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«V + 2pb + a2 + O2 + <r2)p2 — S<T(S + a)2p 

+ sa(2a - 2p2) + (s + p)(2pa + 26) = 0, 

(17) «V + 2avs + 2b(v + s) + a2 = 0, 

(18) wV + 2aw<r + 2b(w + a) + a2 = 0. 

Elimination of s from (15) and (17) gives an equation symmetri­
cal in v and c, which is thus identical with the result of eliminat­
ing w from (27) and (18), so that (27) is consistent with (15), 
(17) and (18). It may be shown by actual division that the 
square of (27) is a factor of (23). In carrying out the division, 
the symmetry of (27) as to p, v and w, in connection with the 
assumed symmetry of (23) in the same quantities, permits many 
terms of the quotient to be written by inspection after a few 
have been obtained. At this stage the knowledge of the factors 
for the special case p = 0 determines many coefficients in 
the general case. The entire computation has been carefully 
checked, and the single assumption of symmetry verified, 
but the length of the quotient (one hundred ninety-eight 
terms) prevents its reproduction in this paper. It is of par­
ticular importance that this identical transformation, when 
employed to obtain new curves from the 94unction curves 
in connection with the theory of conjugate functions, repro­
duces the original curves. 

UNIVERSITY OF PENNSYLVANIA, 
April, 1911. 

SURFACES IN HYPERSPACE WHICH HAVE A TAN-
GENT LINE WITH THREE-POINT CONTACT 

PASSING THROUGH EACH POINT. 

BY PKOFESSOR C. L. E. MOORE. 

(Read before the American Mathematical Society, December 27, 1911.) 

THROUGH each point on a surface in ordinary space Sz pass 
two tangents having with the surface three-point contact 
(tangents to the asymptotic lines). The osculating planes 
to these curves are also tangent to the surface at the point of 
osculation. It is easily seen that the lines on a ruled surface 
in hyperspace have these same properties. The question 
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then naturally arises whether there exist in hyperspace sur­
faces not ruled having the same sort of lines. It is the object 
of this paper to show the existence of such surfaces and to 
derive the differential equation which the coordinates must 
satisfy. The results are generalized for spreads of higher 
dimensions than two. 

1. The existence of such surfaces can be shown geometrically 
as follows: On a ruled surface in a space Sn trace three infinitely 
near curves c, Ci, c2. Through the curves C\ and c2 pass a 
second ruled surface infinitely near the first and on this surface 
trace a third curve c3 infinitely near to cu c2. Then through 
the curves c2, c3 pass a third ruled surface infinitely near to the 
second and on it trace a curve c4 infinitely near c2, c3. Con­
tinuing this process to the limit, it is at once evident that the 
locus of the curves c is a surface of the kind desired. 

We will now derive the condition that a surface in Sn 
shall have through each point a curve whose osculating plane 
is tangent to the surface. 

Let the surface be 
(1) a<0 = x®(u, j) (i « 1, 2, 3, • • -, n + 1) 

and let three neighboring points be 

(2) x, (3) Xidu + x2dvy* 

(4) Xudu2 + 2xududv + x22dv2 + xtd
2u + x2d

2v. 

The tangent plane to the surface at the point x is defined by 
the three pointsf 

Xj X\y X2» 

If the given curve is to have this plane for osculating plane, 
it is only necessary that the point 

(5) xudu2 + 2xi2dudv + x22dv2 

should lie in it; for the points (2), (3), and Xtdht + x2d
2v 

already lie in it. The condition then that (4) should lie in the 
tangent plane is 

(6) Xudu2 + 2xi2dudv + x22dv2 + Axx + Bx2 + Cx = 0. 

* Subscripts denote derivatives with respect to a variable t} where the 
curve on the surface is defined by assuming u and v to be functions of U 
Hereafter superscripts will be omitted where no ambiguity occurs. 

fSee Segre, "Su una classa di superficie degriperspazii ecc", Atti di 
Torino, 1907. 
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If the coordinates satisfy (6), then the points (2), (3), (4) 
will lie in the tangent plane. Hence: 

If the coordinates of a surface in Sn satisfy a parabolic* 
partial differential equation of the second order, then through 
each point of the surface passes a curve whose osculating plane 
coincides with the tangent plane to the surface at the point, and 
conversely. 

If now a tangent line is to have three-point contact with 
the surface, two conditions are necessary: (a) the point (5) 
must lie in the tangent plane; (6) for some choice of d2u : d2v 
the point (4) must lie on the tangent line. The point (4) 
lies on the line joining (5) to Xid2u + x2d

2v, and consequently 
if (6) is satisfied then when d2u : d2v varies the point (4) will 
describe a line in the tangent plane. This line will cut the 
tangent line drawn in the direction du/dv. Thus if condition 
(a) is satisfied, condition (b) is also satisfied. Hence: 

The necessary and sufficient condition that a surface in Sn 
have through each point a tangent line having three-point contact 
with the surface is that the coordinates of the surface satisfy a 
parabolic partial differential equation of the second order. 

From the form of equation (6) it is seen that the directions 
of the three-point tangents are in the direction of the charac­
teristics, since each is in the direction defined by du/dv. 

In the paper referred to above Segre showed that a surface 
whose coordinates are particular solutions of two general 
partial differential equations of the second order must either 
be a developable or else lie in an ordinary space of three 
dimensions. From the above property it is evident that the 
surface could not be a developable if the coordinates satisfy 
two parabolic differential equations, for that would necessitate 
two principal directions (directions of three-point contact), 
which would be impossible. Then if such be the case, the 
surface must lie in an ordinary space 8 s. In the pencil of 
partial differential equations which is defined by two general 
ones there are always two parabolic ones. Hence the two 
partial differential equations which the coordinates of a devel­
opable surface in hyperspace satisfy cannot be independent 
but must be such that there is only one parabolic equation 
belonging to the pencil defined by them. 

2. The above considerations can be extended to varieties 

* See Segre, loc. cit., §15. 
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of any number of dimensions contained in a space Sn of n 
dimensions. Let the coordinates of the variety Vm be 

(7) X® = X®(UiU2 '-Um) {% = 1, 2, • • •, U + 1). 

The tangent Sm to Vm is defined by the points 

X, Xlj X2y ' ' ' , Xm 

and if the osculating plane to a curve traced on the variety 
lies in this tangent Sm, then the three points 

(8) x, (9) ^Xidui, 
i=l 

i=m j—m m 

(10) 2 ^Xijduiduj + ^Xid^Ui 
m 

must lie in it. But as before, (8), (9), and ] £ Xidui already lie 

in the tangent Sm and therefore the only condition necessary 
is that the point 
(11) 22xijduiduj 

should lie in it. This condition is 
m m 

(12) ^ Xijduiduj + ^ AiXi + An+ix = 0. 

I t is evident, since there are m — 1 independent quantities 
du\ : dui : du$ : • • • : dum at our disposal and m + 1 quantities 
A, that equation (12) can always be satisfied if 2m > n. 
And if 2m < n, then the coordinates x must be particular 
solutions of (12) if the osculating plane to a curve traced on 
Vm lies in the tangent Sm. In this case, as in the preceding 
one, it is seen that if the point (11) lies in the tangent Sm, 
then the ratios d2U\ : d2u2 : • • • : d2um can be so determined 
that (10) will lie in the line joining the points (8) and (9). 
Hence: 

If through each point of a variety Vm in Sn there is a principal 
direction, then the coordinates must be particular solutions of the 
partial differential (12). The osculating planes of curves envel­
oped by these principal directions will lie in the tangent Sm to 
the Vm. 

From equation (12) we see that the principal directions 
passing through each point of a hypersurface Fw-i in Sn 

form a quadric cone of n — 2 dimensions, and the principal 



288 SURFACES IN HYPERSPACE. [Mar., 

directions through each point of a variety Vn-h (2k <n) form 
a cone of order 2k and dimensions n — 2k. If n = 2m — 1 
and k = m — 1 the number of principal directions will be 
equal to 2W_1. The curves enveloped by these directions 
correspond to the asymptotic curves on a surface in Ss and 
in fact can be obtained by the consideration of conjugate 
directions just as in Sz. Take any two infinitely near points 
of Vm and draw the tangent spaces Sm to Vm at each of these 
points. The two Sm's will intersect in a line and this line 
is said to be conjugate to the direction defined by the two 
points of tangency. Using the same method as in a previous 
paper* by the author, the condition that the two directions 
du and ou be conjugate is found to be the vanishing of the 
(m + 2)-rowed determinants of the matrix 

|| x, xh x2, • • -, xm, X J^XijduioUf ||. 
* Ù 

The condition that the two conjugate directions should coincide 
is seen to be that the coordinates should satisfy equation (12). 
In this case then we have a new property of such curves, viz.: 
The tangent spaces Sm to Vm at two infinitely near points of 
the curve enveloped by the principal tangents intersect in 
the line joining the two points, that is, in a principal tangent. 
By an easy extension of the method used by Segref it can be 
shown that this is a property of such curves in general. Or 
it may be seen that if this property does hold in general there 
is an #m+i having two-point contact (i. e., tangent at two in­
finitely near points) with the variety Vm. Now the tangent 
at x is determined by 

(13) X, X\f X%, Xzf ' * ' ) Xm 

and the tangent at the point 

(14) ZXidui 
is determined by 

(15) lïXidui, ^Xijduj-, 2x2]'du3; •••, ?,xmjduj. 

It is seen at once that the tangent space (13) contains the 
point (14) and that the tangent space (15) contains the point 

(11) ItXaduidui 

* Annals of Mathematics, vol. 13, p. 89. 
t Loc. cit. 
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Now if the space (13) contains (11), the two tangent spaces 
will have the line defined by the direction du\\ du%\ • • • : dum 
in common. This is exactly condition (12). Hence: 

The curves enveloped by the principal directions on a variety 
whose coordinates satisfy (12) are such that the tangent Sm's 
at two consecutive points intersect in the line joining the two 
points. 

3. Let us now find the condition that a variety Vz have 
through each point a tangent with four point contact with Vs. 
The condition may be got by first finding the condition that 
curves exist on Vz whose osculating Sz at any point coincides 
with the tangent Sz to Vz at that point. This requires that 
the two points 
(16.) XXijduiduj + Hxidïui 

(17) ÜXijicduidujduk + 32Xijduid2Uj + *EXid3Ui 

should lie in the Sz determined by the points 

X, Xif Xiy Xz» 

This is equivalent to the relations 
3 

(12) AZxijduiduj + 2 BiXidui + Cx — 0, 
i 

(18) A'(2xi3'kduidujduk + 'Exijduid
2u^ + ZB/xidui + Cx = 0. 

In relation (12) the dui define the direction of the curve. If 
(12) is satisfied, then the determinants of the matrix 

\\2XijdUidUj, X, Xi, X2, Xz i| 

must vanish. Now if we change dui into dui + ^d2Ui, this 
relation must still be satisfied; this leads to 

|| 2Xi}duid2Uj, x, Xi, x2, Xz\\ = 0 , 

which used in (18) reduces that relation to 
3 

(19) A'^Xijkduidujduk + X) B/xi + Cx = 0. 
i 

Hence: 
If a variety Vz is covered with a family of curves whose 

osculating Sz at each point coincides with the tangent Sz to Vz 
at that point, then the coordinates must be solutions of two simul­
taneous partial differential equations, one of parabolic type of 

file:////2XijdUidUj
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the second order and the other of the third order having coincident 
roots of its characteristic equation. The curves in question are 
the characteristics. 

If equation (12) is satisfied, we saw that the tangents in the 
direction dut have three-point contact with Vs. If in addition 
(19) is also satisfied, since (17) lies in the tangent Ss, the quan­
tities dzUi can be so chosen that (17) will lie on the line joining 
x to x + dx. Hence: 

When the coordinates of a spread Vz satisfy the differential 
equations (12) and (19), through each point of the spread passes 
a tangent having four-point contact with the spread. 

In the same manner it can be shown that the necessary and 
sufficient condition that a spread Vm have in each point a 
tangent with r-point contact is that the coordinates should 
satisfy the r •— 2 equations 

dr"~1X 
AS duidu2 • • • dur-x + ZBiXi + Cx = 0, 

OUi • • • dUr-l 

(20) 
d2x 

i ( r " 2 ) 2 7 - r - duidui + ZB^-Vxi + <f-*x = 0. 
dUidUj 

The osculating spaces to such curves always lie in the tangent 
Sm to Vm. In particular when r — 1 = m and the coordinates 
satisfy the system of equation (20), there is a curve passing 
through each point whose tangent lines have (m + 1)-point 
contact with Vm. The osculating Sm of the curve coincides 
with the tangent Sm to Vm. 

That equations (20) be satisfied requires (n — m) (r — 2) 
conditions. There are at our disposal m — 1 ratios du\ : 
du2 : • • • : dum; therefore if the above number is less than or 
equal to m — 1, the condition is always fulfilled. In case 

(21) (n - m) (r - 2) = m - 1 

the number of curves through each point is finite. When 
n = 2k — l,m = k, r = 3 the number of three point tangents 
passing through each point is 2k. 

From (21) can be calculated the dimensions of Vm such that 
it have a finite number of tangents through each point having 
r-point contact. In particular if the spread is to have a 4-point 
tangent through each point, m = J (2n + 1 ) . 
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