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Tf(x) I T(x) = ty(x) give a very easy way to compute as many 
terms as may be desired in the series which occurs in the 
asymptotic form of the gamma function. 
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BAYES' theorem on the probability of causes is frequently 
introduced with an urn problem.* Here only a finite number 
of objects come into consideration. For example: The urn 
Ui contained 3 white balls and 1 black ball; the urn U% con­
tained 2 white balls and 2 black balls. A man, blindfolded, 
drew a white ball. What is the probability that this white ball 
came out of Ui,—assuming that each urn was equally ac­
cessible? After a consideration of the general problem of this 
nature, the following theorem, known as Bayes' theorem, is 
announced: 

Let co; be the probability a priori that a certain urn, or 
" cause," or set of conditions Ui will come into play. The 
" causes " are to be mutually exclusive; and i = 1, 2, • • -, s. 
Let pi be the probability that Ui, when brought into play, 
will yield a certain event. Then, after this event has hap­
pened, the probability a posteriori Pi that the event had its 
origin in Ui is 

p = wPi 
* coipi + CO2P2 + • • • + UsVs 

In the preceding example, it is assumed that coi = co2 = §. 
Hence, with pi = f, p2 = f, it follows that P i = f,—a result 
which on inspection seems plausible; since f of all the white 
balls were in the first urn, E7i. This urn example illustrates, 
indeed, the following important corollary of Bayes' theorem: 

If each of a finite number s of mutually exclusive causes 

* E. g., Poincaré, Calcul des Probabilités (1912), p. 153. 
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is equally likely a priori to come into play, then the probability 
a posteriori that a given event had its origin in a specified 
cause is proportional to the probability that the specified 
cause would produce that event. 

In applying Bayes' theorem in the theory of errors of meas­
urements, Poincaré* regards a possible value for the unknown 
as an ideal " cause.5' He lets z be any real number; and writes 

cci = \p(z)dz 

as the probability a priori that the true value of the unknown 
will lie between z and z + dz. With the true value in this 
interval, the probability that the first measurement will then 
lie between xi and Xi + dx\ is written as 

dxi<p(xiy z). 

If, now, the n measurements have been found to lie between 
xi and Xi + dxïy - —,xn and xn + dxn, respectively,—more 
briefly: to be x±, x2, • • •, xn, respectively,—then the probability 
a posteriori that the true value lies between z and z + dz 
is found to be 

dz \p(z)<p(xh z)<p(x2, z) • • • <p(xn, z) 

X+oo 
dz \f/(z)<p(xU Z)<p(x2, Z) • • • <p(Xn, Z) 

00 

Poincaré then points out how Gauss by taking \f/ = 1, by 
assuming that <p is a function of z — Xi, and by assuming that 
the arithmetic mean is the most probable value of the unknown, 
reaches the conclusion that 

(l) v(y) = V^"%!' 
where y is the error, z — x. 

Poincaré thenf mentions Bertrand's objections to the above 
assumptions, saying in part: " De plus, on a fait \j/(z) = 1, 
et Ton ne peut l'affirmer a priori." 

We may add that the assumption that \f/(z) is any constant 
for all real values of z is not only unwarranted, but it is ana­
lytically impossible. For if z is to have the range from — oo 

* Loc. cit., p . 169. 
t P . 173. 
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to + °°, the probability function \p(z) must satisfy the con­
dition 

ƒ + 00 

\p(z)dz = 1, 
00 

since it is certain that the number expressing the measure of 
the quantity lies between — oo and + °°. This condition 
cannot be satisfied if \f/ is a constant. 

This equation, \p = constant, seems to be the symbolic 
equivalent of the statement that, before measurements are 
made, all real numbers have equal probability a priori of 
being the true value,—if, indeed, we can attach any useful 
meaning to this statement. 

The difficulty of so doing appears to have its origin in the 
fact that the set of real numbers is unbounded; rather than 
tha t the set contains an infinity of individuals. To illustrate : 
Suppose that a rod of unknown length lies in a narrow box 
with interior length of 20 inches. We may, then, with some 
propriety, set \j/(z) = 1/20; and let z range from 0 to 20. By 
so doing we would at least satisfy the requirement, 

JVtoda = 1, 
taken over all the values of z possible in the given case. Fur­
thermore, this probability may be interpreted as an ideal 
frequency. For instance, the probability that the length lies 
between 11.2 inches and 11.3 inches would be 1/200. This 
would signify that in 100,000 such boxes put up with rods taken 
by chance,* we should expect to find about 500 boxes con­
taining rods with length between 11.2 inches and 11.3 inches. 

The extension of these conceptions to the range from — co 
to + oo does not seem to be immediate. Is the probability 
tha t the true value lies between 50 inches and 51 inches the 
same as the probability that the true value lies between one 
light-year and one light-year plus one inch? If so what is 
the probability in each case? That the generalization in 
question should present some difficulty is not surprising, in 
view of the fundamental difference between a proper integral 
and an improper integral. 

This leaves one more hiatus in the argument that attempts 

* It is not asserted here that under these circumstances we must take 
tp(z) = 1/20. 
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to deduce the probability law (1) from the so-called principle 
of the arithmetic mean,—as the " most probable value." 
The argument referred to is that which first sets up 

F(z) = <p(z — Xi)<p(z — x2) • • • <p(z — xn)dyidy2 • • • dyn 

as the probability that, with z as the true value, the measure­
ments xi, x2, - - •, xn, will be made; then attempts to regard 
this same expression as also proportional—or even equal—ta 
the probability that z is the true value, the measurements xi, 
x2, • • -, xn> having been made; and then sets dF/dz = 0. 

UNIVERSITY OF T E X A S , 

December, 1912. 

SHORTER NOTICES. 

Die partiellen Differential-Gleichungen der mathematischen 
Physik. Nach Riemann's Vorlesungen in fünfter Auflage 
bearbeitet von HEINRICH WEBER. Zweiter Band. Braun­
schweig, Vieweg und Sohn, 1912. xiv+575 pp. Un­
bound 15 marks, bound 16.80 marks. 

T H E first volume of the fifth edition of this classic work was 
reviewed in this BULLETIN, volume 18, page 87, and the fourth 
edition in volume 8, page 81. Little need be added to these. 
The most noteworthy addition to the present volume is the 
entire section 18, devoted to relativity. This section con­
tains thirty pages. The introduction points out the nature 
of time and that relativity is not really concerned with time 
but with the measure of time, or rather with the connection 
between time and space quantity. The succeeding sections 
are sufficiently described by their titles: time and space in 
the stationary and the moving world; normal form of the 
transformation of axes; constant velocity of light; significance 
of the Lorentz transformation; the fundamental electromag­
netic equations for bodies at rest; the fundamental electro­
magnetic equations for moving bodies; invariancy of the 
equations; explicit form of the equations; transformation of 
the force and the displacement; the Michelson-Morley ex­
periment; application of the relativity theory to the Michelson-


