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IN this note I wish to present a simple development of the 
principal properties of the function T(x), based on the elements 
of the theory of functions of a complex variable. 

1. Let <p(x) denote the function 

(1) xx~h~x V27T (— T < arg x < + w), 

where that determination of <p(x) is chosen which is real and 
positive when the complex variable x is real and positive. The 
function T(x) is defined to be 

(2) Km - . —J— ... —J— <p(x + n + 1) 
W n=*X X+l £+W 

( n = 0 , 1,2, ••• ; a 4=0, - 1 , - 2 , •••)•* 
It is necessary to establish first that the limit of the sequence 

exists. Denote the (n + l)th term of the sequence by 
PnO*0. It is clear that none of these terms vanish, and that 
the question of convergence of the sequence is essentially the 
same as of the series 

(3) log po(x) + log \pi(x)/pf>(x)] + log \p*(x)lpi(x)] + • • -, 

where the principal logarithms are taken. 
We have at once the relation 

/ 4) ffn(a) = <P(X + n + 1) t 

Pn-i(x) (x + ri)<p(x + n) 
* A similar formula has been obtained by Enneper, Dissertation, Göttin-

gen (1856), p. 10. 
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Let us therefore consider the function log[ç>(x + l)/x<p(x)], 
since from it may be obtained the (n + l)th term of (3) by 
replacing x by x + n. A substitution of the known value 
of <p(x) gives us at once 

\ 3 2 -2 / z 2 \ 4 2 -3 /a : 3 ^ 

the last member being the expansion of the function in powers 
of 1/x in the vicinity of x = oo. This expansion converges 
for j x | > 1 since the function has no singularity save two 
branch points of infinite order at 0 and — 1; the expansion in 
series will converge uniformly for \x\ ^ d > 1, and the func­
tion it represents may be written M(x)/x2, where M (x) remains 
finite and analytic for \x\ ^ d. That is, we have 

The series (3) may now be written 

(3) \og<P(x)+-1^+-^TW + -^TW+.-.. 

Suppose first that x lies in the right half-plane and also that 
| x | ^ d. In this case x + 1, x + 2, • • • will exceed d in 
absolute value, and the (n + l)th term of (3') will be not 
greater in absolute value than the nth term of the series of 
positive quantities 

(5) & • K • K • \x\2^\x+l\2^\x + 2\2^ " 
For x in the right half-plane we have u ^ 0, if x = u + V— lv, 
so that 

I x + n |2 = (u + ri)2 + v2 ^ u2 + v2 + n2 = | x \2 + n2. 

Accordingly each term of the above series is not greater in 
absolute value than the corresponding term of 
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If we put x = d in this series we do not decrease the absolute 
value of any term, and obtain a convergent series of positive 
constants. Therefore by Weierstrass's test the original series 
(3) converges absolutely and uniformly f or | x \ *td and x in 
the right half-plane. This demonstrates that the limit (2) 
exists, is analytic, and does not vanish, for x restricted in 
the manner stated. 

By definition of $»(#) we obtain for k = 0, 1, • • •, 

(7) Pn(x) = - • j q T J • • • —^ Vn-*-l(x + h+l) 

(a * 0, - 1, . . . )-

Also for any x we may choose k so large that x + k + 1 lies 
to the right of the imaginary axis, and exceeds d in absolute 
value. From what precedes we see that the last factor on 
the right in (7) will uniformly approach the limit T(x + k + 1) 
different from zeror in the vicinity of this x, as n becomes 
infinite. Thus the limit (2) exists in all cases and represents a 
function T(x) nowhere zero, analytic in the entire plane with 
the exception of the points 0, — 1, • • •. It is clear from the 
formula (7) that at these points T(x) has a pole of the first 
order. 

If in particular we put k = 0 in (7) and let n become infinite 
we see that T(x) is a solution of the functional equation in f{x) 

(8) f(x + 1) = xf(x). 
The function T(x) given by (2) is,jor x + 0, — 1, — 2, • • -, 

a single-valued and analytic function different from zero and 
satisfying the relation T(x+1) = xT(x). At the excluded points 
T(x) has a pole of the first order. 

2. It remains to characterize F(x) in the vicinity of x = oo. 
For x in the right half-plane and \x\ ^ d, we have seen that 
the (n + l)th term of (3') is not greater in absolute value than 
the nth term of (6) ; this in turn is not greater than the nth 
term of the series 

whose sum evaluates to K/\ x |2 + KTT/2 \x\. In this way a 
simple upper limit of the form K'/2 \x\ for the sum of the 
terms of (3') after the first is obtained when \x\ ^ d. 
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For x in the left half-plane and f or | v \ ^d, all of the quanti­
ties x + 1, x + 2, • • •, having the same imaginary component, 
are also at least as great as d in absolute value. Accordingly 
the (n + l)th term of (3') is again not greater in absolute value 
than the nth term of (5). In this case the sum of the series 
(5) is less than K'/\ v\. In fact, the terms after the leading 
nth one for which x + n lies on or to the right of the imagi­
nary axis constitute a series of the form before considered of 
sum less in absolute value than K/\ x + n |2 + KT/2 \ x + n | 
and therefore less than K'/2 \v\. The remaining terms con­
stitute a part of a similar series 

| - a - n + l | 2 " r | - a - n + 2 | 2 ~ r ' " ' 

also less in absolute value than the same quantity. 
If then I denotes the distance of the point x from the negative 

half of the real axis,* we find from (3') that 

log T(x) = (x — | ) log x — x + log AHÏT + ix(x), 
( 9 ) (| tx(x) | < K'/l for I ^ d.) 

This result gives at once the following: the function T(x) 
has the property that Km T(x)/cp(x) = 1 if the point x recedes 
indefinitely from the negative half of the real axis. 

3. The fact that T(x) satisfies the functional equation (8) 
is of^central importance. By means of this fact the function 
e*

J-**fl?(i — x) can also be seen to be a solution of (8). The 
ratio of T(x) to this new solution is periodic of period 1, for 
if x is changed to x + 1 the equation (8) shows that the first 
and second members of the ratio are both multiplied by x. 
This ratio 

p(x) = r (3)r ( l - x)le"vzri* 

may also be verified directly to be of period 1. 
Consider now p(x) in the period strip 0 ^ u 5* 1 where it 

has no singularities save a pole of the first order at x = 0, 1; 
it is clear from the definition of p(x) that this periodic func­
tion nowhere vanishes in the strip, 

* If u ^10 we have I = |v\ and if u^0 we have I = \x\. 
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Let us determine the asymptotic form of p(x) at the ends of 
the strip. We have by (9) 

log p(x) = (x — i)[log x — log(l — x)] - 1 + log 2TT 

+ Ufa) + ju(l — X) — 7T V — lx. 

If x lies in the upper half of the strip, 1 — x lies in the lower 
half of the strip, and vice versa. Let x tend to infinity in the 
upper half of the strip, then 1 — x will tend to infinity in the 
lower half. By virtue of our convention we shall have 

log (1 — x) = — 7T V — 1 + log(x — 1), 

where log (a; — 1) is the principal logarithm. Substituting, we 
find 

\ogp(x) = L~ (ƒ - ^J^V1"" x) ~ 1J 

- 2"~ + log 2TT + ix(x) + M(1 - x). 

This equation proves that, as # becomes infinite in the upper 
end of the strip, 

lim p(x) = — 2x V — 1, 

since the first term and the last two terms on the right-hand 
side approach zero. Likewise, as x approaches infinity in the 
lower half-strip, we have 

log (1 — X) = 7T V— 1 + log (X ~ 1) 
and find _____ 

lim 62ff ̂ ~lxp{x) = 2TTA/- 1. 

Accordingly if we write 

2 = , 2 W ^ p(aO = g(s), 

the strip in the axplane is transformed into the complete 
z-plane, the upper and lower ends of the strips corresponding 
to z = 0 and z = oo respectively; and at the same time it is 
evident that q(z) is single-valued, analytic in the extended 
js-plane save at z = l(x = 0), where it has a pole of the first 
order; furthermore q(z) vanishes nowhere save at 2 = oo, 
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where zq(z) takes the value 2r V— 1. These facts show at 
once that q(z) is the rational function of z 

2 7 T A / " : : : 1 

Substituting the corresponding value for p(x) in the equation 
of definition, there results 

(10) T(z)T0.-x) = -r̂ —, 

a fundamental formula. If both sides are multiplied through 
by x, the left-hand side may be written T(x + 1)I\1 — x) 
and tends to T2(l) as x tends to zero; the right-hand side tends 
to 1. Since, by (2), T(l) is positive we obtain 

( i l ) . r ( i ) = i. 

4. According to the results of section 2, we have the im­
portant relation 

! ™ r - ^ - '• 

where y is fixed and I again represents the distance of the 
point x from the nearest point of the negative half of the 
axis of reals; in fact these results show that this limit is 
equal to 

(13) lim^tf-limfl+^^-l. 

Now if we divide pn(x) by £>n-i(l) we find at once 

pn(x) 1 » 2 • * • n <f>(x + n + 1) ^ 
2V-i(l) x • x + 1 • • • x + n (j>{n + 1) ' 

if further we make use of equations (11) and (13), letting n 
become infinite, we obtain Euler's formula 

(14) r(x) = Km V i '"n - (n+ 1)*. 
x

 ws=aoa: • x+ 1 • • • x+ n ' 
It is to be noted that the final factor on the right, which 
replaces <p(x + n + l)l<p(n + 1) in pn(x)/pn-i(l), is not of 
such a nature as to affect the uniform convergence of the 
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logarithm of the sequence. This property is carried over 
from (3) since the final factor bears to the factor which it 
replaces a ratio which approaches 1 uniformly in any finite 
region as n becomes infinite. 

If we introduce Euler's constant 

0 - K m ( l + | + . . . + i - l o g « ) . 

we obtain the Schlömilch product formula 
p—Cx <» px\n 

In this case the final factor on the right in (14) is replaced by 

^( l + ! + . . . + ! _ * > 

5. Another form of solution of the functional equation is 
the definite integral 

X + CO 

e~Hx-ldt, 

valid for x in the right half-plane. The fact that this integral 
I{x) satisfies the functional equation may be verified by form­
ing xl(x) and integrating by parts. It is furthermore evident 
that 1(1) = 1. 

To prove that I(x) is identical with T(x) we can proceed as 
follows. The function I(x) is analytic for any x within the 
right half-plane, since the integrand is analytic in a; for t > 0; 
and the integral is absolutely and uniformly convergent in 
the vicinity by the ordinary tests. The ratio function 

p(x) = I(x)lT(x) 

is periodic of period 1 in # in consequence of the fact that 
I{x) and T(x) are solutions of (8); and this function p(x) is 
analytic in x throughout any period strip such as 1 ^ u ^ 2. 

Now the path of integration along the positive half of the 
real axis may be modified to be any ray within the right half-
plane from t = 0 to t = oo. In fact the integrand is con­
tinuous in the sector formed by the positive half of the real 
axis and such a ray, and vanishes to infinite order at t = oo ; 
thus Cauchy's integral theorem may be applied to show that 
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the integral taken around the sector vanishes. Take the ray to 
pass through t = x in the selected period strip and write t = xp; 
we obtain 

where p is a real variable. Hence we see that f or 1 ^ w ^ 2 

I I(x) | S | x- | | JT * dp + ƒ °° ér'peZp } < 2 | a» | , 

since if the second integral in the bracketed expression were 
taken from 0 to oo it would give 1(2) = 1(1) = 1 by (8) and 
(11). Moreover by (9) it is clear that 

| T(x) > | x*-11 for 1 ^ u S 2, | « | > X, 

if X is sufficiently large and positive. 
Consequently we obtain, for | v | sufficiently large, 

\p(x) | < 2\x\. 
As before, write __ 

z = e^^\ p{x) = q(z). 

It is apparent that ç w is single-valued and analytic at every 
point save z = 0 and z = oo, where however zq(z) and g(s)/a 
respectively tend to zero. It follows by Riemann's theorem 
that q(z) is analytic in the extended plane, and thus is a 
constant which reduces to 1 since it has already been seen that 
KD = r(i) = i. 

6. Differentiating Schlömilch/s infinite product logarith­
mically, we obtain the series for the Euler ^-function 

(16) ,(*) = £log IX*) - - C - I - t [£-n - i ] . 

The differentiation is legitimate because of the uniformity of 
convergence of this product. From the properties of T(x) 
it follows that \[/(x) is analytic in the finite plane save for poles 
of the first order at 0, — 1, . . . with residues —lat these points. 

We furthermore obtain 

(17) \l/(x+ 1) — yp(x) = - , yp(x) — ^(1 — x) = w cot TTX 
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directly from the functional equation for T(x) and from (10). 
To investigate the nature of \J/(x) at x = oo, we differentiate 

(9), which then becomes 

yp(x) = log x - YX + S ^ ' 

and consider the magnitude of the last term. Take a point x 
at a distance I ̂  2d from the negative half of the real axis, 
and about it draw a circle C of radius 1/2. Then we have by 
differentiating Cauchy's integral for fi(x), and using the upper 
limit for ix(x) given in (9), 

d ^ 
2 T V 

1 f >*(*> J , ^ 2 Z ' f | ,,,1 2K' 

This desired inequality shows that dfxfdx is of the second order 
in l/l and that Km \f/(x)/log x= 1 as the distance of the point x 
from the negative half of the real axis becomes infinite in any 
manner. 

7. A final central theorem is the development of the function 
T(x) relates to the evaluation of the beta function 

(18) B(x,y) = £t*~ia-t)v-idt, 

where x and y have positive real parts. The formula to be 
proven is 

T(x)T(y) 
(19) B{x, y) = 

T(x + y) 

The attack is identical in spirit with that followed in section 5. 
First we observe that B(x, y) is analytic and symmetric in 

x, y in the domain under discussion and that j?(l, 1) = 1. 
Also, integrating by parts, we find 

xB(x, y + 1) = yB(x + 1, y), 

and we find directly 

B{x, y + 1) = f t*-\l - ty^d - f tx(l - ty-Ht 
Jo Jo 

= B(x, y)-B(x+l, y). 
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Thus we obtain the functional equation in x 

xB(x, y) 
B(x+l,y) = x+ y 

and likewise the same functional equation in y. It is readily 
verified that the right-hand member of (19) satisfies these 
equations and hence that 

B(x,y)T(x+y) 
p(x, y) = 

T(x)T(y) 

is a function periodic in x and y of period 1 and analytic in the 
domain under consideration. 

Now hold y fixed of real part not less than 1, and let x be 
arbitrary in the period strip 1 ^ u ^ 2. We have then 

I B(x, y) | <; f | t*-\i - ty-11 dt ^ i. 

Moreover we have for some k > 0 

r(») 
re* + y) 

by (12) for | » | large enough. Thus there results 

| pfo y) | < - ^ 

for | Î? | large enough. Since p(x, y) is analytic throughout 
the finite strip in x, and since this relation shows that p{xy y) 
is finite at both ends of the strip (see section 5), it follows that 
p(x, y) is finite throughout the strip. Hence p(x, y) is con­
stant in x, and likewise in y, and therefore is constant in both 
variables, being equal to p(l, 1) = 1. This demonstrates the 
truth of (19). 

The general type of consideration given above admits of 
further development, but the material which I have presented 
will serve to indicate its nature. 
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