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Therefore when C is any curve in F' and F" joining the points 
1 and 3 and C is the corresponding curve satisfying conditions 
I, II, III, IV, the preceding equations give the relation 

J*(Ci2') + j*(£2'3) = J*(Ci2) +i*(c2 3) = J{Cu) +i(C2 8) . 

This equation may also be written in the form 

J(Cn>) + j(Ct>z) - u(Cit) + i (c 2 i ) ] 

= f Edt+ f edt, 

where i? and e are the extended Weierstrass E-functions. On 
account of II these functions are nowhere negative and there­
fore 

J(Ci2') +j(C*>z) > J(C12) +j(C2 3). 

Hence the conclusion: Under the hypothesis imposed the 
curve Cm actually minimizes the sum of the integrals J and j 
if it satisfies the conditions I, II, III, IV . 
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1. A large part of Laguerre's numerous and important 
contributions to the theory of algebraic equations* is based on 
Descartes' rule of signs, and especially on its application to 
infinite series. One of the most fertile ideas developed is that 
an upper limit for the number of real roots of a polynomial with 
real coefficients, f(x), in an interval [0, a] results from the 
application of the rule of signs to a product fc(x) = fi(x)f(x) 
developed in a power series which converges for | x | < a, but 

* See in particular the memoir, "Sur la théorie des équations numé­
riques," Oeuvres, pp. 3-47. 
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diverges for x = a. Thus integral functions fi(x) exist for 
which this method gives, in general, a better approximation for 
the number of positive real roots of f(x) than could be ob­
tained by the direct use of the rule of signs on f(x) itself. In 
particular Laguerre has shown (loc. cit.) that if the product 
eexf(x) is developed according to ascending powers of x, the 
number of variations of sign in the sequence of the coefficients 
will be exactly equal to the number of positive real roots of 
f(x), provided z is a sufficiently large positive number. Re­
cently it has been proved by Fekete and Pólya* that the 
rule of signs applied to the power series for ƒ 0*0/(1 — %)n gives 
the exact number of real roots of f(x) in the interval [0, 1] if 
n is sufficiently large, a result easily modified so as to apply 
to the interval [0, oo ] ; and in the same paper it is announced 
that the multiplier (1 + x)n, with a similar restriction on n, 
may also be used to obtain the number of positive real roots. 

A question of particular interest is the existence and char­
acter for a given polynomial with real coefficients,/Or), of what 
I have elsewheref styled Cartesian multipliers, i. e., poly­
nomials fi(x) such that the rule of signs applied to the product 
ƒ2 0*0 = /i 0*0/0*0 gives exactly the number of positive real 
roots of ƒ Or) • A discussion of such multipliers for polynomials 
having no positive roots has been given by E. Meissner,J 
and in the general case by the present writer in the paper above 
cited, where their existence is made a corollary of Laguerre's 
theorem concerning the product ezxf{x). Their existence, of 
course, also follows from the results obtained by Fekete and 
Pólya. 

In the present paper I shall give a proof of the existence of 
Cartesian multipliers which is in some ways simpler than any 
yet given. § That the construction of a multiplier by the 
method indicated would require a knowledge of the roots seems 
an objection, but this is met by a theorem of my Annalen 
paper above referred to, which states that if there is a Car­
tesian multiplier of degree r, there is always at least one of, 

*"TJber ein Problem von Laguerre," Palermo Rendiconti, vol. 34 
(1912), p. 89. 

f "An extension of Descartes' rule of signs," Math. Annalen, vol. 73 
(1912),..p. 424. 

t "Über positive Darstellungen von Poly nomen," Math. Annalen, 
vol. 70 (1911), p. 223. 

§ This proof possibly antedates the others, having been announced in 
April, 1910, as noted above. 
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that degree for which the product function fe(x) has no more 
than n + 1 non-vanishing coefficients, where n is the degree 
of ƒ (x). The number of product functions of degree r + n with 
r terms lacking is evidently finite; if we pick out those func­
tions of this set whose coefficients present the minimum 
number of variations of sign, and divide each by f(x), we 
obtain Cartesian multipliers whose coefficients are rational 
in the coefficients of ƒ Or). From this point of view it is 
important to obtain as low a value for r as possible, and in a 
form not requiring a knowledge of the roots of ƒ(#)• Since 
xkfi(x) is for all positive integral values of & a Cartesian 
multiplier of f(x) if fi(x) has this property, it is obvious that 
there exist Cartesian multipliers of all degrees greater than 
the minimum r. Although the evaluation for the degree of a 
Cartesian multiplier obtained in the following pages is far too 
large, in general, for practical applications, it has at least the 
interest of a first attempt at an explicit formula. 

2. We shall consider first the case where f(x) is a quadratic 
with imaginary roots. For a very ingenious geometric method 
the reader should consult the paper of Meissner above cited. 

The case of interest is, of course, where f(x) has the form 
x2 — ax + b (a2 < 46), a and b being positive real numbers, 
this being the only form for which Descartes' rule is inexact. 
The problem is to assign a multiplierfi (x) such that the product 
f(x)fi(x) will have no negative coefficients. 

An especially simple solution is the following: If we multiply 
x2 — ax + b by x2 + ax + b, the result will be of the form 
x4 — aix2 + b2; if a\ is negative, we stop here, otherwise we 
multiply the last expression by x4 + a\x2 + b2, and keep up 
the process thus indicated. When this has been carried 
sufficiently far we shall obtain a product of the form x2k l — 
aux2 + b2 , where a& is negative or zero. The truth of this is 
evident if the roots of f(x) are pei<f>, pe~i(}>, so that a = 2p cos c/> 
and b = p2; it then follows at once that a\ = 2p2 cos 2<£, and 
ttfc = 2p2 cos 2k<t>. Since a is positive, 4> can be taken as an 
angle of the first quadrant, and k may be chosen as the least 
positive integer for which 2kcj> ^ w/2. 

The value 2k+1 — 2 thus obtained as the degree of a Cartesian 
multiplier for a quadratic of the above form is not, in general, 
the minimum one. This has been proved by Meissner, in the 
paper cited, to be the least positive integer r for which 
(r + 2)<p ^ 7T. The same result has been obtained by the 
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author (loc. cit.) as a corollary of the theorem that there is a 
Cartesian multiplier of minimum degree such that the product 
function is of form xr+2 + Ax8 + J9. The coefficients A and 
B are easily determined from the fact that the roots of f(x) 
must be roots of the product; s may be any positive integer 
less than r + 2. The corresponding Cartesian multipliers are 
easily computed. 

Though a solution of our problem in this case has been thus 
obtained, the interest attaching to Laguerre's multiplier ezx 

will perhaps warrant a brief digression to examine the Cartesian 
multiplier formed by taking m + 1 terms of its development 
in powers of x. If the product is arranged in the form 

Co + CiX + • • • + Cm+2Xm+2, 

the coefficients are given by the formulas 

Ck = -TJ- (p2z2 — 2pzk cos <j> + k(k — 1)) (k £ m), 

cw+i = —7 (— 2pz cos 4> + m), 

Cm+2== ml' 

We can make Ck positive or zero for all values of k ^ m, no 
matter how large m is taken, if 

1 
* ~ 2p(l - cos 0) J 

and cm+i will then be positive if 

. cos<£ 
m >^ 7 . 

— 1 — cos <t> 
If we compare this degree m with r in the preceding para­
graph, we see that m is never less than r, and is much larger 
for small values of <j>. 

3. We shall now form a multiplier for any polynomial ƒ(x) 
of degree n by a method which depends upon a knowledge of 
the roots, leaving for the following section the problem of 
obtaining an upper limit M for the degree of this multiplier 
in an explicit expression in terms of the coefficients of f(x). 
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According to § 1 we are then assured of the existence of 
Cartesian multipliers of all degrees ^ M whose coefficients 
are rational in terms of those of ƒ (or). 

Let us write our polynomial of degree n in the form 

(1) ƒ(«) = PfeiW?n,(*)^W, 
where each of the factors j ^ n i , qn» sns, is a polynomial of the 
degree indicated by its subscript, the first having imaginary 
roots only, the second only zero or negative roots, and the last 
only positive roots. If ri\ = 0 the rule of signs for f(x) is exact, 
hence the case to be considered is that where n\ > 0. 

We have just proved that each quadratic factor of #2Wl has a 
multiplier such that the product has all its terms positive. 
The product P(x) of these multipliers will then be a Cartesian 
multiplier for P2ni(x)qn^(x)9 since the coefficients of qni(x) are 
all of like sign. Let us designate the degree of the product 
P(^)p2ni(x)qn2(

x) by N. Since we are considering the case 
where n\ > 0, we must have N ^ 2. 

The polynomial s1l3(x) has the factored form 

Sn8(x) = k I I (X ~ <*<)* 

where h is a real constant, and the numbers a* are all real 
and positive. If this is multiplied by 

S(x) = E[ (^_1 + »"«i + • • • + xN-W-x H + a*»-1), 

where N has the value indicated above, we shall have 

S(x)Sn3(x) =kU (** - «/) = k E ( - 1)%XW, 

where every Xy is positive. It is now evident, if S(x)sn8(x) 
and P(x)p2ni(x)qn2(x) are arranged as polynomials in descend­
ing powers of x, that their product will present rtz + 1 se­
quences of terms such that all coefficients of the same sequence 
will have the same sign, which will be opposite to that of the 
coefficients in the succeeding sequence. The product will 
thus present n3 variations of sign, where n3 is the number of 
positive real roots of ƒ(#). But 

P(x)p2n1(x)qn2(x)'S(x)snB(x) = P(x)S(x)f(x), 

so that P(x)8(x) is a Cartesian multiplier of f(x). 
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4. I t remains to obtain an upper limit for the degree of the 
multiplier P(x)S(x) described in § 3, and to put this in a form 
depending explicitly on the coefficients of ƒ(#)• 

The polynomial P(x) was obtained as the product of Car­
tesian multipliers for each of the quadratic factors of P2ni0*0* 
Hence if mi is not less than the degree of any of these multi­
pliers, the degree of P(x) will be at most mini. From its 
definition, the number N verifies the equation 

N = mini + 2ni + n^, 

if mini is the degree of P(x), Since 

n = 2ni + n* + n3, 

the above may be written 

N = mini + n — n3. 

Hence, the degree of S(x) being rts(N — 1), the degree of 
P(x)S(x) is at most equal to 

m = mini + n3(iV — 1) = mini(l + n3) + n3(n — n3 — 1). 

But 
2ni ^ ?z — n3, 

so that 

m £mi — - — (1 + n3) + n3(n — n3 — 1). 

This expression is a quadratic in n3 whose maximum value, 
reached when n3 = (n — l)/2, is easily obtained. In case 
this is an integer, it will serve for M, or, more generally, 

where the symbol E (a) denotes the largest integer not greater 
than the real number a. 

This number M will be the degree of a Cartesian multiplier 
in all cases. To be sure, it was obtained under the hypothesis 
ni > 0, but as before observed, if n\ = 0 the rule of signs is 
exact for fix) itself, so that xM, for instance, will be a multiplier 
of degree M. 

We now proceed to express the number mi in the above 
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formula in terms of the coefficients of fix). This number, it 
will be recalled, is a positive integer large enough to be the 
degree of a Cartesian multiplier for any quadratic factor of 
fix) corresponding to a pair of conjugate imaginary roots. 

We have seen in § 2 that a quadratic 

x2 — 2p cos 4> • x + p2 

has a multiplier of degree r, where r is the least positive integer 
such that 

(r + 2)<t> ^ ir, 

and there will be multipliers of any degree greater than that 
given by this formula. I t follows that if \f/ is a positive angle 
less than all the positive arguments of the imaginary roots of 
fix), we can take for rax the least positive integer verifying 
the inequality 
(3) (mi + 2)yp ^ TT. 

A simple method for obtaining an evaluation for \p in terms 
of the coefficients of fix) is suggested by Cauchy's treatment 
of the problem of determining a minimum absolute value for 
the differences of real roots of a polynomial.* 

Since the removing of multiple roots from fix) involves only 
rational processes, we will here suppose that they are absent. 
Let the roots of fix), all distinct, be designated by x\, x*, • • •, 
xn, and the discriminant of fix) by D. Then, by a well-known 
formulât 

n(n—1) 

A, y. 

(X = 1, 2, • • -, n - 1; M = X + 1, X + 2, • • -, n). 

If the minimum positive argument of imaginary roots is <£i, 
the corresponding pair of roots being pie±i(l>1, and if p denotes a 
superior limit for the moduli of roots of ƒ(#),{ we have, since 
| xk - av | ^ 2p, 

\D\ <; | a0 12n~2(2pi sin 0i)2(2p)w^-1>~2 

^ |ao |2n-2(2p)n^-1>(sin01)2 , 
or 

* Netto, Vorlesungen über Algebra, vol. 1, p. 272. 
t Netto, 1. c , p. 177. 
+ Such a limit is, for example, given by the formula p = 1 + r/ro, 

where r0 = !a0|, and r is the greatest of the numbers \a0\, \ai\, • • •, |o»|. 



26 THE DEGREE OF A CARTESIAN MULTIPLIER. [Oct. , 

I D I* 

Solved for 0i, this gives 

(4) fc ^ s i n - i ] - ^ _ ï | - ^ _ Ü T 2 . 

Since <£i ^ sin 0i, (4) may be replaced by 

ID I* 
( 5 ) <t>i^ 

a0 |
w~1(2p)n(w-1)/2* 

If the coefficients of ƒ(#) are integers, D is a whole number, and 
| D | ^ 1, so that (4) and (5) can in this case be replaced by the 
stronger but simpler inequality 

(6) fc£ 1 
a0|

w-1(2p)w(*-1>/2' 

We may take for \p the right-hand side of (4) or (5) or, in the 
case indicated, of (6). 

The "problem of obtaining the degree of a Cartesian multiplier 
is thus solved by formulas (2) and (3), yp being taken equal to the 
right-hand member of either (4), (5), or (6). 

I t must be confessed that the evaluation thus obtained is 
absurdly high, even in simple cases. Thus, to take an ex­
ample somewhat at random, if f{x) = x* + xz — 2x2 + 2x + 3, 
the least value of rai as given by (3) and (4) is not far from 
8,500, and (2) would give M as greater than 19,000. I have 
shown in my Annalen paper that this polynomial has a 
Cartesian multiplier of degree 2. I t is not likely that the 
methods here given, even if improved, will have much value 
for numerical computation. There remains, however, the 
interest attaching to a formal solution of the problem in hand. 

NORTHWESTERN UNIVERSITY. 


