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(x + y)p s xp + yp mod ps, 

from which (1;) is readily deduced. 
Professor Birkhoff points out further that the test fails to 

be effective for all primes p of the form 6n + 1. For if 
p = 6n + 1 it follows from the theory of primitive roots 
modulo pz that the congruence 

f == 1 mod pz 

has a solution t for which t — 1 is prime to p. Hence also 

*2 + * + i = o mod p\ 
Then we have 

(t + 1)* = (t + l)(t + lfn = (t+ 1 ) ( - t2fn = t+ 1 mod p\ 

(t + l)p2 = (t + îy s t + 1 mod p3, 

and 
t? = t-tfn = t mod p3, v2 ==tp = t mod p3. 

Therefore 
0 + l)*2 s P2 + 1 mod p\ 

Now put 
t=<r + vp, (0 < c r < p - 1). 

Then 
^2 = cr̂ 2, 0 + l)*'2 s (er + 1)*" mod p3. 

Therefore 
(er + l)*2 = ap2 + 1 mod p3, (0 < a < p - 1). 

This is relation (7) of my previous note; from this follows (1) 
as in the earlier treatment. Hence (1) is satisfied by all 
primes of the form Qn + 1. Therefore the test can be useful 
only when the exponent p is 3 or is of the form 6n — 1. 

INDIANA UNIVERSITY, 
March, 1913. 

AN EXTENSION OF A THEOREM OF PAINLEVE. 

BY DR. E . H . TAYLOR. 

(Read before the American Mathematical Society, October 26, 1912.) 

THEOREM: Let f(z) be a function which is single-valued 
and analytic throughout the interior of a region S of the 
s-plane, z = x + yi. If f(z) vanishes at every point of a 
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connected portion of the boundary of S, two points of which, 
A and B, can be joined by a curve C lying wholly within S, 
then ƒ(*) s 0. 

Painlevé* has proved this theorem for the case where the 
portion of the boundary in question is an arc of a regular 
curve. The object of the present paper is to show that the 
theorem is true in the general case for which the theorem is 
above stated; for example, when in every neighborhood of 
any point of the boundary there are points that cannot be 
approached along a continuous curve lying in the region. 

Denote by S the region bounded completely by C and the 
portion AB of the boundary along which f(z) vanishes. We 
will assume that S lies within a circle of radius unity with 
center at 0: (z = 0), a point of AB, but which is distinct 
from both A and B. 

Let the z-plane be transformed by 

(1) Zi = log Z. 

The interior of the unit circle is thus mapped on the half-plane 
xi < 0, S going over into a region Si of that half-plane which 
extends to infinity and has the point Zi = 0 as an exterior 
point. 

We will next apply the transformation 

(2) z2 = — ifzi. 

The interior of Si is thereby carried over into the interior of 
a region 2 2 which lies in the upper half of the z2-plane. Thus 
S has been mapped on 2 2 , the boundary point 0 : (z = 0) of 
S going over into the boundary point z2 = 0 of 2 2 . 

As a third transformation we will use 

(3) z 3 = Vz* 23 = rze+*, 

which makes the image S 3 of S lie within the region 
0 < <pz < 7r/2, as indicated in the figure. We will denote 
the images in the z3-plane of 0, A, B, and C by 03, Az, J?3, 
and C3, respectively. 

There is a neighborhood of 0 in the original region S that 
contains no boundary point of S in which ƒ(z) does not vanish; 
in particular, this neighborhood contains no point of C. 

* Toulouse Annales, vol. 2 (1888), p. B 29. 
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Therefore, with 03 as center, it is possible to construct a cir­
cumference K outside of which C3 will lie, and which will cut 
off from S3 one or more regions. One of these regions 23 ' will 

contain a point a in its interior whose distance from 03 is less 
than half the radius of K. 

Next, rotate the plane about the point a as a center by the 
transformation 
(4) ZA = — zs + 2a. 

This transforms the axes of reals and pure imaginaries into 
lines parallel to them, and bounding with them a rectangle R. 

Let the images in the 24-plane of 23 ' and K be called 24 ' 
and K'. The regions 23 ' and 24 ' have one or more regions in 
common, all of which lie in R, and hence in the region common 
to K and K'. Let a denote one of these regions. From the 
method of constructing K it follows that K, and hence K', 
contain the images of no boundary points of S except those in 
which ƒ (z) vanishes. Consequently every boundary point of <r 
is the image of a boundary point of S in which f(z) vanishes. 

Let the function into which ƒ(z) is carried by the transfor-
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mations (1), (2), and (3) be denoted by <p(zs). The latter 
function is transformed by (4) into #>(— z$ + 2a). From the 
hypotheses of the theorem and the properties of the transfor­
mations employed, it follows that the function 

<p(*s) • «*(— *3 + 2a) 

is analytic throughout the interior of a and vanishes at every 
point of the boundary. Hence both the real and the pure 
imaginary parts of this function vanish at every point of the 
boundary of a and are, therefore, both identically zero, since 
a function that is single-valued and harmonic throughout the 
interior of a region and vanishes at every point of the boundary 
is identically zero.* Since 

<p(zz) - (p(— Zz + 2a) = 0, 

one of the factors vanishes identically, and therefore 

ƒ(*) ^ 0. 

MATHEMATICAL PHYSICS AND INTEGRAL 
EQUATIONS. 

Die Integralgleichungen und ihre Anwendungen in der mathe-
matischen Physik. Vorlesungen an der Universitât zu 
Breslau, gehalten von ADOLF KNESER. Braunschweig, 
Vieweg, 1911. 8vo. viii+243 pp. 

T H E solution of various boundary value problems for a 
partial differential equation by means of the expansion of an 
arbitrary function in series of solutions of ordinary differential 
equations involving a parameter constitutes one of the most 
important applications of the theory of integral equations. 
Here, as so often elsewhere, mathematical physics has first 
propounded the question, and it has been the task of analysis 
to furnish the answer. Especially close, therefore, has been 
the connection between mathematical physics and integral 
equations; especially interesting must be likewise a method 
of treatment which aims to exhibit this connection as vividly 
as possible. Such is the method of Kneser's book; we learn 

* Osgood, Lehrbuch der Funktionentheorie, vol. 1, 2d éd., 1912, p. 623. 


