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collineation group 6r2i6 was given by Maschke, Mathematische 
Annalen, volume 33, page 317. Of the five fundamental 
forms one is a proper sextic curve. Naturally this curve is 
closely associated with the syzygetic period of cubic curves 
which the group leaves invariant. Professor Winger discusses 
the sextic by means of its group property and points out some 
interesting relations to the system of cubics. 

THOMAS BUCK, 
Secretary of the Section. 

THE RATIO OF THE ARC TO THE CHORD OF 
AN ANALYTIC CURVE NEED NOT 

APPROACH UNITY. 
BY PROFESSOR EDWARD KASNER. 

(Read before the American Mathematical Society, September 9, 1913.) 

" I F P is a fixed point on a curve and Q is a point which 
approaches P along the curve, the limit of the ratio of the 
arc PQ to the chord PQ is unity." While this statement is 
frequently made without reservation, it is easy, as in most 
analogous statements, to construct exceptions in the domain 
of real functions: by making the curve sufficiently crinkly 
the limit may become say two, or any assigned number 
greater than unity. 

The object of this note, however, is to point out the necessity 
for reservation even in the domain of (complex) analytic 
curves. The limit may then be less than unity. For example, 
in the imaginary parabola 

y = ix + #2 

the value of the limit in question, at the origin, is not one, but 
about .94. The exact value is easily found to be | V 2 . 

Of course all such exceptions will be imaginary. Thus for a 
real non-circular ellipse the limit is obviously unity at each of 
the ool real points ; but of the <x>2 imaginary points of the ellipse, 
there are four points at which the limit takes the value .94 + . 
These are the points at which the tangent is a minimal (or 
isotropic) line. Thus if we explore all the points of the ellipse, 
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in the complex domain, the limit takes the usual value at all 
points except four points where the value is .94. The limit 
is therefore a discontinuous function of the point of the curve. 

Regular Elements or Curves in the Plane. 

The general theory is very simple. Consider first any 
analytic curve in the plane in the neighborhood of a point P 
at which it is regular. The equation of the curve referred to 
rectangular axes through P can be taken in the form 

(1) y = cix + c2x
2 + czv? + • • -, 

where the coefficients c are complex numbers. 
The chord y from the point P(0, 0) to the neighboring 

point Q{x, y) is 

y = V X2 + V2 

(2) T , _ 
= x V1 + ci2 + 2ciC2* + (2cic3 + c^)x2 + • • •. 

The length of the arc is 

«=* f VT+ y'2dx 
(3) \ 

= 1 A/ 1 + ci2 + 4cic2# + (6cic3 + 4c2
2)#2 + - - • dx. 

Jo 

If the term 1 + Ci2 does not vanish, that is, if the slope c\ does 
not equal dz i, then y and a can be developed into integral 
power series starting with the first power of x, the coefficient 
of x in both cases being Vl + ci2. Letting x = 0, we thus 
have the usual result 

L = lim a/y = 1. 

If, on the other hand, 1 + Ci2 does vanish, the developments 
of y and a are series in fractional powers of x. Assuming 
that C2 does not vanish, the leading term in y is then 

V2cie2a^ 
and that in a is 

£ ^iciC2xdx = f A/4ciC2o:f, 
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where Ci, of course, is =h i. Then our limit becomes 

L = §V~2 = .94+ . 

If however <?2 = 0, in addition of course to 1 + Ci2 = 0, while 
c3 =|= 0, the leading terms in (2) and (3) are 

<2cxczx* 
and 

j V QciCzxHx = f V QciCzX*, 

so that 
1 = 1 ^ 3 = .86+ . 

In the most general exceptional curve, we have say c\ = ± i, 
C2 = 0, Cz = 0, • • •, Ck-i = 0, Ck 4= 0, so that the equation of 
the curve is of the form 

(4) y - ± ix + ckx
h + ck+ixk+1 + • • • (c* + 0). 

The curve then has contact of order k — 1 with its minimal 
tangent. We find then 

A+i 

(5) 7 = A /2C I C ^ 2 + . . . , 

2 *+l 

(6) a = jp-j^2kcickx
 2 + • • -, 

so that 

_ . TV a r c 2 A ^ 
(7) i = h m Ö = FfT 

THEOREM I. T7/̂  Kmi£ of the ratio of the arc to the chord 
at a regular point of an analytic curve is unity provided the 
tangent at that point is not a minimal line. In the latter event 
{that is, when the slope is ± i) the limit is given by (7), where 
k — 1 denotes the order of contact of the curve with the minimal 
tangent.* 

In the trivial case where the given curve is a minimal line 
(instead of merely touching a minimal line), the limit does 
not exist. 

Omitting this trivial case, we see that at every point, real 

* That is, k is the number of consecutive points common to the curve 
and the tangent. In this form we observe that (7) remains valid even 
when k = 1, for then L — 1. 
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or imaginary, the limit exists and is always real. If it is not 
one, it is at most .94 + ; if it is less than this, it is at most 
.86 + • • •. Thus the limit value L is always a number se­
lected from the denumerable set 

jTTTT ("* == •"•> 2 , 3 , • • ' ) , 

the first few terms being, to two decimal places, 

(8) 1.00, .94, .86, .80, .74, •••. 

Most of these numbers are irrational, but some are rational. 
Thus in the case of third order contact with the minimal line, 
that is, k = 4, we have L = 4/5. 

Notice that in all the exceptional cases L is less than unity, 
that is, the arc becomes less, in absolute value, than the chord. 
This is as we should expect. For the chord ultimately diverges 
more from the minimal tangent than does the arc, and along a 
minimal line distances are zero. 

The sequence (8) has zero for its limit. That is, if k is made 
larger and larger, so that the curve has higher and higher 
contact with the minimal tangent, the value of L approaches, 
zero. But, as observed before, if we actually let the curve 
reduce to a minimal line, the limit L ceases to exist. There­
fore L cannot be made equal to zero; this number is not con­
tained in the sequence (8); but L can be made smaller than 
any assigned number. 

Irregular Elements.* 
Consider next irregular analytic arcs, that is, curves which, 

in a neighborhood of the given point P, taken as origin of 
rectangular axes, cannot be represented (for any choice of 
axes) by setting y equal to a series in integral powers of x, 
but can be represented by a series with fractional exponents, 
say a series arranged in powers of the pth root of x. If the 
slope of the curve at P is not d= i, the usual value L = 1 is 
obtained. Otherwise we have the following 

THEOREM II. If the analytic curve is irregular at the point 
P, and if the tangent line is minimal, the equation of the curve, 

* We are dealing always with an analytic element, that is, an analytic 
curve at a given point. We apply the adjective irregular either to the 
point or the curve or (preferably) the element. Cf. the usage of Study, § 6. 
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referred to P as origin, being of the form 
p+k—1 p-

(9) y = dtix + Cp+fc-i x p + Cp+jc x~ 

the limit of the ratio of the arc to the chord is 

For the regular curves we have, of course, p = 1, so that 
this general formula (10) reduces to (7). The range of possible 
values of L for the irregular arcs is greater, since the result 
(10) depends on the two integers p and k, characterizing the 
type of irregular (singular) point and the contact with the 
minimal tangent. The set of numbers (10) is dense every­
where between 1 and 0, while set (7) is dense only at 0. 
The value of the limit L may, in particular, now lie between 1 
and .94. Thus for an ordinary cusp with minimal tangent, 
that is, p = 2, k = 2, we have 

L = m = .96+. 
If p is fixed and k is made large, L becomes nearly 0; while 
if k is fixed and p made large, L becomes nearly 1. 

We observe that L2 in (10) is always rational and not 
greater than one. Not every proper fraction, however, can 
be a value of L2. The necessary and sufficient condition is 
that 1 — L2 shall be the square of a proper fraction. 

A Real Representation of the Results. 

Is it possible to bring the exceptional cases we have found 
within the realm of intuition instead of mere calculation? 
Can we picture, for example, the limiting ratio .94? One 
plan would be to use Study's real representation of analytic 
curves by means of <x>2 point pairs. The interpretation of 
distance and arc is then of course real but quite complicated.* 
We therefore use an indirect plan which is more convenient 
for our particular purpose. 

We pass from the original (x, y) plane to a (u, v) plane by 
the imaginary affine correspondence 

(11) u = x + iy, v = x — iy. 

* See Study, Vorlesung über ausgewâhlte Gegenstânde der Geometrie, 
Erstes Heft (1911), § 2. 
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The element of arc in the (x, y) plane, 

(12) ds = ^ldx2+dy2
f 

then becomes 
(13) dcr = Adudv. 

Thus the distance between two points P and Q in the first 
plane becomes the "pseudo-distance'' P'Q', defined not as 
the length of the segment P'Q', but as the side of a square 
having the same area as the rectangle constructed with P'Q' 
as diagonal, the sides being parallel to the u, v axes. 

The pseudo-length of an arc running from P' to Q' is of 
course obtained by inserting many intermediate points and 
constructing on the sides of the inscribed broken line little 
rectangles having those sides as diagonals, then adding, not 
the areas of these rectangles (that would give merely zero in 
the limit) but the square roots of the areas. The pseudo-
length of the chord P'Q' is obtained from the single big rectangle 
constructed for the diagonal P'Q'. 

With these definitions, we readily find that the ratio of 
the pseudo-arc to the pseudo-chord approaches unity when 
Q' approaches P', except when the tangent line at P' is hori­
zontal or vertical. In fact the minimal lines in the (x, y) 
plane are converted by our representation (11) into the lines 
parallel to the u, v axes. If we take a real curve in the (u, v) 
plane touching the horizontal line at P', the pseudo-arc P'Q' 
will ultimately become smaller than the pseudo-chord P'Q'. 
If the contact is of the first order, the limiting value of the 
ratio is .94 + , a result that could be verified by an accurate 
draughtsman. The other values of i , corresponding to higher 
contact and irregular points according to formulas (7) and (10), 
would be obtained with increasing experimental difficulties. 

Space Curves. 
So far we have been considering only plane curves. For 

analytic curves in space (of three or more dimensions) the 
results are quite different. The limit of the arc to the chord 
is of course unity for all real curves; and also for all complex 
curves provided the tangent line at the given point is not 
minimal. For the exceptional curves, however, the range of 
possibilities is much greater than in the plane. In the plane 
curve, the limit is always real. For space curves it may be 
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imaginary. In the plane, when the limit is not unity, the arc 
ultimately becomes less in absolute value than the chord. 
In space it may become either less or greater. While the set 
of possible values for L in the plane is denumerable, it consti­
tutes, in space, a continuum. This is true even if we confine 
ourselves to regular analytic curves. 

To justify these statements, we need not give a complete 
classification, but may confine ourselves to the special cate­
gory of curves 

y = a\x + a2x
2 + a3£

3 + • • • > s = b\X + b2x
2 + b$xs + • • • 

defined by the relations 

1 + ax2 + h2 = 0, axa2 + bxb2 = 0, 

(a2
2+b2

2)(a1az+b1bz) =(=0. 

By a simple calculation of the leading terms in the develop­
ments for arc and chord we find for such a curve 

\4X + 2 ' 
where 

\ — aias ~^~ blb* 
a2

2+b2
2 * 

Here L does not depend merely upon certain integers (arith­
metic invariants, order of contact), as was the case in the 
plane, but upon the actual coefficients in the equations of the 
curve, that is, upon differential invariants. Since X may 
take any complex value, the same is true for L. 

THEOREM III. Regular analytic curves in space can be con­
structed for which, at a given point, L shall have any assigned 
real or imaginary value. 

Relation to Conformai Geometry. 
It is worth while pointing out that the quantity L defined 

for any point of an analytic curve is important not only in 
metric geometry, based on the group of displacements, but in 
the more general conformai geometry, based on the group of 
all conformai transformations, a group which is infinite in the 
plane and finite in space. This follows from the fact that the 
value of L depends on the relation of the given curve to 
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minimal lines and curves. In fact the conformai group may 
be defined as consisting of all point transformations for which L 
is invariant. In particular it is found that two regular ele­
ments in the plane are conformally equivalent when and only 
when they agree with respect to L. 

This is not true of irregular arcs. The complete discussion 
of the conformai invariants of irregular analytic curves, or ele­
ments, will be given in another paper. The main result is that 
every such curve has differential invariants (certainly more than 
one, and probably an infinite number) except in the type rep­
resented by an ordinary cusp with non-minimal tangent. This 
type can be reduced formally to the normal form y = x%, and 
therefore has no invariant. Furthermore, any such analytic 
cusp can be transformed into any other by a unique con-
formal transformation. 

The power series defining an analytic element may be real 
or imaginary, integral or fractional. If, furthermore, we 
allow the series to be divergent as well as convergent, we 
have also a classification of elements as divergent or con­
vergent. The concept of divergent differential element of in­
finite order thus introduced promises to lead to greater sim­
plicity and generality in the differential geometry of curves 
and surfaces. The resulting "geometry of divergent power 
series " will be treated elsewhere. 

COLUMBIA UNIVERSITY, 

N E W Y O R K . 

A MERSENNE PRIME. 

By Lucas's theorem (American Journal of Mathematics, vol­
ume 1, page 305) a Mersenne number n = 24«+3 — 1 with 
4g + 3 a prime and 8g + 7 composite is a prime number if 
the first term of the series 3, 7, 47, 2207, . . . divisible by n 
lies between the (2g + l)th and the (4g + 2)th. My compu­
tations show that 2107 — 1 divides the 106th term of the series 
and is therefore a prime number. 

R. E. POWERS. 
D E N V E R , COLO. 


