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matical literature sadly reminds us; but one who like Sturm 
can seize on the important and simple modifications of a given 
problem has certainly one of the most essential elements of 
mathematical greatness. 

HARVARD UNIVERSITY, 
CAMBRIDGE, MASS. 

A SENSUOUS REPRESENTATION OF PATHS THAT 
LEAD FROM THE INSIDE TO THE OUTSIDE OF 

AN ORDINARY SPHERE IN POINT SPACE OF 
FOUR DIMENSIONS WITHOUT PENE­

TRATING THE SURFACE OF 
THE SPHERE. 

BY PROFESSOR C. J. KEYSER. 

(Read before the American Mathematical Society, April 28, 1911.) 

THE logical or analytic existence of such paths—their existence 
in and for thought as distinguished from intuition or imagina­
tion—has been long familiar to every one, and may be made 
evident even to a freshman, so simple is the sufficient algebraic 
argument. But all efforts to envisage the paths are defeated 
completely. 

It is the purpose of this note to show how the existence of 
the paths may be made evident to the intuition and even to 
the senses of sight and touch. The purpose is achieved by a 
simple transformation correlating the points of 4-space #4 
with the spheres of ordinary space $3, including all spheres of 
real center and pure imaginary radius. In this way unintuitable 
situations in £4, like that presented by the paths in question, are 
represented by intuitable analytic equivalents in S3, and these 
equivalents may be rendered sensible by easily constructible 
physical models. 

The simplest possible correlation of the kind in question is 
that in which the point (x, y, z, w) of #4 and the sphere (of S3) 
having (x, y, z) for center and </w for radiusshall be a pair of 
correspondents. 

The representative in S3 of a lineoid (an ordinary 3-space) 
Ax + By + Cz + Dw + E = 0 of £4 is a linear complex of 
spheres such that, if (xh yh zh Wi) be a point of the lineoid, the 
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corresponding sphere of the complex is the sphere that has its 
center at (xi, y\, Zi) and its radius equal to s/wi. Those spheres 
of the complex that have a same radius, r = s/w, have for locus 
of their centers the plane Ax + By + Cz +Dr2 + E = 0; and 
the planes that thus correspond to different values of r are 
parallel. 

In particular, the lineoid w = h > 0 which is parallel to 
the xyz-lmeoid of reference, and on the positive side of it, is 
represented in £3 by the sphere complex consisting of the real 
spheres whose center-locus is the totality of points of S3 and 
all of which have the same radius r = x/k : a complex naturally 
to be regarded as parallel to the sphere complex composed of 
the points of $3 conceived as spheres of zero radius. 

The line of $4 determined by the points (xi, yi, Si, Wi), 
(%2, 2/2, z2, w2) is represented in S3 by a range of spheres deter­
mined by the two spheres that correspond respectively to the 
given points. The locus of the centers of these spheres is the 
line determined by the points (xh yu zi), (x2, y2} z2). A sphere 
of the range whose center is (x, y, z), where 

x = (xi + \x2)/a + X), y = (Vl + Xya)/(1 + X), 

z = (*i + X2fa)/(1 + X), 

has for radius r = s/w, where w = (wi + \w2)/(l + X) ; so that 
in general the size of a sphere of a range varies as its center 
moves along the locus of centers of the range, i. e., as the sphere 
moves along the range, generating the range as the path of a 
moving sphere just as in #4 the line corresponding to the range 
in 8s is the path of a moving point. 

The 4-dimensional sphere x2 + y2 + z2 + w2 — R2 = 0 of 
St is represented in S3 by a certain quadratic complex of spheres, 
namely, that whose spheres have for locus of centers the en­
semble of points within or on the sphere x2 + y2 + z2 — R2 = 0 
and whose radii as the distance of the center from the origin 
increases vary for w positive from \/R to zero and for w negative 
from is/R to zero. The spheres of the complex fall into two 
equal classes according as the radii are real or pure imaginary. 

The pair of equations 

x2 + y2 + z2 + w2 - R2 = 0, 

w = h (0 < h < R), 
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determine an ordinary sphere (of S4) that is immersed in the 
lineoid w = k. This sphere is represented in S3 by a quadratic 
congruence of spheres, which may be called a sphered sphere. 
I t is composed of real (visualizable) spheres whose centers have 
for their locus the sphere x2 + y2 + z2 = R2 — k2 and whose 
radii are x'k. This sphered sphere is immersed in the sphere 
complex corresponding, as above seen, to the lineoid w = k. 

A point (xi, yu zh wi) of S4 is inside, on, or outside of the 
sphere (1) according as xx

2 + yi2 + %i2 <, = , or > R2 — wx
2, 

provided wx == k. A point whose w 4= k is properly neither in­
side, nor on nor outside the sphere (just as in ordinary space a 
point external to a given plane is properly neither inside, nor 
on, nor outside of a given circle of the plane). According as a 
point of S4 is inside, on, or outside of the sphere (1), or has none 
of the three relations to it, so in S3 the sphere that represents the 
given point is respectively inside, on, or outside the sphered 
sphere representing the sphere (1), or has none of the three rela­
tions to the sphered sphere. 

Let (xu yu 2ij k) and (x2) y2, z2, k) be two points respectively in­
side and outside of the sphere (1). The condition that a point 

x = (Xi +.A*,)/(1 + X), y = {Vl + X2/2)/(l + X), 

z = (zi + Xs2)/(1 + X), w = k, 

of the line determined by the given points shall be on the 
sphere (1) has a positive discriminant, showing that the line 
pierces the sphere in two real points. This case is the 
familiar one that occurs in the point geometry of S3 and thus 
lies in the field of geometric intuition. In the sphere geometry 
of S3 the case is represented by a sphere range determined by 
two spheres having \/k for radii and situated respectively in­
side and outside of the sphered sphere corresponding to sphere 
(1). I t is essential to note that all the spheres of the range are 
of the same size and that the size is that of the spheres composing 
the sphered sphere, so that, as a sphere traverses the range, it 
twice coincides with a sphere of the sphered sphere; that is, 
the range as a path of a moving sphere twice penetrates the 
(surface of the) sphered sphere. 

Now consider the lines of S4 determined respectively by the 
point pairs (xu yh zh k), (a?8, 2/3, z3, w3), and (x9, y8, 23, Ws), 
fa, y2, z2, k), where ws > or < k, say w3 > h No point of the 
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former line is on sphere (1), for such a coincidence of points 
requires that (k + Xw3)/(1 + X) = k, a condition that is satisfied 
only when X == 0, which yields the point \xi, yu Zi, k), but this 
point is by hypothesis not on but inside sphere (1). For a like 
reason no point of the latter line is on sphere (1). Hence the 
broken line running from the first to the second and from this 
to the third of the given points is a path (for points) leading 
from the inside to the outside of sphere (1) without penetrating 
the surface. It is such analytically evident but unintuitable 
paths whose existence is to be made evident to spatial intuition 
and to sight and touch. The means thereto is now obvious. 
In S3 the two spheres representing the first and last of the given 
points are respectively inside and outside of the sphered sphere 
representing sphere (1). The sphere representing the point 
(%s, yzy Zz, Wz) is neither inside nor on nor outside of the sphered 
sphere, a fact intuitively manifest because the sphere in question 
is larger than the spheres (r = \/k) composing the sphere com­
plex in which the sphered sphere is immersed. As to the broken 
sphere range representing the broken line, it is intuitively 
evident that it does not penetrate the sphered sphere (whose 
spheres are all of radius \/lc) for the spheres composing the 
first part of the broken range increase in size from that of the 
initial sphere (of radius \/h and lying inside of the sphered 
sphere) up to the final sphere (radius \/wz) of that part, whilst 
the spheres of the second part decrease in size from that of the 
sphere just mentioned down to the final sphere of the range, 
this sphere being outside of the sphered sphere and having \/k 
for radius. 

To construct a model rendering the matter sensibly evident 
it is plainly sufficient (1) to distribute throughout a small region 
of space a small number of small spheres, fixing them in position 
as by slender vertical steel rods, some of the spheres being of 
equal radius r, one or more of greater radius and one or more of 
less, some of the spheres intersecting (though this is not in­
dispensable) and two or more of them, if transparent, being 
concentric (though this feature may be omitted); (2) to con­
struct a spherical frame (say of wire) that shall include one 
or more of the spheres of radius r and exclude some of them, 
and to locate a number of spheres of radius r so that their 
centers shall be points of the frame and be suitably distributed 
upon it; (3) to join by a rod the centers of two spheres of radius 
r, one of them inside the frame, the other outside, and to place 
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a number of spheres of radius r so that their centers shall be 
on the rod and be suitably distributed on it; (4) finally to join 
by a rod the center of a sphere of radius r inside the frame with 
the center of a sphere of radius > r (it might as well be < r) 
and by a rod the center of the latter sphere with a sphere of 
radius r outside the frame, and, then, to locate a number of 
spheres so that the centers of some of them shall be on one of 
the rods and those of the rest on the other, the spheres on the 
former rod suitably increasing in size as their centers approach 
that of the sphere common to the two rods, whilst the spheres 
on the second rod suitably decrease in size as their centers 
recede from the common point of the rods. 

The model obviously enables one to distinguish by sight or 
by touch a sphere range representing a line of $4 that joins a 
point inside of an ordinary sphere to an outside point without 
penetrating the surface from a sphere range representing the 
case where penetration occurs. 

COLUMBIA UNIVERSITY, 

April, 1911. 

A DIRECT PROOF OP THE THEOREM THAT THE 
NUMBER OF TERMS IN THE EXPANSION OF 

AN INFINITE DETERMINANT IS OF THE 
SAME POTENCY AS THE CONTINUUM. 

BY DR. N. J. LENNES. 

(Read before the American Mathematical Society, February 25, 1911.) 

THE following rather obvious theorem is thought of sufficient 
interest to warrant the publication of a direct proof. 

THEOKEM: The number of terms in an infinite determinant is 
of the potency c of the continuum. 

Proof. It is well known that every infinite determinant can 
be brought into the form 
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