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CHARLES Sturm was born in 1803 at Geneva, then a part of 
France, and went to Paris at about the age of twenty-one. 
There he spent the rest of his life and died in 1855, having be­
come a member of the French Academy of Sciences in 1836. 

I t is not necessary for us to go beyond this bare outline of 
Sturm's life, since it is not with his worldly fortunes that we 
shall be concerned. Neither do I propose to give an account 
of his life-work as a whole.* The brief biography and bibliog­
raphy prefixed to his posthumous Cours d'Analyse fulfills to 
some extent both of these purposes. We shall confine ourselves 
to one branch of investigation pursued by Sturm: the study of 
the real solutions of algebraic equations and of linear differential 
equations, both ordinary and partial. I t was here that Sturm's 
most important and suggestive work was done, and it is of 
interest to try to gain some insight into the relations between 
the various parts of the subject as they appeared to him. 

The papers with which we are concerned may be exhibited 
in the following table: 

* In brief we may say that, besides the investigations with which we 
shall be concerned, Sturm published 

(a) An experimental memoir in collaboration with Colladon on the 
compressibility of liquids. 

(b) A large number of minor papers, mostly geometrical. 
(c) Several papers on geometrical optics including a long memoir. 
(d) Some papers, partly in collaboration with Liouville, on the im­

aginary roots of equations, which are not without connection with Sturm's 
work on the real roots of algebraic equations. 
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T H E PAPERS OF 1829, presented to the Academy on the dates 
given and summarised, as indicated, in the Bulletin de Férussac: 

May 23. "Sur la résolution des équations numériques." 
Volume 11, pages 419-422, and volume 12, page 318, 
footnote. 

June l. No title given. Volume 11, pages 422-424, and 
volume 12, page 318, footnote. The subject of this 
memoir is the equation Axa + Bx^ + • • • + Mx" = 0, 
where a, /3, . . . , ju, are real but not necessarily rational. 

June 8. Note. Volume 11, page 425. I t is merely stated 
that this note contains (1) two new proofs of the reality 
of the roots of the transcendental equations to which 
the solution of various problems in mathematical physics 
leads; (2) the general determination of the constant 
coefficients in the series for representing an arbitrary 
function between given limits. 

July 27. ' 'Sur l'intégration d'un système d'équations dif­
férentielles linéaires." Volume 12, pages 314-322. 

August 3. "Sur la distribution de la chaleur dans un 
assemblage de vases." Volume 12, page 322. Nothing 
but the title of this paper is preserved. 

October 19. "Nouvelle théorie relative à une classe de 
fonctions transcendantes que Ton rencontre dans la 
résolution des problèmes de la physique mathématique." 
Volume 12, page 322. Nothing but the title of this 
paper is preserved unless, as is possible, a brief statement 
in volume 11, pages 424-425, refers to it. 

T H E THREE GREAT MEMOIRS. 

1835. "Mémoire sur la résolution des équations numér­
iques." Mémoires des savants étrangers, volume 6, pages 
271-318. 

1836. "Mémoire sur les équations différentielles linéaires 
du second ordre." lÀoumllës Journal, volume 1, pages 
106-186. This memoir had been presented to the 
Academy September 30, 1833, and an abstract of it 
published in VInstitut for November 9, 1833, pages 219-
223. 

1836. "Mémoire sur une classe d'équations à différences 
partielles." Idouville's Journal, volume 1, pages 373-
444. Cf. VInstitut for November 30, 1833, pages 247-
248. 
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For the sake of completeness we note that there are also three 
minor papers of later date.* 

I t is in the three great memoirs of 1835-36 that Sturm gave 
its final form to so much of his work as he completed; but the 
above list strongly suggests, what a closer study amply confirms, 
that it was in the year 1829 that the great creative period of 
Sturm's life fell, and that the papers presented to the Academy 
in that year, so far as they are still accessible, must be examined 
if we would gain an insight into the lines of thought followed by 
him in making his great discoveries. In doing this we shall 
find that certain not uninteresting aspects of his early work 
find little or no mention in the great memoirs. Most of this 
early work is preserved to us only in the form of brief abstracts, 
sometimes even only by ts title, so that some reconstruction 
becomes necessary. This makes it impossible for us to attain 
certainty at all points, but perhaps the discussion is not less 
interesting for this reason. 

Sturm's personal and scientific relations to Fourier form an 
indispensable background to a consideration of the papers pre­
sented to the Academy in such rapid succession during the 
summer of that fruitful year. The two main subjects of 
Fourier's life work had been the theory of heat and the theory 
of the solutions of numerical equations. Both of these subjects 
were carried forward by Sturm, the first in the two memoirs of 
1836, the second in that of 1835. But if in the memoirs these 
tendencies appear quite distinct, we find them, when we turn to 
the papers of 1829, blended in à most curious and interesting 
manner. 

Fourier's treatise on the solution of numerical equations was 
not published until 1831, after the author's death; but the 
manuscript of this work had already in 1829 been communicated 
to several persons among whom was Sturm, who tells us ex­
plicitly in the paper of May 23 what a strong influence it had on 
his own work. 

Fourier had established the theorem that a real algebraic 
equation of the fcth degree, f(x) = 0, cannot have more roots 
in an interval ab, neither of whose extremities is a root, than 
the difference between the number of variations of sign in the 

* Namely : a brief extract of a memoir written by Sturm and Liouville 
together: "Sur le développement des fonctions en séries . . . ," published 
in LiouvüWs Journal, vol. 2 (1837), pp. 220-223, and also in the C. R.} 
vol. 4, p. 675; and two papers concerning the real roots of algebraic equa­
tions in Liouville's Journal, vol. 7 (1842), pp. 132-133, 356-368. 
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set of functions 

a) ƒ(*), ƒ'(*), r w , . . . , ƒ L*](«), 
(accents denoting differentiation) at the points a and b. Sturm's 
theorem, as it is still called, replaces the sequence (1) by 

(2) fo(x), Mx), Hx), . . . , 

which coincides with (1) in the first two places, while each 
subsequent fn is the negative of the remainder obtained by 
dividing/w_2 by fn-i, 

(3) fn-2(x) = qn-i(x)fn-i(x) — fn(x) (n = 2, 3, . . .). 

The advantage of this set over the set (1) is that the difference 
in the number of variations in (2) at a and b is precisely equal 
to the number of roots between a and 6. Since this theorem is 
given in the first of the notes of 1829 and is elaborated at length 
in the first of the great memoirs, one might be tempted to 
suppose that this formed the starting point in Sturm's researches. 
Fortunately Sturm himself has preserved us from this mistake, 
for on the closing page of the first memoir of 1836 he tells us 
that the above theorem was merely a by-product of his extensive 
investigations on the subject of linear difference equations of 
the second order. Curiously enough, however, this subject of 
difference equations is nowhere else alluded to in Sturm's pub­
lished writings. 

The key to this difficulty lies, I feel sure, in the paper of 
August 3, 1829, of which as has been said only the title is pre­
served. This memoir is described as more extensive than the 
one of July 27, which, as one sees from the summary, was not 
brief. At Sturm's death there was found among his papers a 
"very extensive" memoir with almost precisely the same title,* 
which has also never been published. I shall try to show you 
how this lost paper forms the starting point in Sturm's investiga­
tions, and how all his other work which concerns us here grew 
directly out of it. For this purpose we must first reconstruct 
at least the general framework of this paper. 

* "Sur la communication de la chaleur dans une suite de vases." Cf. 
Cours d'Analyse, vol. l,p.xxviii. It is there said: "Ces deux mémoires" 
(i. e., this one and one on curves of the second order) "sont en état d'être 
imprimés, et M. Liouville a bien voulu se charger de leur publication.'' 
I t is to be regretted that this intention was never carried out. Even at 
this late date the publication would be decidedly interesting if by chance 
the manuscript could still be found. 
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Suppose we have a number of vases P0, Pi, . . . , Pn placed in 
any position with reference to one another and filled with 
various liquids at diverse temperatures. These vases we sup­
pose to be immersed in an atmosphere which circulates freely 
and thus maintains a constant temperature which we take as 
the zero of our scale. Each of these vases radiates heat into 
this atmosphere, and the vases also interchange heat among 
themselves by radiation. Let us denote the temperature of 
the vase P» at the time t by u (i, t). The differential equation 
for the flow of heat is then, if we assume the Newtonian law of 
radiation, 

(4) c® dt = k^' ° ^ ° ' *)+*'* + W, n)u(n, t) 
(i = 0, 1, . . . , ? i ) . 

Here c(i) is a positive constant depending on the specific heat 
of the vase Pi) when ï H= h Hh J) = Wj> i) is a positive constant 
of proportionality which measures the amount of radiation 
between Pi and P?; and finally k(i, i) is written merely as an 
abbreviation for 

k(i, i) = — h(i) — k(i, 0) — • • • — k(i, i — 1) 
— k(i, i + 1) — • • • — k(i, ri), 

where h(i) is a positive constant of proportionality for measuring 
the radiation of P»- into the atmosphere. It is important for 
us to understand that the constant k(i, j), when i H= h depends 
for its value not merely on the relative positions and the sizes 
and shapes of the vases Pt- and PJf but that its value is also 
decreased if one or more of the other vases is so placed as to 
cut off part of the radiation from P» to P/. If these vases are 
completely cut off from each other by intervening vases, the 
constant k (i, j) has the value zero. 

I suspect that it was precisely to the problem just indicated 
and in particular to the system of equations (4) that Sturm 
first turned his attention. There is, however, evidence (cf. the 
paper of July 27) that he had also under consideration problems 
in small vibrations and in celestial mechanics leading to systems 
of differential equations analogous to (4) but which may be 
somewhat more general in form. The paper last cited was 
devoted to the analytical treatment of such systems of linear 
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homogeneous differential equations with constant coefficients. 
As the chief result is a method of treating the algebraic char­
acteristic equation of the system, we postpone any discussion of 
this paper until later. 

I t is not, however, in more general, but rather in more special 
problems that Sturm found his real inspiration. Consider the 
case in which the vases P0, . . . , Pn are arranged in linear se­
quence* and in such a way that the radiation between two non-
consecutive vases is completely cut off by the intervening ones. 
This case is characterised analytically by all the constants k(i, j) 
vanishing except those for which the integers i, j are either equal 
or differ from one another by unity. We may then write equa­
tions (4) as follows: 

c(0) ^ ~ T ^ = - [A(0) + *(0,1)M0, t) + ft(0, l)u(l, t), 

c(i) —~rr— = k(i, i — l)u(i — 1, t) — [h(i) + k(i, i — 1) 

(5) + k(i, i + l)]u{i, t) + k(i, i + l)u(i + 1, t) 

d=l,2,...,n-l)> 

1,0 

[h(n)+ k(n, n — l)]u(n, t)> 

By the side of the problem in the theory of heat which we 
have just formulated we may advantageously consider the 
problem of the small transverse vibrations of a stretched elastic 
string whose mass is negligible but which is weighted at a 
number of points by heavy particles. This problem had first 
been considered one hundred years earlier by John Bernoulli, 
and for half a century this and equivalent problems had been, 
in more or less general forms, subjects of investigation by 
Daniel Bernoulli, Euler, and Lagrange ;f but none of these 
mathematicians had gone beyond the case where the particles 

* It is interesting to note that in the title of the manuscript found at the 
time of Sturm's death, and which may be supposed to be the final form which 
his memoir took, the phrase "une suite de vases" is used in place of the 
earlier "un assemblage de vases." This change suggests that as his work 
developed Sturm desired to give more prominence to this special case; or, 
indeed, he may have eliminated all consideration of the more general case. 

t Cf. Burkhardt's Report in the Jahresbericht d. deutschen Mathe-
matiker-Vereinigung, vol. 10 (1901-1908). 

6u{n, t) 
c(n) —-r.— = k(n, n — l)u{n — 
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are of equal mass and are equally spaced,* and for fifty years 
the problem had practically remained untouched. 

Suppose that the string in its position of equilibrium lies 
along the axis of x and that particles P0) . . ., Pn with masses 
c(0), . . . , c(ri) lie respectively at the points whose abscissas are 
Xo < Xi < • • • < xn, and let P0 and Pn be at the ends of the 
string. In order to secure the same degree of generality as in 
the heat problem above mentioned, we assume that during 
the transverse vibration each particle is drawn back towards its 
position of equilibrium not merely by the tension of the string 
but also by an additional force acting towards its position of 
equilibrium and proportional to the distance from this point. 
The constant of proportionality here we denote by h(i) in the 
case of the ith particle, and, calling the tension of the string T, 
we let 

The distance of Pi from its position of equilibrium at the time t 
we denote by u(i, t), and we assume that each particle is free 
to move only in a direction at right angles to the axis of x, 
and that the whole motion takes place in one plane. Finally 
we assume that the string always remains so nearly straight 
that the squares of the sines or tangents of the angles which its 
pieces make with the axis of x may be neglected.f Then it is 
readily seen that the equations of motion of the particles be­
come identical with equations (5) provided we replace the first 
derivatives in these equations by second derivatives. I t follows 
that the mechanical problem last mentioned is mathematically 
almost equivalent to the problem in the theory of heat considered 
above. That Sturm chose the latter rather than the former, 
with which he was surely familiar, is, so far as the greater part 
of his work goes, J a matter of slight importance and is prob-

* In all the cases treated during the eighteenth century the particles 
are either supposed to be acted upon by no external forces, or to be under 
the influence of gravity acting in the direction of the string. The presence 
of such an external constant force as this is mathematically equivalent to 
an unequal spacing of the particles, and will therefore not be explicitly 
considered by us. 

t It should be noticed that we do not assume the ends of the 'string to 
be fixed. If we did this, we should have a case strictly analogous to that 
in which the two extreme vases, P0 and Pn, in the heat problem are main­
tained at the temperature zero. 

t An essential difference occurs only in the work which leads up to the 
latter part of the second memoir of 1836. 
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ably to be explained by the fact that the theory of heat was 
at that moment a more " u p to date" subject. The relation 
between the two problems is however so close that we may be 
permitted to depart so far from strict historical accuracy as to 
substitute the vibration problem for the heat problem in our 
further explanations, since in this way greater concreteness 
of expression may be gained. 

We consider first the simple harmonic vibrations of the string, 
that is we assume that u has the form 

(6) u(i, t) = y(i) [A sin fit + B cos fd]. 

By substituting this expression in the equations of motion 
we find for y(i) the difference equation of the second order 

k(i, i - l)y{i - 1) - [h(i) + h(i, i - l ) + h{%, i + 1) 

- v?c{i)] y(i) + k(if i + l)y(i + 1) = 0 

or 

(70 A{k(i, i - l)Ay(i - 1)} + [M2C© - h{i)]y{i) = 0 

together with the terminal conditions 

(8) 4(1, 0)2/(1) + [M2C(0) - A(0) - 4(1,0)M0) = 0, 

(9) [»2c(n) - h(ri)-Jc(n,n- l)]y(n) + k(n,n- l)y(n - 1 ) = 0. 

The equation (7) has in general no solution other than zero 
which satisfies both conditions (8) and (9),—it is only for special 
values of fx that these conditions can both be fulfilled. Conse­
quently we shall disregard at first condition (9), and consider 
merely the solution of (7) which satisfies (8). This solution 
obviously contains an arbitrary constant factor, since (7) and 
(8) are homogeneous. We therefore replace the condition (8) 
by the two non-homogeneous conditions 

2/(0) = 4(0, 1), 

^ } 2/(1) = A(0) + 4(0,1) - M2C(0), 

which are precisely equivalent to (8) except that (80 also deter­
mines the otherwise arbitrary constant factor, and determines 
it in such a way that y(i) does not vanish identically. 

The solution y(i) determined by (80 does not in general satisfy 



1911.] STURM'S WORK ON EQUATIONS. 9 

(9). I t does, however, for a speoified value of JU either satisfy 
the condition y(n) = 0, or a condition of precisely the form (9) 
where either c(n) or h(n) have in general been replaced by 
another value.* We may therefore say that for every value of 
JJL the function u(i, t) defined by (6) gives a simple harmonic 
vibration corresponding either to the mechanical problem we 
wish to consider or to a modification of this problem which con­
sists either in having the particle Pn held fast, or in a change in 
the mass of this particle, or in a change in the strength of the 
force which pulls this particle back to its position of equilibrium. 
This we shall speak of as the modified problem corresponding to 
a given value of ju, using this term so that, for the special values 
of fx above referred to, the original problem itself is the modified 
problem. 

In the plane in which the vibration takes place let us now 
construct an ordinate of length y(i) at each of the points Xi and 
connect the extremities of each two successive ordinates by a 
straight line. The broken line thus formed, which we shall call 
the line y(i), gives essentially the shape of the string in the 
simple harmonic vibration we are considering; for, if we multiply 
by A sin jut + B cos fit all the ordinates of this broken line, and 
this will evidently not essentially affect its shape, we get a 
broken line which has precisely the shape of the string at the 
time t. The points where the line y(i) meets the axis of x thus 
give the nodes of the simple harmonic vibration in question. 
Either from simple mechanical considerations or from the 
equation (7) we see that at each node the line y(i) crosses the 
axis. Consequently, since each of the quantities 2/(0), 2/(1), 
--•,y(n) is obviously a continuous function of n (in fact à 
polynomial in /*2), the nodes also vary continuously with jw, 
never suddenly appearing or disappearing except at the ex­
tremity xn of the string. 

There can be very little doubt that at this point Sturm, by a 
simple manipulation of equation (70 which we will not stop to 
give herej, established the important fact, which may easily 

*This is true even in the case ju=0 provided we replace h(n) by a 
negative quantity. In all other cases positive quantities may be used in 
place of c(n) and h(n). 

t Cf. Porter, Annals of Mathematics, second series, vol. 3 (1902), p. 55. 
In the article here cited Professor Porter, at my suggestion, reconstructed 
a part of Sturm's researches on difference equations without, however, 
considering either the vibration problem or the heat problem. Cf. also 
the article by Professor Porter's pupil, Miss Merrill, Trans. Amer. Math. 
Soc, vol. 4 (1903), p. 423. 
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have been suggested to him by the mechanical problem itself, 
that as fji2 increases the abscissa of each node decreases, new 
nodes appearing one by one at the point xn. 

I t is here that Sturm must have noticed the connection with 
Fourier's theorem concerning the roots of algebraic equations. 
To establish this connection we need merely to observe that the 
number of nodes for a given value of JJ? (we shall write for con­
venience X = — fx2) is simply the number of variations of sign 
in the set of polynomials in X 

(io) »W,»(w~i ) , - - - ,» (0 ) . 

Consequently what we have said above is equivalent to saying 
that the number of roots of the polynomial y(ri) between two 
negative values of X is precisely equal to the difference between 
the number of variations in the system (10) for these two values 
of X. Sturm found, therefore, that for the particular polyno­
mial y (ri) he was in possession of a sequence of polynomials of 
descending degrees (since y(i) is a polynomial of the ith degree 
in X), which served perfectly the purpose which the sequence of 
derivatives serves imperfectly in Fourier's theorem. He must 
then have asked himself to what properties of the polynomials 
(10) this fact is due, and have seen that just three properties 
were used: 

(a) The last polynomial, y(0), is a constant not zero. 
(b) When one polynomial vanishes the two adjacent ones 

have opposite signs. This was an immediate consequence of 
(7), but would follow in the same way if instead of (7) the y's 
satisfied any difference equation 

(11) L(i)y(i + 1) + M(t)y(i) + N{i)y{i - 1) = 0, 

where L and N always have the same sign. 
(c) The nodes increase with X. Far less than this, however, 

would be sufficient for our present purpose, namely that when 
a node lies at xn it decrease as X decreases. This would in 
particular be the case if y(ri) had no multiple root and y(n — 1) 
were simply the derivative of y(ri), for this is precisely the 
property of the derivative on which Fourier's work is based. 

We may then suppose that Sturm said to himself: Starting 
with any polynomial without multiple roots, /(X), in place of 
y(ri), and taking in place of y(n — 1) the derivative /'(X), 
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how can I form a sequence of polynomials /2(X), /3(X), . . . , to 
take the place of y(n — 2), y(n — 3), . . . , which satisfy a rela­
tion of the form (11) and of which the last is a constant not zero? 
This question once formulated, the method of successive divi­
sions and reversal of sign of the remainder, leading to equation 
(3) which is merely a special case of (11), would readily suggest 
itself, and Sturm's theorem in its most familiar form was found. 

If our surmises so far are correct, it follows that, even at this 
early date Sturm must have been well aware that any sequence 
of functions having a small number of easily specified properties 
would serve the purpose of his theorem just as well as the 
sequence (2) ; so that to call such more general sequences Sturm­
ian sequences, as is now done,* is even from a strictly historical 
point of view entirely suitable. Our belief that Sturm was 
familiar with this more general point of view need not, however, 
rest entirely on the line of reasoning so far explained. Not 
only does he show in his memoir of 1835 how other Sturmian 
sequences besides (2) may be formed ;f but more particularly 
his paper of July 27, 1829, to which reference has already been 
made, is mainly devoted to the formation for a special algebraic 
equation of a Sturmian sequence which is very different from 
the sequence (2). If we use the notation of determinants, 
which Sturm does not use, the equation in question is 

(12) 

#nX + hvi #i2X + &i2 • • • gink + km 

#2lX + hi #22X + &22 * ' ' 02nX + k2n 

0nlX + JCnl #w2X + kn2 " ' ÇnnX + knn 

= 0, 

where g a = g a, ki3' = kji, and where the #'s and k's are real and 
the former are the coefficients of a non-singular definite quadratic 
form. Sturm falls here into the error into which Laplace and 
Lagrange had fallen before him, and which was first corrected by 
Weierstrass in 1858, of thinking that this equation can have no 
multiple roots. He gives, however, the correct theorem that the 
roots are all real; and, what is important for us here, he states 
that the determinant in (12) and the polynomials obtained by 
striking off from it the last 1, 2, 3, • • • rows and columns form 

* Cf. Weber's Algebra, 2 éd., vol. 1, p. 303. 
t Cf. also the closing lines of his abstract of May 23, 1829. 
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a Sturmian sequence,* provided each of these polynomials is 
multiplied by such a power of — 1 as to make the coefficient 
of its leading term positive, f 

The paper of May 23, 1829, subsequently published as the 
memoir of 1835, did more than all of his other papers together 
to win for its author recognition both in France and throughout 
Europe. I t appears to us here in its true light, J as a digression 
from his investigations in the domain of mechanics and mathe­
matical physics. This digression was indeed carried a little 
farther, as the paper of June 1 testifies. Here it is shown how 
Fourier's methods can be applied with very slight change to 
obtain an upper limit for the number of real roots in a given 
interval for the type of transcendental equation there considered. 
I t is clear, moreover, from a brief remark near the middle of 
page 424 that Sturm was here also in possession of a method 
of forming a Sturmian sequence. 

Let us now return to the problem of the vibrating string 
which we were considering above. We saw that as fx2 increases 
the abscissa of each node decreases. Now from (80 and (70 
it may readily be inferred that when M = 0, 

0 < 2/(1) <y(2) < • • • <y(n), 

so that here there is no node. On the other hand from (80 
and (7) we see that y{%) is a polynomial of the ith degree in /x2 

whose leading coefficient has the sign of (— 1)*. Consequently, 
for very large values of fx2 we have a node in each of the intervals 

Xi < x < xi+1, (i = 0, 1, • • • , n), 

that is, we have the maximum possible number of nodes, 
namely n. Accordingly as ix2, starting with the value zero, 
increases, we have at first no node, then for a while one node, 

* This is true only with the qualification that no two of these poly­
nomials have a common root; cf. Weber's Algebra, 2 éd., vol. 1, p. 308. 
This necessary qualification is not mentioned in Sturm's abstract, though 
it is by no means impossible that it may have been given in the extended 
memoir. 

t In other words, these factors are all + 1 or alternately + 1 and — 1 
according as the quadratic form of which the g's are the coefficients is 
positive or negative. 

t There are further details elaborated in this memoir to which it is not 
necessary for us to refer. 
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then for a certain interval two nodes, etc., until finally the nth 
node appears at xn and from that point on we constantly have n 
nodes. We thus see that there are just n positive values of JU2, 
for which a node lies at xn, that is, that the equation in JU2, 
y(n) = 0, has n distinct positive roots, and consequently, since 
it is of the nth. degree, that it has no imaginary or negative or 
multiple roots. If we denote the roots arranged in order of 
increasing magnitude by ix'\ //2, • • •, ^Cn]2 it is clear from what 
has been said that for positive values of M2 y($) has just k 
nodes (k É= W) in the interval x0 < x < xn when and only when 
/zL*]2 < /x2 < /ic*+112* where, for convenience, we let juco] = 0, 

The next step is to show that in this interval there exists 
one and only one value of M2 for which y{%) satisfies the condition 
(9), and this follows readily from the fact* that, when y(n) 4= 0, 
y(n — l)/y(n) increases as fjt? increases, and hence increases from 
- oo to + °° as ju2 increases through the interval we are now 
considering. This establishes the following: 

THEOREM OF OSCILLATION^ There exist just n+1 values 
of JU2, all real and positive, for which the difference equation 
(7) has a solution, not identically zero, which satisfies the 
terminal conditions (8), (9). Denoting these values, arranged 
in order of increasing magnitude, by ju0

2, MI2> • • -, Vn2> the solution 
yk(i) of (7) corresponding to JU&2 and satisfying (8), (9) has 
exactly k nodes. 

We obtain in this way n+1 simple harmonic vibrations of 
the weighted string, which differ from one another in the number 
of their nodes. The most general motion of the string will be 
obtained by compounding these simple harmonic vibrations. 
Here the formulae, which are readily obtained, for making the 
vibration correspond to arbitrarily given initial conditions are 
closely analogous to the well known ones for the representation 
of periodic functions at n equally spaced points by a finite 
trigonometric series. These latter formulée had been obtained 
by Lagrange in considering a special case of the vibration 
problem with which we have been concerned. 

In precisely the same way, the problem of the distribution of 

* Cf. Porter, loc. cit. This fact is also necessary in the proof, referred 
to above, that the nodes decrease as ju2 increases. 

t See the articles by Porter and Miss Merrill above cited. This theorem, 
never published by Sturm, is the prototype of the important and still 
increasing class of theorems to which Klein attached this name more than 
fifty years later. 
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heat in a row of vases is solved by the formula 

(13) Aoe-^yoii) + Aie~
x%(i) + • • • + Ane~Ktyn{i), 

where X& = — in?> Here also the coefficients Ah can be deter­
mined so as to correspond with given initial conditions. I t 
was, however, not merely the analytic solution of this problem 
which interested Sturm, but even more, perhaps, a discussion 
of the properties of the solution. 

If we mark the vases at any moment + or — according as their 
temperatures are above or below the temperature of the sur­
rounding atmosphere, it is obvious from physical considerations 
that as time passes the number of variations of sign in the 
sequence cannot increase. This fact may be established ana­
lytically by means of the equations (5) of which the function 
(13) is a solution, and at the same time we can see precisely 
how the number of variations decreases. For a fixed value of 
t we plot the function (13) as a broken line, precisely as above 
we plotted the line y(i). This line, however, unlike the line 
y{i), does not necessarily cross the axis of x at every point 
where it meets it; indeed it may meet the axis of x not merely 
at isolated points but it may also coincide with it throughout a 
whole segment extending between two points Xi. Let us call 
each of the isolated points and segments where the broken line 
representing (13) meets the axis of x a node of (13). To each 
node we attribute a multiplicity as follows : If the node lies at, 
or reaches up to, one of the end-points x0 or xn, we take as its 
multiplicity the number of points Xi contained in it. Otherwise 
we take either this number or a number one greater, in such a 
way that the multiplicity shall be odd or even according as in 
passing through the node the function (13) does or does not 
change sign. This convention is justified by the fact, readily 
established by means of equations (5), that such multiple nodes 
can occur only for isolated values of t; and that for values of t a 
little smaller than such a value, the function (13) has exactly 
k simple nodes in the neighborhood of the point or segment 
where a &-fold node is to appear.* Now the fundamental fact 
here, which also follows from (5), is that as t increases through 
a value for which there is a node of multiplicity h, the simple 
nodes, after coalescing to form the multiple node, all disappear, 

* We exclude here and in what follows the possibility that the function 
(13) vanish identically; or, what is the same thing, we assume that not all 
the A's are zero. 
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leaving no node at all in the neighborhood of the point or seg­
ment in question, except in the one case of a node of odd 
multiplicity which does not lie at or reach up to one of the end-
points XQ or xn\ in which case just one simple node remains in 
the neighborhood in question. 

From these considerations it may readily be inferred that the 
number of nodes of the expression 

(14) Apyp(i) + Ap+1yp+1(i) + • • • + Aqyq(i), 

where Ap 4= 0, Aq =f= 0, 0 = p < q = n, cannot be less than p 
or greater than q, a multiple node being counted at pleasure 
either once or as often as its multiplicity indicates. For if, 
by introducing exponentials, we modify (14) into an expression 
of the form (13), the nodes of (14) appear merely as the nodes of 
(13) when t = 0, and the number of such nodes lies, by what 
was said above, between the number of nodes of the expression 
(13) in question for a very large negative, and the number for 
a very large positive value of t. For such extreme values, (13) 
coincides very nearly with constant multiples of yp{%) and yq(i) 
respectively. 

While it does not seem likely from the scanty evidence which 
Sturm has left us that these latter considerations were all 
familiar to him in 1829, they can hardly fail to have been in his 
possession four years later, and it is not unlikely that if the 
manuscript which was among his papers at the time of his 
death could be recovered, it would be found to contain a 
systematic exposition of them along with the other matters 
we have touched upon.* 

Two lines for further investigation now naturally presented 
themselves. One of these consisted in replacing the difference 
equation (7) and the boundary conditions (8), (9) by the more 
general relations of the same form 

A{K(i)Ay(i)} - G{i)y{i + 1) = 0 (K(ï) > 0), 

(15) K(0)Ay(0) - hy(0) = 0 (or 2/(0) = 0), 

K(n - l)Ay{n - 1) + Hy(n - 1) = 0 (or y(ri) = 0). 

* We note in passing that if we equate the expression (13) to zero 
and assign to i a particular value, the equation thus obtained is precisely 
of the form considered in the paper of June 1, 1829 concerning which we 
have already spoken. Cf. the introductory remarks in the summary of 
that paper. 
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If here we assume that the quantities K(i), G{i), h, H are con­
tinuous increasing functions of X, the results relating to equation 
(7) and also their proofs admit of ready extension to the sys­
tem (15). 

On the other hand we may pass over from difference to dif­
ferential equations by allowing the integer n to become infinite, 
the points XQ and xn however remaining fixed. In this way the 
various functions of the integral argument i become functions 
of a continuous argument x. We thus pass from the massless 
string weighted by n distinct particles to the string whose mass 
is continuously but unequally distributed throughout its ex­
tent, and from the radiation of heat in a row of vases to the 
conduction of heat in a heterogeneous bar. It is this latter 
problem which forms the subject of Sturm's second great memoir 
of 1836, while the extension of the results concerning the dif­
ference equation (15) to the differential equation 

is the subject of the first memoir of that year. It is worthy of 
notice that in both cases Sturm used the method of passing 
by a limiting process from a difference to a differential equation 
merely as a heuristic one, making indeed hardly a mention of 
it in the final memoirs, and treating the differential equations 
directly by methods which are the immediate generalizations 
of those he had used for the difference equations in his un­
published work.* A careful examination of the abstracts pub­
lished in 1829 in the Journal de Férussac will show that all this, 
at least so far as it relates to the heat problem, was in his mind 
even at that early date.f It was probably developed to some 
extent in the unpublished paper of October 19. 

It is not my purpose to discuss here the two great memoirs 
of 1836, although the richness of their detail tempts one to 
linger over many points which have, it is to be feared, rather 
escaped the notice of mathematicians. This richness of detail 
probably reflects a similar quality in the earlier unpublished 

* Cf. Fredholm's derivation of the theory of integral equations as a 
limiting case from the theory of a system of linear algebraic equations. 
Like Sturm, Fredholm used this limiting process merely as a heuristic one 
for deriving both the results and the methods for their proofs. 

t There is no evidence to show whether the more general difference equa­
tion (15) was considered at this time or only at a slightly later date. 
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researches, and much of the detail there could be readily repro­
duced. In these days, when new methods are being suggested 
for obtaining a few of the fundamental results of Sturm in their 
simplest forms, it is not out of place to remark that if one were 
to cut away from Sturm's memoirs everything except what is 
necessary to obtain these results, the few pages that would be 
left would in brevity, rigor, and directness easily stand com­
parison with anything which has so far been suggested to replace 
them. 

Coupled with Sturm's name in all of this work on differential 
equations one often finds the name of his young friend Liouville. 
I t is true that Liouville's work on these matters was hardly 
inferior in originality and power to that of Sturm himself; but 
it must be remembered that Sturm's work was practically com­
plete, even to the writing of the two great memoirs, before Liou­
ville's began, and that, except for alternative proofs which the 
latter gave for some of Sturm's results, and for a genial extension 
to certain differential equations of higher order, his work dealt 
with a single problem, of fundamental importance it is true, 
which had not been treated by Sturm,* namely the proof that the 
development of an arbitrary function which occurs in Sturm's 
papers is valid. We may therefore fairly speak of the Sturm-
Liouville development according to normal functions, but these 
normal functions themselves, and almost everything relating 
to their theory,! a r e due to Sturm alone. 

I have tried to show you how all of Sturm's most important 
work flowed naturally from his treatment of a single physical 
problem, not very important in itself perhaps, certainly of no 
great generality or largeness of scope. Sturm's genius showed 
itself first in his method of handling the problem where such 
purely formal skill as one associates with the names of Lagrange 
or Poisson is less in evidence than a constant intuitional visuali­
zation of the problem combined with a sense of accuracy un­
common in his day; secondly in his perception of the relation 
of this problem to other questions, and to the way in which he 
followed up his work into adjacent fields. The power of gen­
eralizing is not rare, as the huge bulk of our current mathe-

* One paper on this subject written in conjunction with Liouville is 
preserved to us in abstract (Liouville's Journal,vo\. 2, p. 220) but was written 
after Liouville's first work on this subject. 

t An exception should be made here of the asymptotic expressions for 
these functions for large values of the index. These important expressions 
are due to Liouville. 
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matical literature sadly reminds us; but one who like Sturm 
can seize on the important and simple modifications of a given 
problem has certainly one of the most essential elements of 
mathematical greatness. 

HARVARD UNIVERSITY, 
CAMBRIDGE, MASS. 

A SENSUOUS REPRESENTATION OF PATHS THAT 
LEAD FROM THE INSIDE TO THE OUTSIDE OF 

AN ORDINARY SPHERE IN POINT SPACE OF 
FOUR DIMENSIONS WITHOUT PENE­

TRATING THE SURFACE OF 
THE SPHERE. 

BY PROFESSOR C. J. KEYSER. 

(Read before the American Mathematical Society, April 28, 1911.) 

THE logical or analytic existence of such paths—their existence 
in and for thought as distinguished from intuition or imagina­
tion—has been long familiar to every one, and may be made 
evident even to a freshman, so simple is the sufficient algebraic 
argument. But all efforts to envisage the paths are defeated 
completely. 

It is the purpose of this note to show how the existence of 
the paths may be made evident to the intuition and even to 
the senses of sight and touch. The purpose is achieved by a 
simple transformation correlating the points of 4-space #4 
with the spheres of ordinary space $3, including all spheres of 
real center and pure imaginary radius. In this way unintuitable 
situations in £4, like that presented by the paths in question, are 
represented by intuitable analytic equivalents in S3, and these 
equivalents may be rendered sensible by easily constructible 
physical models. 

The simplest possible correlation of the kind in question is 
that in which the point (x, y, z, w) of #4 and the sphere (of S3) 
having (x, y, z) for center and </w for radiusshall be a pair of 
correspondents. 

The representative in S3 of a lineoid (an ordinary 3-space) 
Ax + By + Cz + Dw + E = 0 of £4 is a linear complex of 
spheres such that, if (xh yh zh Wi) be a point of the lineoid, the 


