {Sn} of sums with norms approaching 
zero, and let {<ï>n} be the corresponding sequence of functions 
<E>. Every element of this last sequence is measurable, and 
hence its upper and lower limits are measurable, by Theorem 
7. Furthermore the totality of partition points of the sums 
Sn forms a denumerable set of measure zero, and at every 
other point the sequence {$n} is easily seen to have the 
unique limit M(x). It follows that M(x) is also measurable, 
since it is identical with a measurable function except on a 
set of measure zero; and from the Corollary to Theorem 9 

I M(x)dx = lim I $n(x)dx = lim S = 2, 
Jab w=oo Jab 0=0 

* V, vol. 1, 3d edition, p. 255. 
t III, pp. 29, 109. 
tVI I , p. 55. 
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since the interval ab differs from the set of points in which 
lim $ n = M(x) only by a set of measure zero. A precisely simi­
lar argument gives a as the integral of the function mix) which 
is the limit as ô approaches zero of the minimum of ƒ on an 
interval of length 5 having x as interior point. Hence a 
necessary and sufficient condition for ƒ to be integrable (R) 
is 

I [M(x) — m(x)]dx = 0. 
Jab 

The integrand of this integral is everywhere positive or zero, 
and when the integral vanishes can exceed 1/n only on a set 
of points en of measure zero. Otherwise, by the property 
1) of Theorem 9, the integral would be different from zero. 
Hence a necessary and sufficient condition that the integral 
shall vanish is that the set of discontinuities of ƒ, which is the 
totality of points where Mix) — m(x) > 0 and identical with 
the sum of the sets en, should have measure zero. 

THEOKEM 12.* A bounded function fix) which is integrable 
in the sense of Riemann on ab is also measurable on ab, and its 
Riemann and Lebesgue integrals are equal. In particular for a 
continuous function the sets e[ ƒ ^ a] are measurable (B) for 
every a. 

The set of points e[ f ^ a] contains all of its limit points at 
which ƒ is continuous. The other limit points are discon­
tinuities of ƒ and therefore form a set of measure zero, by 
Theorem 11. Hence e[ f ^ a] plus a set of measure zero is 
closed and therefore measurable, from which it follows that 
el ƒ ^ a] itself is measurable. For the case of a continuous 
function this set is closed and therefore measurable (JB). 
From the properties 1) and 2) of Theorem 9 the Lebesgue 
integral of ƒ satisfies the inequalities 

X mkAxk ^ 22 I fax ^ 22 MkAxjc 
J c = l &=1 «'Ars* * = 1 

for every partition of ab into intervals Ax*, of norm 8. But the 
first and last members of this inequality are the sums s, S 
whose limits as 8 approaches zero are both equal to the Rie­
mann integral of ƒ. Hence the equality of the two integrals 
of ƒ on ab is proved. 

* VII, p. 55; V, vol. 1, 3d edition, p. 259. 
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COROLLARY. Every set e which is measurable in the sense of 
Jordan is also measurable according to the definition of § 3, 
and the two measures are equal. 

Let fix) be the function described above which has the value 
fix) = 1 at all points of e, but which is zero elsewhere. If 
the Jordan measure of e is well defined it is equal to the 
Riemann integral of fix) on ab, and hence also equal to the 
Lebesgue integral. But the latter is the Borel-Lebesgue 
measure of e, so that the two measures are equal. 

I t may be of interest to consider for a moment a simple 
example of a function integrable according to Lebesgue, but 
not so according to Riemann. Let fix) = 2 on the set e\ of 
irrational points on the interval 0 ^ x ^ 1, and let fix) = 1 
on the set e2 where x is rational. This function has sums 
s = 1, S = 2 for every subdivision of the interval ab into sub-
intervals Axk, and hence has no Riemann integral. On the 
other hand the Lebesgue integral has the well-defined value 

I fdx = I fdx + I fdx = 
«A)l t)ei J e% 

THEOREM 13. Let aiy) be the measure of the set e\\x ^ ƒ < y] 
for a function fix) measurable and ivith fx < ƒ < M one. Then 
aiy) is a monotonically increasing function and the Lebesgue 
integral of f is expressible in the forms 

(21) \ fdx = I yda = Mmie) — I aiy)dy, 
•Je e//* *)ix 

where the second integral is to be taken in the sense of Stieltjes 
described below, and the last is an integral of Riemann. 

If (p(y) and aiy) are two single-valued functions on the 
interval \x ^ y ^ M, the corresponding Stieltjes integral limit 
is by definition 

r*M n 

I <pda = l imZ) <p(y)k)[oLih) — a(fe-i)L 
Jix e=0 k=l 

where the values h (k = 0, 1, • • -, n) with k = M> 4 = M de­
fine a partition of \xM into sub-intervals of norm e having 
lk-\ S h* h-i ^ Vk ^ 4 . I t is useful, as will be seen pres­
ently, to permit successive values 4-i , h to be equal. The 
existence of the limit as thus defined is provable* for every 

* See, for example, Riesz, loc. cit., p. 37; Stieltjes, loc. cit., p. J. 71. 
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pair of functions <p, a such that <p is continuous and a of limited 
variation on JJLM, and it is an immediate consequence of this 
definition and that of § 1 that the first of the equations (21) is 
true, since m{eu) in (3) is exactly the difference a(h) — a (4- i ) . 
The choice U = y, L = M for the sum in (3) is now permis­
sible since by the hypothesis here used ju < ƒ < M on e. 

Suppose now that the Stieltjes integral exists for two func­
tions <p, a. Then it also exists when the rôles of <p and a are 
interchanged, and furthermore* 

(22) I <pda+ I ad<p = <p(M)a(M) - <p(»)a(ix). 

For let the values rjk (k = 1, 2, • • -, n; rji = n, rjn = M) 
define a partition of \xM of norm e/2, and let 4 (k = 1, 2, • • •, 
n — 1) be chosen for each sub-interval so that rjk ^ 4 S *7fc+i. 
Then the values 4 with the addition of U = JJL, ln = M 
form a partition of \xM with norm e and are such that 4- i ^ 4, 
h-i ^ rjk ̂ 4 . I t is a matter of algebra only to show now 
that 

n n 

S <x(4-i) [<?(??*) — <p(Vk-i)] = — ]C<pO?*)[a(4) — a(4-i)] + 

(p(M)a(M) — <p(fx)a(fi). 

Since by hypothesis the limit of the sum on the right exists, 
the same is true of that on the left, and the formula (22) 
is the limit of this when e approaches zero. Furthermore 
formula (22) justifies easily the second of the expressions (21) 
when <p = y, since a(M) = m(e), a(/x) = 0. 

THEOREM 14. Every derivative number A of a function f(x) 
continuous on ab is measurable, and the sets e[A ^ a] are all 
measurable (B). 

If the definition of f(x) is extended so that f(x) = f(b) for 
x > b9 the resulting function is continuous for x ^ a and its 
forward derivative numbers are by definition the upper and 
lower limits of the quotient 

(23) g & , » ) - * * + * > - * * > 

as h approaches zero over positive values. The quotient is a 

* Riesz, loc. cit., p. 37; Stieltjes, loc. cit., p. J. 72. 



30 INTEGRALS OF LEBESGUE. [Oct., 

continuous function of both x and h for a ^ x ^ 6, 0 < h, and 
the fact that its limits are measurable (B) is a consequence of 
the last statement in Theorem 12, and the proofs of Theorems 
7 and 8. A similar argument holds for the two backward 
derivatives. 

§ 7. Summable Functions. 
It has been remarked in § 4 that a part of the effectiveness 

of the Lebesgue theory of integration is associated with its 
applications to functions which are not necessarily bounded. 
This is due to the fact that the upper and lower limits of every 
sequence {ƒ&} of measurable functions are measurable, but 
they may have + oo or — oo as functional values as well as 
finite ones. Consider then a function ƒ which is measurable 
according to the definition of § 4, and let it be decomposed 
in the form 

with <p = 0 when ƒ = — oo and \{/ = 0 when ƒ = + oo. 

Each of the functions <p, xp is ^ 0, and measurable accord­
ing to Theorem 6. Consider now the function <pn defined by 
the conditions 

<pn = <P when <p < n, 
(25) i, C 

<pn = n when ç>> n. 
This function is also measurable, as one may readily verify. 

DEFINITION OF A SUMMABLE FUNCTION AND ITS INTEGRAL.* 
A function <p(x) ^ 0 is summable on e if it is measurable on e 
and such that the limit 

J' <pdx = lim I <pndx 

exists. A function ƒ of arbitrary sign is said to be summable on 
e if the functions <p and \p of equation (24) are both summable on 
e. The integral of f is then defined to be 

(26) I fdx= I cpdx - J ypdx. 
•Je t/e */e 

* VII, p. 45; VI, p. 444; V, vol. 1, 3d edition, p. 260; III, p. 115. 



1917.] INTEGRALS OF LEBESGUE. 31 

It follows at once from this definition and the mean value 
theorem that if ƒ is summable the set of values x where f(x) 
is + oo or — oo has measure zero. When e is replaced by 
the interval ax the integral on the left in (26) becomes a 
function of x expressed as a difference of two increasing func­
tions, and hence is of limited variation. Further properties 
of integrals of summable functions are summarized in the 
following theorem, the proof of property 5) being again 
postponed to § 9. 

THEOREM 15. If in the statement of Theorem 9 the words 
"bounded and measurable" are everywhere replaced by the word 
summable, the properties l)-5) are still true, the only exception 
being that the additive property 4) does not necessarily hold for 
a denumerable infinity of functions. 

The proofs will be made first for functions which are nowhere 
negative. The law of the mean in 1) for summable functions 
is a consequence of the second formula in 3) which will be 
proved later. If ƒ (x) is summable on e it is so on every measur­
able subset of e, as one may see at once from the definition. 
The absolute continuity of the integral of a non-negative 
summable function follows, since for a sufficiently large value 
of n 

I <pdx ^ I <pndx + « = nm{e) + x, 

and when m(e) is sufficiently small this is less than €. 
If <p is non-negative and summable on a sum e of measurable 

sets ek (k = 1, 2, • • -), then 

I <pndx ^ z2 I <pndx, 
•Je k=l Jck 

(* 00 f* 00 /» 

I <pndx = z2 I <Pndx ^ z2 I <pdx. 

By letting n and then p approach infinity in the first of these, 
and by letting n approach infinity in the second, one obtains 
the inequalities 

ƒ 00 / * {* «0 /» 

<pdx ^ ]C I <pdx, I <pdx <; S I (pdx, 
which prove property 2). 
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The first and second relations under 3) follow readily from 
the definition of a summable function when it is noted that 
for non-negative functions and a > 0 

(27) (af )an = dfn, fn S <Pn-

The argument for a < 0 is similar. The third relation of 3) 
is evident for positive functions since then | ƒ | = ƒ. 

The proof here given for the second of the properties 3) 
justifies more than is stated in the theorem. For if <p is pos­
itive and summable and 0 ^ ƒ ^ <p it is a consequence of the 
second of the relations (27) that ƒ must also be summable. 

If the functions ƒ, g are non-negative and h = ƒ + g one 
may verify the relation 

hn ^fn + gn ^ hn-

igration of t l 
e is true of 

infinity 

The integration of this shows that when ƒ and g are summable, 
the same is true of h, and at the limit when n approaches 

I hdx ^ I fdx + I gdx ^ I hdx. 

Hence the additive property 4) holds for a finite number of 
non-negative functions. 

For a function ƒ of arbitrary sign the absolute continuity 
of 1), the additive property 2), and the first relation of 3), 
follow from the preceding proofs when ƒ is decomposed as in 
equation (24). The property 4) can now be derived for the 
sum h = ƒ + g of two summable functions of arbitrary sign 
by subdividing e into sub-regions where no one of ƒ, gf h 
changes sign. In each of these regions h is summable, since it 
does not change sign and is numerically less than or equal to 
a non-negative summable function, and the property 4) is a 
consequence of the proof for non-negative functions, provided 
that the functions in the relation h = ƒ + g are suitably 
transposed. Addition of these results shows that the same is 
true for the original region, since a function summable on each 
of a finite number of sets is readily seen to be summable on 
their sum, and since in that case the additive property 2) 
holds. The second of the relations 3) is a consequence of 4) 
and the first of the relations 3), since <p — ƒ ^ 0 and 

I <pdx — I fdx = I (<p — ƒ )dx ^ 0. 
t/e *J e *Je 
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If ƒ is decomposed as in equation (24) the value of | ƒ | is 
<P + \p which by 4) is summable and such that 

J | ƒ | dx = I (pdx + I \f/dx ^ I <pdx — I \[/dx = I fdx. 
e t/e */e t/e c/e *Je 

One can also state conversely that | ƒ | summable implies 
that <p and \p, and consequently/, are summable. Finally the 
mean value theorem is an immediate consequence of the 
second of the relations 3). In the statement of this theorem 
it is understood that one or both of the values ju, M may be 
infinite. 

The notions of major and minor functions of a summable 
function f(x) were devised by de la Vallée Poussin and de­
scribed by him as being very precious in the theory of Lebesgue 
integrals. He has certainly applied them with great success. 

DEFINITION OF MAJOR AND MINOR FUNCTIONS OF A SUMMABLE 
FUNCTION ƒ.* A function $(&) is a major function for a function 
f summable on ab if for some e > 0 it has the properties 

1) f fdx S *(*) - *(») < f fdx + e; 
•J ax */aa» 

2) every derivative number A of <£ satisfies the inequality A > ƒ 
at every value x where f(x) ={= + °° • 

The same definition characterizes a minor function <p(x) if 
the signs before e and oo are changed and the inequalities in 1) 
and 2) are inverted. 

The applicability of these functions is a consequence of the 
following theorem : 

THEOREM 16. There exists a major function <£(#) for every 
function f(x) summable on ab and every constant e > 0. A 
similar statement holds for minor functions. 

To prove this consider first a function fix) which is summable 
and non-negative on ab, with a ladder of values h [k = 0, 1, 
• • • ; lQ = 0,0 < h ~ Zfc-i < e/2(6 — a)]. Let the part e& of ab 
where 4-i ^ ƒ < h be enclosed in the interior of a denumerable 
set Ah of non-overlapping intervals having m(Ak — #&) < €&, 
the constants €& being so chosen that Slke*. < e/2. If the 
portions of #& and Ah on ax, and also their measures, are de­
noted by ek(x) and Ak{x), respectively, then 

* V, vol. 1, 3d edition, p. 269; VII, p. 74; VI, p. 461. 



34 INTEGRALS OF LEBESGUE. [Oct . , 

*0*0 = Jl hAk(x) ^ YJ hek(x) ^ Z) I fdx = I fdx. 
k k k Jej^x) J ax 

Furthermore 

X hAk(x) — Yl hek(x) < X ^ < ô> 
k k k * 

2 hek(x) — I ƒdx = X) I (4 - ƒ )<fc < | , 

so that by adding these two relations the function $(x) is 
seen to satisfy the condition 1) of the definition. But every 
value x where f{x) is finite is in one of the sets ek and therefore 
interior to the corresponding Ak. Consequently the term 
lkAk(x) has derivative lk at x, and since all the other terms of $ 
are non-decreasing functions, it follows that all derivative 
numbers of 3> are at least equal to 4 > ƒ. 

For a function ƒ of the form (24) a constant n can be selected 
so large that 

I <pdx — I ypndx — I fdx 
%J ax *Jax t)ax < 2 ' 

A major function for <p — \pn with constant e/2 will therefore 
be a major function for ƒ with constant e. But <p — ^n + n 
is non-negative and has a major function <i>(#) for e/2, and the 
function $(x) — n# plays the same rôle for <p — \l/n. 

A major function of — ƒ is the negative of a minor function 
for ƒ, so that the theorem is proved in its entirety. 

§ 8. A Generalization of the Fundamental Theorem of Integral 
Calculus* 

A function G(x) of limited variation and continuous on ab 
may be defined as one expressible in the form 

(28) G{x) = Px(x) - P2(s), 

where Pi and P2 are continuous and monotonically increasing. 
If the process of §§ 2, 3 is applied to Pi and P2, two classes 
of point sets <§i, <§2 and two functions pi(e), p2(e) are defined 
having the relationships described in Theorem 4. The greatest 
common subclass S of <§i and <§2 contains all intervals on ab 

* VII, Chapitre VI; VI, § 8; IV. 
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and is closed. Furthermore the function 

g(e) = pi(e) - p2{e) 

is continuous and additive on 8, and such that for every set 
e of 8 and every constant e > 0 there exists a sum A of inter­
vals enclosing e such that 

(29) &U -e) + p2{A -e)<e. 

The functions g(e) defined in this way are of a very general 
type which is the subject of the following theorems. 

THEOREM 17. Consider a function g(e) which is continuous 
and additive on a closed class of point sets 8 containing all the 
intervals on ah. On the totality of subsets in 8 of an element e of S 
the function g(e) has a positive maximum pi(e), and g{e) is 
expressible as the difference of two non-negative functions 

g(e) = pi(e) - [px{e) - g(e)] = pi(e) - p2(e). 

The functions p\{e) and p2(e) are continuous and additive on 8. 
The sum 

T{e) = Pl(e) + ptie) 

is called the total variation of g. 
Since g(e) is continuous it is clear that its least upper bound 

on the subsets of a set ei must be positive or zero, if such a 
bound exists. If there were no such upper bound on ei, one 
could select a subset e2 so that #(e2) and g(ei — e2) are both 
numerically greater than unity, and so that g would also have 
no upper bound on e2. By repeating this process a sequence 
{ek} would be found, with each element contained in the 
preceding, and having a greatest common subset e such that 

ei = e + Oi — e2) + O2 — eB) + • • •. 

This would contradict the additivity of g, however, since each 
term after the first in the sum 

g(e) + g{ex - e2) + g(e2 - ez) + 

would numerically be greater than unity, and its sum could 
not be #0i) . 

The upper bound pi(e) is continuous since g(e) is so, and it 
is also additive. For if the sets ek are distinct and 

e = 0i + e2+ •••, 
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one may cause g to vary on subsets of e so that it approaches 
pi(e). On the corresponding subsets of eu the values of g 
will never exceed pi(ek), and it follows from the additivity 
of g that 

Pi(e) ^ PiOi) + P1O2) + • • •. 

Furthermore if g varies on subsets of ek so that its values on 
all the eks approach simultaneously the upper bounds pi(ek), 
then it follows that 

Piifi) ^ Pi(*i) + P1O2) + • • '3 

and the additivity of pi(e) is proved. 
DEFINITION. A class ê of point sets is said to be a normal 

class for a function g(e) if it has the properties 
1) ê is a closed class of measurable sets containing all the 

intervals on ab; 
2) g{e) is continuous and additive on <§; 
3) for every element e of S and every constant e > 0 there 

exists a sum of intervals A enclosing e such that T(A — e) < e. 
A set A can be chosen satisfying condition 3) and at the 

same time having m(A —• e) < e. For if A\ satisfies 3), and 
A2 is such that m(A2 — e) < e, the product set A = A1A2 
will have the two properties desired, since T(e) and m(e) 
are both positive functions. When the property 3) holds 
g(e) is the limit of the values of g on sets e' enclosing e, in the 
sense that for every e and e there exists a set A enclosing e 
such that 

I 9(e') - 9(e) | ^ | T(e') - T(e) \ST(A-e)<e 

for every e' in A and containing e. This is a consequence of 
the fact that T(e) is non-negative and additive. 

The function p(e) of § 2 generated by a monotonically 
increasing continuous function P(x) is an example of a func­
tion on a normal class ê, as one may see by extracting from 
the class & of Theorem 4 all except its measurable sets. The 
following theorem shows how the most general function g{e) 
on a normal class is always expressible in terms of functions 
of this type. 

THEOREM 18. For every function G(x) of limited variation 
the functions Pi(x), P%(x) of equation (28) define as in §§ 2, 3 
two functions pi{e), p2(e) with normal classes Si, §2. The 
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totality ê of measurable sets common to S\ and <S2 is a normal 
class for the function 

(30) g(e) = Vl(e) - p2(e). 

Conversely, every function g{e) on a normal class ê is identical 
on S with a function g(e) generated in this way by a continuous 
function 0(x) of limited variation. 

The first part of the theorem is a consequence of the remarks 
in the first paragraph of this section, except the statement 
that & is a normal class for g{e). ê is necessarily closed and 
contains all intervals, since it is the greatest common subclass 
of three classes with these properties. Furthermore, the 
property 3) of the definition follows at once from the in­
equality (29), since for the function (30) the total variation 
T(e) is surely less than pi(e) + pz{e). 

If g(e) has the normal class S then the function pi(e) of 
Theorem 17 is the lower bound of the values pi(A) on sets of 
intervals A enclosing e, on account of the property 3) of the 
definition of a normal class, and is identical with the values 
pi(e) defined as in § 3 by the function 

Pi(x) = pi(co) (co = the interval ax). 

The identity of p± and pi on intervals is evident with the help 
of the additive property of pu and it persists for other sets e 
because pi(e) and pi(e) are the lower bounds of p\ and pi, re­
spectively, on sets A of intervals containing e. Furthermore 
the relation (14) is true for every element of <S, since pi = p% 
is additive, and it follows that ê is necessarily contained in 
the totality of sets on which the exterior and interior values 
Pi(e), PiO?) defined by Pi (ce) are identical. Similar remarks 
hold for p2(e), and the theorem is therefore proved. 

DEFINITION. The derivative numbers of a function g{e) on 
a normal class S are the four derivative numbers of the function 

(31) G(x) = g(oi) (co = the interval ax). 

The singularities of g(e) are the points where all four of its 
derivatives are + oo, or all four — <x>. 

With these preliminary notions and theorems at hand it is 
possible to proceed to the proof of a series of lemmas which 
lead to the theorem which is the object of this section. 

LEMMA 7. The derivative numbers of g(e) are all summable 
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on ab, and the set E of singularities of g(e) has therefore 
measure zero. Futhermore it belongs to <§. 

The derivative numbers of g(e) are measurable, by Theorem 
14, since G(x) in equation (31) is continuous. The further 
proof can be made for the upper forward derivative A of the 
positive function T(e) since the derivative numbers of g{e) 
all have absolute values less than À. Let An be constructed 
from A as in (25), and let <p(x) be one of the minor functions of 
An with constant €. The function 2\co) — <p(x) has its upper 
forward derivative greater than or equal to zero, since every 
derivative number of <p is less than A. Consequently 
T(ab) ^ <p(b) — ç>(a),* and by letting e approach zero it 
follows that 

T(ab) ^ f Andx, 
Jab 

and A is seen to be summable. The set of points where 
A = + °° includes all the points of E, and has measure zero 
since A is summable. 

Since the sets e[A ^ n], for every derivative number A of 
g(e) and every positive integer n, are all measurable (B) by 
Theorem 14, and since their product is the set of points where 
all four derivative numbers of g(e) are + oo , it follows that E 
also is measurable (B) and belongs to 6. 

LEMMA 8. On a set e where a derivative number A of g{e) 
is never — oo it is true that 

(32) g(e) ^ f Adx. 

The inequality can be inverted if A 4= + °° on e. 
The proof will first be given for an interval œ with end points 

a, /3. Let <p(x) be a minor function with constant e for the 
function A on the interval co. Then the function 

\[/(x) = g(ax) - <p(x) 

has its upper derivative D\f/, of the same type (forward or 
backward) as A, positive or zero, since 

A<LD<p + D\l/, A > Dip. 

Hence g(co) ^ <p{fi) — <p(a), and the inequality of the lemma 
for e = co is a consequence when e approaches zero. 

* V, vol. 1, 3d edition, p. 99. 
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If a set of intervals A encloses in its interior all the points 
where A = — oo then the inequality (32) is true on e = CA. 
For in the first place the function 

4,(e) = g(e.CA)+T(fi-A) £ g(e) 

has S as a normal class. The conditions 1), 2) of the definition 
of a normal class are clearly satisfied, and 3) also holds since 
for every denumerable set of intervals B enclosing e the total 
variation T^ of \p satisfies the relation 

T+(B -e)£ T([B - e[-CA) + T([B - eh A) = T(B - e). 

Furthermore the derivative number A^ of the same type as A 
is greater than or equal to A at every point x, and never 
takes the value — oo} since this can happen to A only at points 
interior to A in the neighborhood of which \[/(e) = T(e) ^ 0. 
Hence on every interval co whatsoever 

\[/(œ) ^ I A^dx ^ I Adx. 

But this must be true also for every set e of S, since the values 
of \p and the last integral on such a set are limits of their 
values on sets B of intervals enclosing e, according to the 
remarks following the definition given above of a normal class. 
In particular for e = CA 

yP(CA) = g{CA) ^ f Adx. 

Finally the inequality (32) is true for every set e whatsoever 
on which A #= — oo, since a set A enclosing Ce encloses all 
points where A = — oo, and 

\g(CA)-g(e)\ =\ g(Ce) - g(A)\ < e, 

£ Adx — I Adx = I Adx — I Adx < e, 
. „A J e \ \ Jce J A I 

provided that A is chosen enclosing Ce in its interior and so 
that g(A — Ce) and m(A — Ce) are both sufficiently small. 

COROLLARY 1. If a derivative A of g(e) is finite valued at 
every point of e then 

«•>-ƒ Adx. 
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COEOLLAEY 2. The value of g(e) is zero on every set e 
of measure zero on which a derivative number of g is every­
where finite valued, or on which two derivatives have every­
where the values + oo and — oo, respectively. 

The first corollary is true since on the set e there described 
the inequality (32) and its inverse are both justified by the 
lemma; and the first part of the second corollary follows at 
once since the integral vanishes when the measure of e is zero. 
For a set e satisfying the condition in the last part of Corollary 
2 the inequality (32) holds with opposite senses for the two 
derivatives, and the integrals on the right are both zero. 

THEOREM 19.* For every derivative number A of a function 
g(e) on a normal class &, the equation 

(33) g(e) = g(eE)+f Adx 

holds, where e is an arbitrary element of & and E is the set of 
singularities of g. If a similar equation holds for a second set E' 
of measure zero and another function M, then g(eE) = g(eEf) 
for every e, and A coincides with A' almost everywhere, i. e., 
except possibly on a set of measure zero. 

For let Ei be the totality of points where A is infinite. Then 

g{e) = jf(<d5i) + g{eCEx) = g(eE1) + ƒ Adx 

because of Corollary 1 to Lemma 8 and the fact that E\ has 
measure zero. Furthermore g(eE\) = g(eE), by Corollary 2 
to Lemma 8, since Ei — E is of measure zero and can be 
subdivided into sets on each of which either one of the deriva­
tives of g is finite valued, or else two have everywhere the 
values + oo and — oo, respectively. Hence the first part 
of the theorem is true. 

If equation (33) holds for a second pair E', A! then 

g(eE)+ f Adx = g(eE') + f * Max. 

After replacing e by eE + eE' it follows that the first two terms 
on the two sides are equal, and hence also the integrals, for 
every e. If the integrals are equal an application of the 
mean value theorem shows that the set of points where 

* VII, p. 93; VI, p. 476; V, vol. 1, 3d edition, p. 277. 
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A — A' > lfn must have measure zero for every positive 
integer n. The sum of these sets has therefore measure zero, 
and it includes all the points where A — A' is positive. A 
similar argument holds for the points where A — A' is negative. 

COROLLARY 1. The function g has all of its derivative numbers 
equal, and hence has a unique derivative, almost everywhere. 

For the equation (33) holds for all four of the derivative 
numbers of ƒ, and it follows from the last statement of the 
theorem that they must be equal except on a set of measure 
zero. 

COROLLARY 2. The integral of a function f(x) summable on 
ab3 

(34) gie) = ff(x)dx, 
Je 

has fix) as its unique derivative almost everywhere. 
For the function g(e) is well defined on the normal class & 

including all measurable sets on ab. The equation (34) is of 
the same type as (33) and it follows that all four of the deriva­
tive numbers of g(e) are equal to f(x) almost everywhere. 
This corollary is the justification of the property 5) of 
Theorems 9 and 15, for the case when e is the interval ax. 

COROLLARY 3. A necessary and sufficient condition that 
g{e) shall be the integral (34) of a function f (x) summable on ab, 
is that g{e) be additive and absolutely continuous on the normal 
class on which it is defined. 

The condition is clearly necessary since by Theorem 15 
every integral of a function summable on ab is additive and 
absolutely continuous on the totality § of measurable sets on 
ab. On the other hand such a function on a normal class & 
is expressible in the form (33), with g(eE) vanishing because g 
is absolutely continuous and eE has measure zero. 

COROLLARY 4. The function gieE) is called the function of 
singularities of g. If E! is a set of measure zero including E 
then g(eE) = g{eEf) for every e. If A is a denumerable set of 
intervals enclosing E then 

(35) gieE) = lim g(eA). 

If Ei and E<L are the parts of E on which all four derivative 
numbers of g are + <x> y — oo y respectively, then 

(36) g{eE) = g(eE1) + g(eE2) 
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and the functions on the right satisfy the inequalities 

(37) g(eE1) ^ 0, g(eE2) ^ 0. 

Each of the functions in (36) has a unique derivative equal to 
zero almost everywhere, and each vanishes if its argument contains 
no perfect subset. 

To prove the first statement of the corollary one has only 
to substitute eE' for e in equation (33). A similar substitution 
of e A for e justifies the formula (35). The inequalities (37) 
are immediate consequences of Lemma 8. The fact that 
g(eE) has derivative zero almost everywhere is evident because 
g{e) and the integral in equation (33) both have derivatives 
equal to A almost everywhere. If the expression (36) is 
substituted in equation (33) it follows that g(eE2) is the func­
tion of singularities of g(e) — g(eEi), and hence must also 
have derivative zero almost everywhere. A similar argument 
holds for g(eEi). 

The complement of eE can be enclosed in the interior of a 
denumerable set of intervals A in such a way that 

(38) | g(eE) - g(CA) | = | g(A) - g(CeE) \ < e. 

If the intervals of A are thought of as not including their 
end points, the set CA is necessarily closed* and the sum of a 
denumerable set and a perfect set.f But CA is interior to eE 
and consequently denumerable if eE contains no perfect subset. 
It follows that g(CA) is zero, since g vanishes on a set consisting 
of a single point, and CA is the sum of a denumerable number 
of such sets. The inequality (38) now shows that g{eE) is zero 
since it must be true for every e. Similar arguments are 
applicable for g{eE\) and g(eE2). 

It is a consequence of the Lemma 8, or also of the formulas 
(33) and (37), that g{e) is necessarily positive or zero on a 
set e where a derivative number A of g is non-negative. 
If A > 0 on a subset of e of measure greater than zero, then 
g{e) > 0. Consequently on an arbitrary set e the function 
g{e) attains its greatest value on the subset of e where A ^ 0, 
and it follows readily that the total variation of g(e) is given 
by the formula 

(39) T{e) = g(eE1) - g(eE2) + f \A\dx. 

* VII, vol. 1, 3d edition, p. 54. 
t Ibid., p. 52. 
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§ 9. Applications of the Preceding Theorems to Functions G{x), 
and an Example. 

The results described in the preceding section justify a 
series of notable properties of a function Q(x) of limited 
variation on an interval ab, and the formula (33) in particular 
interpreted for G(x)9 gives extensions of the well-known funda­
mental theorem of the integral calculus which have many 
important applications. 

In the first place every functioji G(x) of limited variation 
on ab satisfies the relation 

G(x) — G(a) = g(œ) (co = the interval ax) 

with a function g{e) as in § 8 (Theorem 18), and has a unique 
derivative F(x) almost everywhere (Theorem 19, Corollary 1). 
If arbitrary finite values are assigned to F(x) at the set of 
points of measure zero where the derivative of G(x) is not de­
fined, then F(x) is summable (Lemma 7). The variation V(x) 
of G(x) on the portion between a and x of the set E of singu­
larities where F(x) is + oo or — oo, is defined to be the limit 

(40) lim E AaG = lim g(A), 
mA=Q a mA—Q 

where A is a denumerable set of non-overlapping intervals a 
enclosing the part of E on ax, and where for an interval a with 
end points x\ and x2 

AaG = Gfa) - G(xi). 

This limit surely exists (Theorem 19, Corollary 4), and from 
formula (33) 

(41) G{x) - G{a) = V(x) + f F(x)dx. 
Jax 

The customary theorem of the integral calculus is that for 
every function G(x) which has a bounded derivative F(x) 
integrable on the interval ab in the sense of Riemann 

(42) G{x) - G(a) = f F(x)dx. 

The formula (41) is a generalization of this for functions of 
limited variation, and has precisely the form (42) when the 
set of singularities E contains no perfect subset (Theorem 19, 
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Corollary 4), in particular when a derivative number of G(x) 
is everywhere finite valued. It is provable furthermore that 
every function G(x) which has a derivative number F(x) 
finite valued and summable on ab, is necessarily of limited 
variation on ab, and therefore satisfies formula (42). For let 
$(x) be a major function for | F(x) |. Then each of $(#) 
and $(#) — G(x) has a derivative number positive or zero, 
and is necessarily increasing on ab. Consequently 

G{x) = *O0 - [*(&) - G(x)] 

is the difference of two monotonically increasing functions. 
A function G(x) is said to be absolutely continuous on ab 

if the limit (40) is zero for all sets A irrespective of their 
relationship to E. A necessary and sufficient condition that 
G(x) shall be expressible in the form (42) in terms of a sum­
mable function G(x), is that G(x) be absolutely continuous on 
ab (Theorem 19, Corollary 3). An integral of a summable 
function of the form in (42) is necessarily of limited variation, 
as one may see by replacing e by the interval ax in the formula 
(26), and its total variation on the interval ab is 

T = f \F\dx, 
Jab 

according to formula (39). Furthermore such an integral 
has F(x) as its derivative almost everywhere (Theorem 19, 
Corollary 2). If G(x) is absolutely continuous and has a 
derivative number zero almost everywhere, then G(x) must 
be constant, as one sees from formula (42). 

The problem of determining whether or not a given function 
F(x) is a derivative or a derivative number of a continuous 
function G(x) was one of those which Lebesgue first con­
sidered. If F(x) is continuous the function G(x) defined by 
equation (42) is always a continuous anti-derivative of F(x). 
But if F(x) is discontinuous it may not be a derivative number 
of any continuous function whatsoever. A very simple ex­
ample suflBces to show this. Let F(0) = 1 and F(x) = 0 for 
0 < x ^ 1. This function is bounded and measurable, and 
a function G(x) which has F(x) as a derivative number must 
therefore be expressible in the form (42). The function G(x) 
so defined is clearly a constant and has everywhere the unique 
derivative zero. The method of procedure suggested by this 

file:///F/dx
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example is applicable in general to finite valued summable 
functions. If such a function F(x) is a derivative number of 
G(x), then the latter must be expressible in the form (42). 
It has F(x) as derivative almost everywhere, and it may be 
possible by actual test to determine whether or not this 
relationship is universally valid. 

It may be of interest to consider an example of a function 
G(x) of limited variation on the interval 01, for which the 
variation V in formula (41) is not zero.* Let (?(0) = 0, 
0(1) = 1, and G(x) = 1/2 on the interval 1/3 < x < 2/3. On 
the middle thirds of the two remaining intervals G(x) is to 
have the values 1/4, 3/4 respectively. The process may be 
continued indefinitely. After division of 01 into 3n equal 
parts the sum of the intervals on which G{x) is not defined 
is (2/3)n, so that the total set S where G is not defined by this 
process has measure zero. Every point J of S is therefore 
a limit point of points x of the set X where G has already been 
specified, and it is not difficult to show that G(x) has a definite 
limit as x approaches £ on the set X. This limit is to be 
taken as the value (?(£). The function G{x) so determined 
on the whole interval 01 is monotonically increasing, and has 
derivative zero everywhere except at the points of the set S 
of measure zero. Hence in formula (41) the integral vanishes 
and 

1 = ö(l) - 0(0) = 7(1). 

It should be emphasized here in closing that the properties 
of functions of limited variation described in the paragraphs 
just above are a small part only of the applications of Le­
besgue integrals. Every discussion involving definite integrals 
may give rise to important new results if the integrals are re­
interpreted in the sense of Lebesgue, If an arc in space is 
rectifiable the functions x(t), y(t), z(t) (h ^ t ^ t2) defining it 
are of limited variation and have derivatives almost every­
where. The length of the arc is the value of the integral 

£4x>* + y>* + ?dt 

taken in the Lebesgue sense over the set e on which the three 
derivatives exist simultaneously.! Vallée Poussin has enumer-

* I am indebted to Mr. K. W. Lamson for the suggestion that a function 
of this type would illustrate the formula. See also III, p. 13. 

t i l l , p. 125. 
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ated the various hypotheses under which the formula 

J' fdx = lim I sndx 
e n=oo J « 

holds when lim sn = ƒ.* The conditions described in the 
Corollary to Theorem 9 can be greatly generalized to cover 
cases in which the functions sn are not necessarily bounded in 
in their totality. The formulas for integration by parts, and 
for transformation of simple and double integrals, have new 
and more powerful interpretations in the Lebesgue theory,f 
and a multiple integral is reduced to an iterated integral by a 
particularly beautiful theorem.^ If a function f(x, y) is 
measurable and bounded on a two-dimensional set E then 

I I f(x, y)dxdy = I I f(x, y)dydx 
•J JE JX J YX 

where X is the projection of E on the a>axis, and Yx is the 
section of E on the ordinate over the abscissa x. The inner 
integral on the right does not exist for every x in the projec­
tion X, but it turns out that this does not affect its integra-
bility over X since the set of points where it is not well-
defined has measure zero. The problem of determining a 
function whose Fourier constants are given is really the 
problem of the summation of a Fourier series which may or 
may not be convergent according to the usual definitions. 
Riesz and Fischer§ with the help of the Lebesgue theory 
proved the existence of a solution under very general circum­
stances which were later still further generalized by Riesz. || 
The theory of Fourier series has been retouched in many other 
places also as a result of contact with the new integrals.1^ 
But it is impossible to list here in detail the rapidly increasing 
number of applications. More important than any one of 
them by itself are the new habits of thinking of and dealing 
with discontinuities too serious to be handled by the older 
forms of integration, and these will be the permanent legacies 
of the theory of Lebesgue. 

* VI, p. 443; V, vol. 1, 3d edition, p. 263; VII, p. 48. 
t VI, pp. 465, 500; V, vol. 1, 3d edition, pp. 279 ff. 
% VII, p. 50; V, vol. 2, 2d edition, p. 120. 
§See, for example, Lalesco, Introduction à la théorie des équations 

intégrales, p. 95. 
|| Loc. cit. 
îf See Lebesgue, Leçons sur les séries trigonométriques; and V, vol. 2, 2d 

edition, pp. 130 ff. 
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T H E July number (volume 18, number 3) of the Transactions 
of the American Mathematical Society contains the following 
papers: "Set of independent postulates for betweenness," 
by E. V. HUNTINGTON and J. R. K L I N E ; "Haskins's momental 
theorem and its connection with Stieltjes's problem of mo­
ments / ' by E. B. VAN VLECK; "Point sets and allied Cremona 
groups (part I I I ) , " by A. B. COBLE; "On the second deriva­
tives of the extremal integral for the integral f F(y; yf)dt" by 
ARNOLD DRESDEN; "Concerning singular transformations Bk 

of surfaces applicable to quadrics," by LUIGI BIANCHI; 

"Types of (2, 2) point correspondences between two planes," 
by F . R. SHARPE and VIRGIL SNYDER. 

T H E July number (volume 39, number 3) of the American 
Journal of Mathematics contains : " A concomitant curve of the 
plane quartic," by TERESA COHEN; "On two related trans­
formations of space curves," by W. C. GRAUSTEIN; "The space 
problem of the calculus of variations in terms of angle," by 
P. R. R I D E R ; "Derivation of the complementary theorem from 
the Riemann-Roch theorem," by S. BEATTY; "On the equiv­
alence of relations XQ l^m ," by E. W. CHITTENDEN; "Some 
properties of certain finite algebras," by EDWARD KIRCHER; 

"The primitive groups of class 15," by W. A. MANNING; 


