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SOME PROPERTIES OF SPACE CURVES MINIMIZING 
A DEFINITE INTEGRAL WITH DISCON­

TINUOUS INTEGRAND. 

BY DR. E. J. MILES. 

(Read before the American Mathematical Society, February 25, 1911.) 

IN a recent paper Bliss and Mason* considered the problem 
of the calculus of variations in which the integrand function 
is allowed to have a finite discontinuity along a given plane 
curve which separates the fixed end points. Later they made a 
systematic extension of the Weierstrassian theory of the 
calculus of variations to problems in space.f The object of 
the present note is to state the results obtained by applying 
the method used in the first mentioned paper to the case of a 
discontinuous integrand occurring in the space problem. 

The problem studied may then be stated in the following 
way: Among all curves which go from the point 1 to the point 
3 lying on opposite sides of a given surface S, and which cross 
S but once, it is required to find the one which minimizes 
the sum of the two integrals 

J = fF(x, y, z, x', y', z')dt, j = ff(x, y, zy x', y'} z')dt, 

the first integral to be taken from the point 1 to the surface 
S and the second from S to the point 3. 

§ 1. Equations Defining the Minimizing Curves. 
In order to find the equations of the minimizing curves 

(1) x = x(t), y = y(t), z = z(t), 

it will be supposed that all curves considered lie in the interior 
of a region R of space. The surface S defined by the equations 

S: x = x(u, v), y = y(u} v), z = z(u, v) 

* Bliss and Mason: " A problem of the calculus of variations in which 
the integrand is discontinuous," Transactions, vol. 7 (1906). 

t Bliss and Mason: " The properties of curves in space which minimize 
a definite integral," Transactions, vol. 9 (1908). For brevity this paper 
will hereafter be referred to as I. 
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is supposed to have no singular points in R and divides this 
region into two regions Ri and R2 which contain the points 
1 and 3 respectively. In JBI the variables and their derivatives 
will be denoted by capital letters while in j?2 small letters 
will be used. Then in the whole of i2 it will be assumed that the 
two functions F and ƒ have the properties ordinarily imposed 
in the space problem. Hence the functions (1) must satisfy 
the Euler differential equations and if the parameter is chosen 
as the length of arc and the problem assumed to be regular it 
follows that the extremals for J can therefore be written in 
the form 

x = *(*; xu rl9 zu xx
f, FA z o , 

(2) Y = ¥ ( , ; Zu Yl9 Zu Zi ' , IY, Zi'), 
Z = X(s; Xi Y\, Zi, Xi, Yi', Zi), 

where 
(3) Xi'2 + YÎ* + Zi* = 1 

and the following initial conditions are satisfied 

*(0; Xu Yi, Zu Xx', Yx', Zf) = Xu 

$«(0; Xi, Yu Zu Xi', 7i', Zi') = Xx', 

(4)¥(0; Xu Yu Zu Xi', 1Y, Z,') = Yu 

*.(0; Xu Yu Zu Xi', Fi', Zi') = YS, 
X(0; Xu Yi, Zu Xi, Y\, Z%) = Zu 

Xs(0; Xi, Yu Zu X\> Yi, Z\) = Zi'. 

A similar set of extremals exists for the integral j which can 
be denoted by the equations 

x = <p(s; xu yu *i, 3i', yx', Zi')9 

(5) y = *Ks; xu yu *i, »i', yi, *i')> 

s = x(*; «i* vi> »b «i'* »i'> *i')> 

where the functions ^, ^, x satisfy initial conditions similar 
to (4). 

Let 2 be the point where the minimizing curve joining 1 
and 3 intersects the surface 8. Then since the arcs Cu and 
C23 must minimize the integrals J and j with respect to all 
curves joining 1 and 2, 2 and 3 respectively and lying in the 
regions JBi and R2 it follows that the regular conditions I and 
II are necessary: 
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I. The arcs Cu and C23 are extremals for the integrals J 
and j , respectively, and therefore belong to the sets (2) and (5). 

II. The functions Fi and fi must be positive along the arcs 
C12 and C23 satisfying I. 

§ 2. The Third Necessary Condition. 
The third necessary condition is found to be a restriction 

on the direction of the extremal arcs Cn and C23 at the point 
of intersection 2 with the surface £. 

In order to find what this restriction is let it be supposed 
that the minimizing curve is imbedded in a one-parameter 
family of curves 

(6) x = a(t, u), y = b(t, u) z = c(f, u), 

which has the following properties. The curves all intersect 
the surface S f or t = t2, pass through the point 1 f or t = tu 
through 3 f or t = t%, and contain the curve C f or u = v*. 
Thus it has been assumed that the point 2 varies along the 
^-parameter curve of S. The sum of the two integrals J 
and j taken along any number of the set (6) from 1 to 3 is 
evidently a function of u which may be denoted by I(u). But 
if C is to furnish a minimum the derivative I'(u) must vanish 
when u = u2. By the ordinary methods of variations this 
leads to the following result: 

(7) [Fx, - fx,]xu + [FT - f y ]yu + [F, - ƒ„]*, = 0, 

where the arguments of the derivatives of F are the values of 
X, Y9 Z, X', Y', Z' on the curve C12 at the point 2, while those 
of the derivatives of ƒ are the values x, y, z, x', y', z' on C23 
at 2 and xu, yu, zu define the direction of the w-parameter line 
onS. 

Likewise when the point 2 varies on the ^-parameter line 
of the surface there results the corresponding equation 

(8) [F* - U]xv + [FT - fy]yv + [FT - ƒ , ]* = 0. 

The third condition is then 
III. The extremal arcs Cu and C2z together with the surface 

S must satisfy equations (7) and (8) at the intersection point 
2 on the surface. 

Since the direction cosines of any curve on 8 are propor­
tional to 
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xuu' + xvv', yuu' + yvv', zuu' + zvv', 

it follows that equations (7) and (8) will be satisfied when the 
point moves on any curve passing through 2 and furthermore 
the bracketed quantities in these equations are proportional 
to the direction cosines of the normal to the surface at 2. 

§ 3. The System of Extremals for j Determined by Those of J 
and Condition III. 

It can now be shown that if a curve Cm has been found 
which satisfies conditions I, II and III then each extremal 
Cn, of the set (2) determines uniquely in connection with III 
one of the set (5). 

In order to see this, think of equations (2) as a set of ex­
tremals through the fixed point (Xi, Yu Z\) intersecting the 
surface at points 2'. Xi, 7 / , Z\ are then parameters 
satisfying the equation (3). 

In place of the parameters X / , 7 / , Z\ it will be found 
advantageous to introduce the values of the u and v parameter 
lines of S. This can be accomplished by solving* the equations 

*(*; Xi, Yu Zlt Xi', 7 / , Zi') = x(u, «), 

(9) ¥(*; Xi, Yu Zi, Xx', 7 / , Zi') = y(u, v), 

X(s; Xx, Yl9 Zu X / , 7 / , Z/) = z{u,v), 

Xi/2 + 7i'2 + Z/ 2 = 1 

for s, Xi, 7i ' , Z\ in terms of u and v and substituting the 
values of Xi', 7i', Z\ thus obtained in (2). Equations of the 
following form result 

(10) X = *(*, u, v), Y = V(s, u, v), Z = X(*, «i, v). 

Consider now the equations 

xf + y/ + *2'
2 = 1, 

(11) f&xu + fyfyu + Uzu = FjpXu + FY>yu + Fz>zu, 

Jx'Xv + fy>yv + fz'Zv = Fx,Xv + FTyv + FZ,ZV, 

* This is always possible for points 2' on S sufficiently near 2, provided 
the point 2 on C12 is not conjugate to 1. See Bliss and Mason, I, p. 446 
and following. 
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of which the last two are simply the equations (7) and (8) 
written in a separated form. By means of the equations of 
the surface S and (10) it is possible to express X2, F2, Z2; 
#2, y2, z2; %u, yu, %u) %v, yv, %v and X2, Y2, Z2 in terms of u 
and v. Equations (11) are then functions of x2, y2, z2

f
9 ^ 

and v, having one solution corresponding to 2. Hence there 
will be a unique solution for x2', y2, z2 as functions of u and 
v provided the functional determinant of the left hand members 
of (11) is different from zero. 

This determinant is found to have the value* 

cWiU - Fx') + Vi'W ~ FY) + * U ' - FM'}] 
fi(x2'

2 + y2'
2+z2>

2), 

an expression which can vanish only when the term in brackets 
vanishes. This can happen only when the arc C23 is tangent 
to S at 2—a case which will be excluded. Hence there is a 
unique solution for x2y y2 and z2 in terms of u and v, and when 
these values are substituted in equations (5) it is seen that 
they assume the form 

(12) x = <p(s, u, 1)), y = \[/(s, u, v), z = x(*> u, *0, 

where of course x2, y2, z2 have also been replaced by the 
functions x(u, v), y(u, v), z(u, v) defining the point 2 on S. 

It has therefore been shown that if Cm is a curve satisfying 
conditions I, II, III, then to each extremal through 1, (712/ of 
the integral J and near C\2 there corresponds one extremal of the 
integral j , which with C12, satisfies the corner condition III at 2'. 
The two parameter set of extremals for J thus defines another 
two parameter set for j with initial points on S. The equations 
of the two sets with u and v as parameters can be put in the forms 
(10) and (12) 

Furthermore the functional determinant A of the functions 
defined in (12) 

' <Ps (pu <Pv 

A(s, u, v) = fa ^u fa 
Xs Xu Xv 

is found to be different from 0 for the point 2 and hence from 
continuity conditions for points near 2. 

* For a method of evaluating see Bliss and Mason, I, p. 447. 
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If however it is assumed that A does vanish for some point 
4 on C23 and that at least one of the three-rowed determinants 
of the matrix 

IA. 
<P* 

k 
IXa 

A. 
<pu 

tu 
Xu 

A,j' 
<pv\ 

fa\ 
Xv\ 

does not vanish with A, it then follows* that the extremals (12) 
have an enveloping surface D which touches the curve C23 
at 4. Moreover it is known from the general theory that there 
is a single definite curve 

d: x = x(pc), y = y(a), z = z(a) 

on S which touches C23 at 4 and is the envelope of a one 
parameter family of extremals selected from (12) and con­
taining C23 for a = 0. The equation of this last family may 
be written in the form 

(13) • x = <p(s, a), y = $($, a), z = x(s, a). 

Furthermore it is possible to select from the two-parameter 
family (10) a one-parameter family involving the parameter a 
and satisfying the direction conditions III. For in connection 
with these equations it was shown that any C12' determined 
uniquely a C2'3 with initial point on S. Since however the 
functional determinants for both sets of extremals are different 
from zero at 2 it follows that the converse also holds. Con­
sequently when a one-parameter family (13) satisfying the 
imposed conditions is chosen from (12) there goes with it a 
definite one-parameter family of the set (10), say 

(14) X = *(*, a), Y = V(s, a), Z = X(s, a), 

containing Cn for a = 0. 

§ 4. The Jacobi Condition. 
By means of the two one-parameter families just given and 

their enveloping curve d it can now be proved that an arc 
C123 which joins 1 to 3 and minimizes the sum of the two in­
tegrals J and j cannot have upon it a point of contact 4 with 

* See Bliss and Mason, I, p. 449. 
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the enveloping surface D. For consider the sum of the integral 
J taken along Cu' from 1 to S, plus the value of j taken along 
C2V from S to the contact point 4' of C2^ with d and then, 
along d from 4' to 4. It is found that this sum has a constant 
value, for its derivative with respect to a is zero. 

In fact it is readily verified by the ordinary methods that 

^ (<V) = xJFx> + yaFy' + zaFz'/>', 

where xay ya, za are the direction cosines of a line on 8. Like­
wise 

fa(C2,t,)==-- [fx'xa + fy,ya + fz'za]/2' + f(x, y, z, xa, ya, za)j
l\ 

and 
dj(di'4) «. v u, 
—^— = - / o , y, 2, &tt, ya, za)r. 

Recalling now the direction condition at the point 2r, it is 
seen that the sum of these three derivatives is zero and there­
fore the sum of the three integrals J{Cl2), j(C2^) and j(d4/4) 
is constant in value and in particular is equal to the sum of 
J(C12) and j(<724). 

The usual argument with regard to the envelope d not being 
a solution of the Euler equations can now be applied, from 
which it follows that if 4 is not a singular point of d then the 
arcs Cu and O23 cannot minimize the sum Jn + j23 if 4 lies 
on the arc C23. Therefore as a fourth necessary condition 
it can be stated that 

IV. The extremal arcs Cn and C23 can contain no points 
conjugate to their initial points 1 and 2. Therefore the curve 
d on the enveloping surface D of the extremals C2V must not 
touch the arc C23 before the point 3. 

§ 5. Sufficient Conditions. 
Suppose now that a curve C123 has been found which satisfies 

conditions I, II, III and IV strengthened by the assumption 
that: IV', the curve d does not touch the arc C23 even at the 
point 3. It is desired to see if Cm actually minimizes the 
sum of the two integrals under these conditions. 

It has already been shown that if the arc Cu does not contain 
the point conjugate to 1 it can be imbedded in a two-para-
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meter family of extremals Cu' passing through 1. Moreover 
the functional determinant of this family is different from zero 
and it follows therefore that the set <7i2' forms a field F' 
about (7i2. Further, on account of condition IV', the de­
terminant A(s, u, v) of the set C2V determined by Cn' and 
condition III is different from zero along C23 and so the set 
C2V forms a field F" about the arc C23. In each of these 
fields the properties of the extended invariant integral* hold. 

Consider then any curve 

C: x = x(t), y = y(t), z = z(t) 

which joins the two fixed points 5 and 7, crosses S once at 6 
and lies entirely in the fields F' and F". It can be proved 
that the following theorem holds : The sum of the two integrals 
J*(Cw) and J*(CM) is independent of the path of integration and 
depends only on the end points 5 and 7. 

In order to prove this consider any comparison curve C 
which joins 5 and 7, lies entirely in the fields Fr and F", and 
crosses 8 once at the point 6'. Since each of the integrals is 
invariant in its respective field the two following equations 
result 

J*(C66') + J*(fc6'e) = J*(CM), 

where k is any curve on 8. Combining the two equations, 

J*(P*f) + j*(06'7) - [e/*(Cö6) + j*(C.y)] 
= ~ J*(h>s) - i*(fe««0 = J*(&66') - j*(&66'). 

If expressed in the form of a definite integral, the right hand 
member of this equation is 

£ {a'Fx> + b'Fy> + c'Fz> - a'fx> - b'fy> - c'f8>}dt, 

where a', bf, c' are the direction cosines of Jc. But condition 
III tells at once that the integrand is identically zero and the 
above statement follows. 

Hence if CW coincides with an extremal for J from 5 to 6 
and with an extremal for j from 6 to 7, then 

J*(<?56) + j*(C67) = J(CW> +j(C W ) . 
* For a statement of these properties see Bliss and Mason, I, p. 458. 
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Therefore when C is any curve in F' and F" joining the points 
1 and 3 and C is the corresponding curve satisfying conditions 
I, II, III, IV, the preceding equations give the relation 

J*(Ci2') + j*(£2'3) = J*(Ci2) +i*(c2 3) = J{Cu) +i(C2 8) . 

This equation may also be written in the form 

J(Cn>) + j(Ct>z) - u(Cit) + i (c 2 i ) ] 

= f Edt+ f edt, 

where i? and e are the extended Weierstrass E-functions. On 
account of II these functions are nowhere negative and there­
fore 

J(Ci2') +j(C*>z) > J(C12) +j(C2 3). 

Hence the conclusion: Under the hypothesis imposed the 
curve Cm actually minimizes the sum of the integrals J and j 
if it satisfies the conditions I, II, III, IV . 

SHEFFIELD SCIENTIFIC SCHOOL, 
YALE UNIVERSITY. 

THE DEGREE OF A CARTESIAN MULTIPLIER. 

BY PROFESSOR D. R. CURTISS. 

(Read before the Chicago Section of the American Mathematical Society, 
April 8, 1910, and April 5, 1912.) 

1. A large part of Laguerre's numerous and important 
contributions to the theory of algebraic equations* is based on 
Descartes' rule of signs, and especially on its application to 
infinite series. One of the most fertile ideas developed is that 
an upper limit for the number of real roots of a polynomial with 
real coefficients, f(x), in an interval [0, a] results from the 
application of the rule of signs to a product fc(x) = fi(x)f(x) 
developed in a power series which converges for | x | < a, but 

* See in particular the memoir, "Sur la théorie des équations numé­
riques," Oeuvres, pp. 3-47. 


