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SOME PROPERTIES OF SPACE CURVES MINIMIZING
A DEFINITE INTEGRAL WITH DISCON-
TINUOUS INTEGRAND.

BY DR. E. J. MILES.
(Read before the American Mathematical Society, February 25, 1911.)

IN a recent paper Bliss and Mason* considered the problem
of the calculus of variations in which the integrand function
is allowed to have a finite discontinuity along a given plane
curve which separates the fixed end points. Later they made a
systematic extension of the Weierstrassian theory of the
calculus of variations to problems in space.f The object of
the present note is to state the results obtained by applying
the method used in the first mentioned paper to the case of a
discontinuous integrand occurring in the space problem.

The problem studied may then be stated in the following
way: Among all curves which go from the point 1 to the point
3 lying on opposite sides of a given surface S, and which cross
S but once, it is required to find the one which minimizes
the sum of the two integrals

J = fF(w: Y, 3 x,: :l/', 2’)dt, j = ff(my Y, %, x” :l/'; Z’)dt:

the first integral to be taken from the point 1 to the surface
S and the second from S to the point 3.

§ 1. Equations Defining the Minimizing Curves.
In order to find the equations of the minimizing curves
(@)) z=2@), y=y@®), =z=-=z(),

it will be supposed that all curves considered lie in the interior
of a region R of space. The surface S defined by the equations

S: z=2(u,0), y=yu), z==2,01)

* Bliss and Mason: “ A problem of the calculus of variations in which
the integrand is discontinuous,” Transactions, vol. 7 (1906).
Bliss and Mason: “ The properties of curves in space which minimize
a definite integral,” Transactions, vol. 9 (1908). For brevity this paper
will hereafter be referred to as I.
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is supposed to have no singular points in R and divides this
region into two regions R; and R, which contain the points
1 and 3 respectively. In R, the variables and their derivatives
will be denoted by capital letters while in R, small letters
willbeused. Thenin the whole of R it will be assumed that the
two functions F and f have the properties ordinarily imposed
in the space problem. Hence the functions (1) must satisfy
the Euler differential equations and if the parameter is chosen
as the length of arc and the problem assumed to be regular it
follows that the extremals for J can therefore be written in
the form

X =%(s; X1, Y1, Zy, X, YY) ZY)),
(2) Y = ‘I’(S; le Yl) Zl: Xlly Yl'; Zl,)’

Z = X(s; .X1 Yl, ZI, Xl’, Y].,: Zl’))
where

®) X N4 2y =1
and the following initial conditions are satisfied
®0; X1, Y1, Zy, XV, Y, ZY) = X,
®,(0; X4, Y1, Z1, XV, Y, ZY) = XY,
DYO; Xy, Y1, 22, X\, YV, Zy) = 1y,
‘I’,(O; Xl, Y1, Z1, Xl’, Yl', Zl') = Y1,,
X(0; Xy, Y1, 21, Xi, Y, ZY') = Zy,
X:(0; Xy, Yy, 2, X4, YV, ZY') = ZY'.
A similar set of extremals exists for the integral j which can
be denoted by the equations
z = ¢(s; 21, Y1, 31, ', Y1’ A1),
) y = ¥(8; 21, Y1, 21, @1, Y15 21),
z = x(8; &1, Y1, 21, 21, y1', #1'),
where the functions ¢, ¥, x satisfy initial conditions similar
toI(,it):OZ be the point where the minimizing curve joining 1
and 3 intersects the surface S. Then since the arcs Cy; and
C,3 must minimize the integrals J and j with respect to all
curves joining 1 and 2, 2 and 3 respectively and lying in the

regions R; and R; it follows that the regular conditions I and
II are necessary:
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I. The arcs Ci2 and Cos are extremals for the integrals J
and j, respectively, and therefore belong to the sets (2) and (5).

II. The functions Fy and fi must be positive along the arcs
C12 and Cos satisfying 1.

§2. The Third Necessary Condition.

The third necessary condition is found to be a restriction
on the direction of the extremal arcs Ci2 and Cy3 at the point
of intersection 2 with the surface S.

In order to find what this restriction is let it be supposed
that the minimizing curve is imbedded in a one-parameter
family of curves

(6) z=a(t,uw, y= b(t, u) == c(t, u),

which has the following properties. The curves all intersect
the surface S for ¢ = t;, pass through the point 1 for ¢ = ¢,,
through 3 for ¢ = #3, and contain the curve C for u = wu,.
Thus it has been assumed that the point 2 varies along the
u-parameter curve of S. The sum of the two integrals J
and j taken along any number of the set (6) from 1 to 3 is
evidently a function of  which may be denoted by I(uw). But
if C is to furnish a minimum the derivative I’(4) must vanish
when % = u,. By the ordinary methods of variations this
leads to the following result:

(7) [FX'—fm’]xu"l_[FY'_fu]yu-l'[FZ’_fz']zu: 0,

where the arguments of the derivatives of F are the values of
X,Y,Z, X', Y, Z” on the curve Cy. at the point 2, while those
of the derivatives of f are the values @, y, 2, 2/, ¥/, 2’ on Cas
at 2 and @y, Yu, 3, define the direction of the u-parameter line
on S.

Likewise when the point 2 varies on the v-parameter line
of the surface there results the corresponding equation

(8) [FX' - fz']xv + [FY’ - fy']yv + [Fy— fz’]zv = 0.

The third condition is then

II1. The extremal arcs Ciy and Cas together with the surface
S must satisfy equations (7) and (8) at the intersection point
2 on the surface.

Since the direction cosines of any curve on S are propor-
tional to



14 CURVES MINIMIZING A DEFINITE INTEGRAL.  [Oct.,

xu + xv’, yuu' 4y, 2+ o2,

it follows that equations (7) and (8) will be satisfied when the
point moves on any curve passing through 2 and furthermore
the bracketed quantities in these equations are proportional
to the direction cosines of the normal to the surface at 2.

§3. The System of Extremals for j Determined by Those of J
and Condition I11.

It can now be shown that if a curve (133 has been found
which satisfies conditions I, II and III then each extremal
(12, of the set (2) determines uniquely in connection with ITI
one of the set (5).

In order to see this, think of equations (2) as a set of ex-
tremals through the fixed point (X;, Y1, Z;) intersecting the
surface at points 2. X,, Y, Z, are then parameters
satisfying the equation (3).

In place of the parameters X,/, Yy, Z;" it will be found
advantageous to introduce the values of the » and » parameter
lines of S. This can be accomplished by solving* the equations

&(s; X1, Y1, Z1, X/, YV, ZY)) = 2(u, v),
9) W(s; Xy, Yy, Zy, X, Y, Zy) = y(u, v),
X(s; Xy, Yy, Zy, Xi, Yy, Zy') = 3(u,v),

X4+ Y +2Z"=1

for s, Xy, Yy, Z\ in terms of » and v and substituting the
values of Xy, Y/, Z,’ thus obtained in (2). Equations of the
following form result

10) X =®(s, u,v), Y =V(s,u,02), Z=X(s,u,o).
Consider now the equations

o =1,
(1) foru+ fuyu + foru = Fxxu + Fryu + Fr2u,
Foito + fuypo + foro = Fx@o + Frys + Fap,
* This is always possible for points 2’ on S sufficiently near 2, provided

the point 2 on C;2 is not conjugate to 1. See Bliss and Mason, I, p. 446
and following.
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of which the last two are simply the equations (7) and (8)
written in a separated form. By means of the equations of
the surface S and (10) it is possible to express X», Y., Zs;
X2, Yo5 223 Tus Yus Buj Loy Yoy 2 and Xy, Yo, Zo' in terms of u
and ». Equations (11) are then functions of x./, ¥.’, 2.’, u
and v, having one solution corresponding to 2. Hence there
will be a unique solution for xy’, s/, 22’ as functions of » and
v provided the functional determinant of the left hand members
of (11) is different from zero.
This determinant is found to have the value*

cla'{fs — Fy'} + 9/ {fy) — Fy'} + =/ {f)) — F5'}]
f 1(952'2 + :l/2/2 -+ 22’2),

an expression which can vanish only when the term in brackets
vanishes. This can happen only when the arc C»; is tangent
to S at 2—a case which will be excluded. Hence there is a
unique solution for a.’, y»’ and 2.’ in terms of » and », and when
these values are substituted in equations (5) it is seen that
they assume the form

(12) 2= o(s,u,9), y= Y(s, u,v), 2= x(s,u,0),

where of course @2, ¥s, 22 have also been replaced by the
functions z(u, v), y(u, v), 2(u, v) defining the point 2 on S.

It has therefore been shown that if Cie3 s a curve satisfying
condittons I, II, III, then to each extremal through 1, C.y of
the integral J and near Cyo there corresponds one extremal of the
integral j, which with C,y satisfies the corner condition 111 at 2'.
The two parameter set of extremals for J thus defines another
two parameter set for j with initial points on S. The equations
of the two sets with u and v as parameters can be put in the forms
(10) and (12)

Furthermore the functional determinant A of the functions
defined in (12)

Ps Pu Qo
A, u,0) = |¥s Yu Yo
Xs Xu Xv

is found to be different from 0 for the point 2 and hence from
continuity conditions for points near 2.

* For a method of evaluating see Bliss and Mason, I, p. 447.
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If however it is assumed that A does vanish for some point
4 on Cy3 and that at least one of the three-rowed determinants
of the matrix
Ay Ay A

Ps Pu v
‘p‘ lP u ¢‘D
Xs Xu Xv

does not vanish with A, it then follows* that the extremals (12)
have an enveloping surface D which touches the curve Co;
at4. Moreover it is known from the general theory that there
is a single definite curve

d: z=z(@), y=yl@), =320

on S which touches Cp; at 4 and is the envelope of a one
parameter family of extremals selected from (12) and con-
taining Cas for & = 0. The equation of this last family may
be written in the form

(13) - r=o(sa), y=y6 a), z=xsa).

Furthermore it is possible to select from the two-parameter
family (10) a one-parameter family involving the parameter o
and satisfying the direction conditions III. For in connection
with these equations it was shown that any Ci»’ determined
uniquely a Cy, with initial point on 8. Since however the
functional determinants for both sets of extremals are different
from zero at 2 it follows that the converse also holds. Con-
sequently when a one-parameter family (13) satisfying the
imposed conditions is chosen from (12) there goes with it a
definite one-parameter family of the set (10), say

(14) X=®@6,0), Y=Y¥@a), Z=X(@soa),

containing Cy; for a = 0.

§4. The Jacobi Condition.

By means of the two one-parameter families just given and
their enveloping curve d it can now be proved that an arc
C123 which joins 1 to 3 and minimizes the sum of the two in-
tegrals J and j cannot have upon it a point of contact 4 with

* See Bliss and Mason, I, p. 449.
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the enveloping surface D. For consider the sum of the integral
J taken along Ciz’ from 1 to S, plus the value of j taken along
Cy'3’ from S to the contact point 4’ of C,, with d and then,
along d from 4/ to 4. It is found that this sum has a constant
value, for its derivative with respect to « is zero.

In fact it is readily verified by the ordinary methods that

dJ ’

-CE (012’) = xaFX' + ya.FYI + 2”:11;12,/2 ’
where z,, y,, 2, are the direction cosines of a line on S. Like-
wise
dj , ,
JZ; (02’4’) = [fx’xa + fy’ya + fl’za]/z + f(x’ Y 2y Toy Yoy zuL)/‘r 3
and

dj(d4'4_) _ ’
da = '—_f(it', Y, B Xy Yas za)/i'

Recalling now the direction condition at the point 2, it is
seen that the sum of these three derivatives is zero and there-
fore the sum of the three integrals J(C,y), j(Cyy) and j(d,,)
is constant in value and in particular is equal to the sum of
J(Cm) and ](024)

The usual argument with regard to the envelope d not being
a solution of the Euler equations can now be applied, from
which it follows that if 4 is not a singular point of d then the
arcs Ci2 and Ca3 cannot minimize the sum Jip + 723 if 4 lies
on the arc Cy;. Therefore as a fourth necessary condition
it can be stated that

IV. The extremal arcs Ciz and Cas can conmtain mo points
conjugate to their tnitial points 1 and 2. Therefore the curve
d on the enveloping surface D of the extremals Cy'y’ must not
touch the arc Ca3 before the point 3.

§ 5. Sufficient Condstions.

Suppose now that a curve Ci3 has been found which satisfies
conditions I, II, ITT and IV strengthened by the assumption
that: IV’, the curve d does not touch the arc Cp; even at the
point 3. It is desired to see if Cis3 actually minimizes the
sum of the two integrals under these conditions.

It has already been shown that if the arc C1, does not contain
the point conjugate to 1 it can be imbedded in a two-para-
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meter family of extremals (15’ passing through 1. Moreover
the functional determinant of this family is different from zero
and it follows therefore that the set Ci’ forms a field F’
about Cp.. Further, on account of condition IV’, the de-
terminant A(s, u, v) of the set sy’ determined by Ci’ and
condition IIT is different from zero along Cs3 and so the set
Cyy forms a field F”” about the arc Cy;. In each of these
fields the properties of the extended invariant integral* hold.
Consider then any curve

C: x=2a(), y=y@), z2=230)

which joins the two fixed points 5 and 7, crosses S once at 6
and lies entirely in the fields F’ and F”/. It can be proved
that the following theorem holds: The sum of the two integrals
J*(Cse) and j*(Cer) is independent of the path of integration and
depends only on the end points 5 and 7. _
In order to prove this consider any comparison curve C
which joins 5 and 7, lies entirely in the fields F’ and F'’, and
crosses S once at the point 6’. Since each of the integrals is
invariant in its respective field the two following equations
result _
J*(Cse”) + J*(ke's) = J*(Chs),
7*(k's) 4 j*(Con) = j*(Cen),
where £ is any curve on S. Combining the two equations,
T*(Cse) + 7(Coz) — [T*(Crs) + j*(Con)]
= — J¥*(ke's) — j*(kes') = J*(kes’) — j*(kes’).

If expressed in the form of a definite integral, the right hand
member of this equation is

6’
[ @+ VEy o+ By = alf = Yy = s
6

where o/, b’, ¢’ are the direction cosines of . But condition
I1I tells at once that the integrand is identically zero and the
above statement follows.

Hence if Cygr coincides with an extremal for J from 5 to 6
and with an extremal for j from 6 to 7, then

J*(Css) + j*(067) = J(Cse) + j(Ce7)-

* For a statement of these properties see Bliss and Mason, I, p. 458.




1913.] THE DEGREE OF A CARTESIAN MULTIPLIER. 19

Therefore when C is any curve in F/ and F”’ joining the points
1 and 3 and C is the corresponding curve satisfying conditions
I, IT, III, IV’, the preceding equations give the relation

T*(Crar) + §*(Cars) = J*(C1a) + j*(Cas) = J(C1a) + j(C1a).
This equation may also be written in the form

J(Cra?) + §(Cy7s) — [J(C12) + j(C2s)]
= J(Cr) — J*(C1s') + j(Cars) — j*(Cs)

= f Edt + edt,
%%

Co's

where E and e are the extended Welerstrass E-functions. On
account of II these functions are nowhere negative and there-
fore

J(Cr2) + §(Cars) > J(C1z) + j(Cs).

Hence the conclusion: Under the hypothesis imposed the
curve Chos actually minimizes the sum of the integrals J and j
if it satisfies the conditions I, 11, ITI, IV,

SHEFFIELD SCIENTIFIC SCHOOL,
YaLE UNIVERSITY.

THE DEGREE OF A CARTESIAN MULTIPLIER.

BY PROFESSOR D. R. CURTISS.

(Read before the Chicago Section of the American Mathematical Society,
April 8, 1910, and April 5, 1912.)

1. A large part of Laguerre’s numerous and important
contributions to the theory of algebraic equations* is based on
Descartes’ rule of signs, and especially on its application to
infinite series. One of the most fertile ideas developed is that
an upper limit for the number of real roots of a polynomial with
real coefficients, f(x), in an interval {0, a] results from the
application of the rule of signs to a product fa(x) = fi(x)f(x)
developed in a power series which converges for |z | < a, but

* See in particular the memoir, “Sur la théorie des équations numé-
riques,” Oeuvres, pp. 3-47.



