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In this note I wish to present a simple development of the
principal properties of the function I'(z), based on the elements
of the theory of functions of a complex variable.

1. Let ¢(x) denote the function

(¢)) a>le=\V2r (— 7 <argz< -+ ),

where that determination of ¢(x) is chosen which is real and
positive when the complex variable z is real and positive. The
function I'(x) is defined to be

1 1 1

2) 1{_{2me se@+n+1)

n=01,2:--;2%0—1,—2,...).%

It is necessary to establish first that the limit of the sequence
exists. Denote the (n 4 1)th term of the sequence by
pa(x). It is clear that none of these terms vanish, and that
the question of convergence of the sequence is essentially the
same as of the series

(3) log po(x) + log [p1(z)/po(x)] + log [pa(x)/pa(2)] + - - -,

where the principal logarithms are taken.
We have at once the relation

@) (@) el@+n+1)

1@~ @+ ne+n)

* A similar formula has been obtained by Enneper, Dissertation, Gottin-
gen (1856), p. 10.
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Let us therefore consider the function logle(x 4+ 1)/ze(2)],
since from it may be obtained the (n -4~ 1)th term of (3) by
replacing # by x4 n. A substitution of the known value
of p(x) gives us at once

log¢(x+1)= (w—{—%) log (l-l—i-)—- 1

zo(x)
1 1\1 (1 1\1
=(§“2-2)?—(1_2-3)Eﬁ+""

the last member being the expansion of the function in powers
of l(az in the vicinity of # = . This expansion converges
for |« | > 1 since the function has no singularity save two
branch points of infinite order at 0 and — 1; the expansion in
series will converge uniformly for || = d > 1, and the func-
tion it represents may be written M (z)/2? where M (x) remains
finite and analytic for | # | = d. That is, we have

ple+1) M)
zo(x) ~  a?

The series (3) may now be written

M M ) M 2
@) log o + 224 HEED L TEED

Suppose first that z lies in the right half-plane and also that
|2| =2 d. In this case z+ 1, 4+ 2, --- will exceed d in
absolute value, and the (n + 1)th term of (3’) will be not
greater in absolute value than the nth term of the series of
positive quantities

log

(| M@ | K if |2 2d).

K K K
® Pt e ip [z+2pt

For « in the right half-plane wehaveu 20, ifz = u + v =1,
so that
la+nl=(@u+n2+0? 2w+ o+ n?= |+ nk

Accordingly each term of the above series is not greater in
absolute value than the corresponding term of

K K K
(6) le2+|mlz+12+|wl2+22+'°'°
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If we put = d in this series we do not decrease the absolute
value of any term, and obtain a convergent series of positive
constants. Therefore by Weierstrass’s test the original series
(3) converges absolutely and uniformly for |z | 2 d and « in
the right half-plane. This demonstrates that the limit (2)
exists, is analytic, and does not vanish, for a restricted in
the manner stated.
By definition of p,(x) we obtain for k = 0,1, .-,

1 1 1
(7) Pu(®) = 21T "'mpn-»-1(w+k+1)

@+0,—1,---).

Also for any x we may choose k so large that « + & -+ 1 lies
to the right of the imaginary axis, and exceeds d in absolute
value. From what precedes we see that the last factor on
the right in (7) will uniformly approach the limit I'(x 4 &k -+ 1)
different from zero, in the vicinity of this x, as n becomes
infinite. Thus the limit (2) exists in all cases and represents a
function I'(x) nowhere zero, analytic in the entire plane with
the exception of the points 0, — 1, ---. It is clear from the
formula (7) that at these points I'(x) has a pole of the first
order.

If in particular we put £ = 0in (7) and let n become infinite
we see that I'(x) is a solution of the functional equation in f(x)

@® f@+ 1) = af(2).

The function T'(x) given by (2) @8, for x =0, — 1, — 2, - .-,
a single-valued and analytic function different from zero and
satisfying the relation T'(x + 1) = aT'(x). Atthe excluded points
T'(x) has a pole of the first order.

2. It remains to characterize I'(z) in the vieinity of 2 = .
For z in the right half-plane and | z | 2 d, we have seen that
the (n 4+ 1)th term of (3’) is not greater in absolute value than
the nth term of (6); this in turn is not greater than the nth
term of the series

K v dt 2 dt
ept K[ et K et
whose sum evaluates to K/| z 2+ Kr(2 |z|. In this way a

simple upper limit of the form K’/2 |z | for the sum of the
terms of (3) after the first is obtained when | | > d.
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For 2 in the left half-plane and for | v | 2 d, all of the quanti-
tiesz + 1,2 + 2, -- -, having the same imaginary component,
are also at least as great as d in absolute value. Accordingly
the (n < 1)th term of (3') is again not greater in absolute value
than the nth term of (5). In this case the sum of the series
(5) is less than K’/| v |. In fact, the terms after the leading
nth one for which  + » lies on or to the right of the imagi-
nary axis constitute a series of the form before considered of
sum less in absolute value than K/| 2 + n |?+ Kr/2 |z + n |
and therefore less than K’/2|v|. The remaining terms con-
stitute a part of a similar series

K K
|—x—n+1|2+l——x—n+2|2+“"

also less in absolute value than the same quantity.
If then [ denotes the distance of the point « from the negative
half of the real axis,* we find from (3’) that

logT'(x) = (x — %) log & — = + log V2 + u(),

© (u) | < K'flfor I 2 d.)
This result gives at once the following: the function T (z)
has the property that lim T'(z)/p(x) = 1 if the point x recedes
tndefinitely from the negative half of the real axis.
3. The fact that I'(x) satisfies the functional equation (8)
is of central importance. By means of this fact the function

eV 12/T'(1 — ) can also be seen to be a solution of (8). The
ratio of I'(x) to this new solution is periodic of period 1, for
if x is changed to « 4 1 the equation (8) shows that the first
and second members of the ratio are both multiplied by x.
This ratio

p(e) = T'(@)IrQ1 — m)/enl’——lz

may also be verified directly to be of period 1.

Consider now p(z) in the period strip 0 £ » £ 1 where it
has no singularities save a pole of the first order at ® = 0, 1;
it is clear from the definition of p(x) that this periodic func-
tion nowhere vanishes in the strip.

*If u=0 we have l = |v| and if w =0 we have Il = |z|.
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Let us determine the asymptotic form of p(z) at the ends of
the strip. We have by (9)
log p(x) = (x — 3)[logz — log(1 — «)] — 1 + log 27
+ @) + pl = @) — wV = 1o
If z lies in the upper half of the strip, 1 — z lies in the lower
half of the strip, and vice versa. Let x tend to infinity in the

upper half of the strip, then 1 — « will tend to infinity in the
lower half. By virtue of our convention we shall have

log(1—a)=— rN—1+ log(x — 1),

where log(x — 1) is the principal logarithm. Substituting, we
find

log p(z) = [-— (m—- %)log(l - }v) - 1]

- 7”'2— 1 + log 27 + p(z) + p(l — 2).

This equation proves that, as 2 becomes infinite in the upper
end of the strip,

limp(z) = — 2rV—1,

since the first term and the last two terms on the right-hand
side approach zero. Likewise, as « approaches infinity in the
lower half-strip, we have

log(1—2)=7Vv—1+41log (& —1)
and find

lim e2"¥=#p(z) = 2r V¥ — 1.
Accordingly if we write
2= p() = q@),

the strip in the z-plane is transformed into the complete
z-plane, the upper and lower ends of the strips corresponding
to 2= 0 and 2 = o respectively; and at the same time itis
evident that ¢(z) is single-valued, analytic in the extended
z-plane save at z = 1(x = 0), where it has a pole of the first
order; furthermore ¢(z) vanishes nowhere save at z = o,
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where zg(2) takes the value 2r V— 1. These facts show at
once that ¢(z) is the rational function of z

arN—=1
=1

Substituting the corresponding value for p(z) in the equation
of definition, there results

(10) T@I1 —2o =

sin w2’
a fundamental formula. If both sides are multiplied through
by «, the left-hand side may be written I'(x + 1)I'(1 — 2)

and tends to I'*(1) as « tends to zero; the right-hand side tends
to 1. Since, by (2), I'(1) is positive we obtain

(11). ra) = 1.

4. According to the results of section 2, we have the im-
portant relation
Te+y

(12) =t — b

where y is fixed and [ again represents the distance of the
point z from the nearest point of the negative half of the
axis of reals; in fact these results show that this limit is
equal to

ety . y\
@ m CEet =t (143) e

Now if we divide p,(x) by p.—1(1) we find at once
P () _ 1-2-.-mn ple+n+1)
Paal) -2+ 1---24+n én+1)
if further we make use of equations (11) and (13), letting n
become infinite, we obtain Euler’s formula
. 1:2---n
(14) P(x)=ilix'x+l---w+n

It is to be noted that the final factor on the right, which
replaces ¢(x + n+ 1)/o(n 4+ 1) in p,(x)/pn—1(1), is not of
such a nature as to affect the uniform convergence of the

(n+ 1)=
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logarithm of the sequence. This property is carried over
from (3) since the final factor bears to the factor which it
replaces a ratio which approaches 1 uniformly in any finite
region as n becomes infinite.

If we introduce Euler’s constant

C = lim (1+%+---+%—logn),

we obtain the Schlémilch product formula

e~ Cr ezl"'

In this case the final factor on the right in (14) is replaced by

J(rbeedo)

5. Another form of solution of the functional equation is
the definite integral
+ ®
f e~ H=1dt,
0

valid for « in the right half-plane. The fact that this integral
I(x) satisfies the functional equation may be verified by form-
ing 2I(x) and integrating by parts. Itisfurthermore evident
that I(1) = 1.

To prove that I(x) is identical with I'(x) we can proceed as
follows. The function I(x) is analytic for any « within the
right half-plane, since the integrand is analytic in 2 for ¢ > 0;
and the integral is absolutely and uniformly convergent in
the vicinity by the ordinary tests. The ratio function

p@) = I(@)/T'(x)

is periodic of period 1 in z in consequence of the fact that
I(x) and I'(x) are solutions of (8); and this function p(x) is
analytic in « throughout any period strip suchas 1 L4 £ 2.

Now the path of integration along the positive half of the
real axis may be modified to be any ray within the right half-
plane from ¢ =0 to ¢ = «. In fact the integrand is con-
tinuous in the sector formed by the positive half of the real
axis and such a ray, and vanishes to infinite order at ¢t = o
thus Cauchy’s integral theorem may be applied to show that
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the integral taken around the sector vanishes. Take the ray to
pass through ¢ = 2z in the selected period strip and write £ = xp;
we obtain

+
1) =z [ eonpip,

where p is a real variable. Hence we see that for 1 < w < 2

1@ < e[ { [Mdo+ [ omtodo } <2]a%],

since if the second integral in the bracketed expression were
taken from 0 to o it would give I(2) = I(1) = 1 by (8) and
(11). Moreover by (9) it is clear that

[T@) > |a=t] for 1Su<2, |o| >N

if N is sufficiently large and positive.
Consequently we obtain, for | v | sufficiently large,

lp@ | < 2]=|.

YN ju P
)

As before, write
z=¢ p(x) = q(2).

It is apparent that ¢ is single-valued and analytic at every
point save 2 = 0 and 2 = o, where however 2¢(z) and ¢(2)/z
respectively tend to zero. It follows by Riemann’s theorem
that ¢(z) is analytic in the extended plane, and thus is a
constant which reduces to 1 since it has already been seen that
I1) = ') = 1.

6. Differentiating Schlémilch’s infinite product logarith-
mically, we obtain the series for the Euler y-function

d 1 d 1 1
(16) ¥(z) = dxlOgP(x) =—-C- x zl: [m—|— n n]
The differentiation is legitimate because of the uniformity of
convergence of this product. From the properties of I'(x)
it follows that () 23 analytic in the finite plane save for poles
of the first order at 0, — 1, . . . with residues — 1 at these points.
We furthermore obtain

a7 Ye+ D — Y@ =1, ¥&) —¥(l—2) = rcotra
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directly from the functional equation for I'(x) and from (10).
To investigate the nature of Y(x) at # = o, we differentiate
(9), which then becomes

d
V) = logz — - + 3-u(a),

and consider the magnitude of the last term. Take a point «
at a distance ! = 2d from the negative half of the real axis,
and about it draw a circle C of radius [/2. Then we have by
differentiating Cauchy’s integral for u(x), and using the upper
limit for u(x) given in (9),

’2#‘/—1f(t‘-‘—(t)w)2 l—' 2Klfldt|—2K,.

This desired inequality shows that du/dz is of the second order
in 1/l and that lim Y (x)/log « = 1 as the distance of the point x
from the negative half of the real axis becomes infinite in any
manner.

7. A final central theorem is the development of the function
T'(z) relates to the evaluation of the beta function

d
k@ | =

(18) By = [ "1 — s,

where @ and y have positive real parts. The formula to be

proven is
(19) Blay) = [ D,

The attack is identical in spirit with that followed in section 5.

First we observe that B(z, y) is analytic and symmetric in
2, y in the domain under discussion and that B(1, 1) = 1.
Also, integrating by parts, we find

@B,y + 1) = yBlx+ 1, ),
and we find directly
1 1
B@,y+1) = f 11— Hrid — f (1 — vt
0 0
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Thus we obtain the functional equation in @

xB(z, y)
B 1; =T
@+Ly ="y
and likewise the same functional equation in y. It is readily

verified that the right-hand member of (19) satisfies these
equations and hence that

_ B, y)T'(=+y)
Po Y = TG

is a function periodic in « and y of period 1 and analytic in the
domain under consideration.

Now hold y fixed of real part not less than 1, and let & be
arbitrary in the period strip 1 £ » £ 2. We have then

1
|Bey) | < [l -t d <1
0
Moreover we have for some &k > 0

' T'(@)I'(y) T'(x)
I'x+y) I'x+y)

by (12) for | v | large enough. Thus there results

>k

> 51

|2 9| < 221

for | v| large enough. Since p(z, y) is analytic throughout
the finite strip in @, and since this relation shows that p(z, y)
is finite at both ends of the strip (see section 5), it follows that
p(x, y) is finite throughout the strip. Hence p(z, y) is con-
stant in , and likewise in y, and therefore is constant in both
variables, being equal to p(1,1) = 1. This demonstrates the
truth of (19).

The general type of consideration given above admits of
further development, but the material which I have presented
will serve to indicate its nature.

HarvarD UNIVERSITY,
CAMBRIDGE, Mass.



