number of conditions in order that f_{pm} may be an *m*th power is $\binom{m+p-1}{m} - p$.

Each one of the Hessians $H\phi_0$, K_i $(j = 1, 2, \dots, p-2)$ is of order $2m-4$ in the variables which it contains, and so the number of vanishing coefficients in each is $2m-3$. Hence these give $(2m-3)(p-1)$ conditions in addition to the $\binom{m+p-1}{m} - m(p-1) - 1$ assumed ones. But of the $2m - 3$ conditions obtained by equating to zero the coefficients of a binary Hessian covariant only $m-1$ are independent, as the m coefficients of the form can all be expressed in terms of a single quantity when the Hessian vanishes. Hence we have as a total number of conditions given by the original factorability conditions of f_{nm} and the Hessians

$$
\binom{m+p-1}{m}-m(p-1)-1+(m-1)(p-1)=\binom{m+p-1}{m}-p,
$$

which is thus the minimum number required. Hence the relations derived in § 2 furnish a minimum set.

In the same way it may be shown that (6) , (7) , (8) , (9) are all minimum sets.

THE UNIVERSITY OF PENNSYLVANIA, PHILADELPHIA, PA.

THE GENERAL TERM OF A RECURRING SERIES.

BY PROFESSOR ARTHUR RANUM.

(Read before the San Francisco Section of the American Mathematical Society, September 26, 1908.)

1. The principal theorem of this note expresses the general term of a recurring series rationally in terms of the first few terms and the constants of the scale of relation. Although I derived it in 1908, I have only recently learned that practically the same theorem was published by D'Ocagne in 1894 *(Journal de L'Ecole Polytechnique,* volume 64, pages 151-224) and by Netto in 1895 *(Monatshefte für Mathematik und Physik,* volume 6, pages 285-290). Nevertheless it may be worth while to publish my own work for three reasons : first, because my proof is simpler than those of D'Ocagne and Netto ; second, because I have stated the result in a more explicit form than that of either of these authors * ; third, because I have applied

^{*} D'Ocagne gives an explicit statement of the theorem (p. 163) for the special case in which the series is a "suite fondamentale," but not for the general case.

the result to the series of powers of a matrix, and this application is, I believe, entirely new.*

2. Let $U = u_0 + u_1 + \cdots + u_{n-1} + \cdots + u_m + \cdots$ be any recurring series of order *ny* and let

(1)
$$
u_m = a_1 u_{m-1} + a_2 u_{m-2} + \cdots + a_n u_{m-n} \quad (m = n, n+1, \cdots)
$$

be its scale of relation. The general term u_m is evidently a linear homogeneous function of the first *n* terms u_0 , \cdots , u_{n-1} and a rational integral function of the *n* constants a_1, \ldots, a_n of the scale of relation. Our problem is to determine the explicit form of this function.

The corresponding power series will be

(2)
$$
U(x) = u_0 + u_1 x + \cdots + u_{n-1} x^{n-1} + U_n(x),
$$

where

(3)
$$
U_n(x) = u_n x^n + \cdots + u_{2n-1} x^{2n-1} + \cdots;
$$

that is, $U_n(x)$ is obtained from $U(x)$ by removing the first *n* terms. These series will always be convergent for a certain range of values of *x.* In all that follows we assume that *x* is chosen within that range.

From (1) and (3) we easily derive the identity

$$
(1 - a_1x - a_2x^2 - \dots - a_nx^n) \cdot U_n(x) = u_nx^n
$$

+ $(u_{n+1} - a_1u_n)x^{n+1} + (u_{n+2} - a_1u_{n+1} - a_2u_n)x^{n+2}$
+ $\dots + (u_{2n-1} - a_1u_{2n-2} - \dots - a_{n-1}u_n)x^{2n-1}$
= $(a_1u_{n-1} + \dots + a_nu_0)x^n + (a_2u_{n-1} + \dots + a_nu_1)x^{n+1}$
+ $\dots + (a_{n-1}u_{n-1} + a_nu_{n-2})x^{2n-2} + a_nu_{n-1}x^{2n-1}$,

which can be written in the form

(4)
$$
U_n(x) = \frac{u'_0x^n + u'_1x^{n+1} + \cdots + u'_{n-2}x^{2n-2} + u'_{n-1}x^{2n-1}}{1 - a_1x - a_2x^2 - \cdots - a_nx^n},
$$

provided we define the auxiliary quantities u'_0, \ldots, u'_{n-1} by the equations

^{*} For other applications see the papers of D'Ocagne and Netto, especially the former.

TERM OF A RECURRING SERIES.

(5)
\n
$$
u'_{0} = a_{1}u_{n-1} + \cdots + a_{n}u_{0},
$$
\n
$$
u'_{1} = a_{2}u_{n-1} + \cdots + a_{n}u_{1},
$$
\n
$$
u'_{n-2} = a_{n-1}u_{n-1} + a_{n}u_{n-2},
$$
\n
$$
u'_{n-1} = a_{n}u_{n-1}.
$$

The right-hand member of (4) is the so-called generating function of the series $U_n(x)$. We wish to expand it in ascending powers of x . This is easily accomplished, because of the wellknown fact that

$$
\frac{1}{1-a_1x-a_2x^2-\cdots-a_nx^n}
$$
\n
$$
=\sum_{\alpha_1=0}^{\infty}\cdots\sum_{\alpha_n=0}^{\infty}\frac{(\alpha_1+\cdots+\alpha_n)!}{\alpha_1!\cdots\alpha_n!}a_1^{\alpha_1}\cdots a_n^{\alpha_n}x^{\alpha_1+2\alpha_2+\cdots+n\alpha_n}.
$$

Hence, if we define A_m , for every positive integral and zero value of m , by the equation

(6)
$$
A_{m} = \sum \frac{(\alpha_{1} + \cdots + \alpha_{n})!}{\alpha_{1}! \cdots \alpha_{n}!} a_{1}^{a_{1}} \cdots a_{n}^{a_{n}},
$$

where the summation extends over all the positive integral and zero values of $\alpha_1, \dots, \alpha_n$, for which $\alpha_1 + 2\alpha_2 + \dots + n\alpha_n = m$, we see that (4) can be written in the form

$$
U_n(x) = \sum_{m=0}^{\infty} A_m(u'_0 x^{m+n} + \cdots + u'_{n-1} x^{m+2n-1}).
$$

Arranging this with respect to x , we have

(7)
$$
U_n(x) = \sum_{m=0}^{\infty} (u'_0 A_m + u'_1 A_{m-1} + \cdots + u'_{n-1} A_{m-n+1}) x^{m+n},
$$

provided we agree that

$$
(8) \t A_m = 0 \text{ when } m < 0.
$$

Equating coefficients of x^{m+n} in (3) and (7), we obtain the required formula

(9)
$$
u_{m+n} = u'_0 A_m + u'_1 A_{m-1} + \cdots + u'_{n-1} A_{m-n+1}
$$

 $1911.$]

for the general term um+n of the recurring series U, where the n consecutive coefficients A_m , \cdots , A_{m-n+1} , defined by (6) and (8),

 α *re rational integral functions of the constants* a_{1}, \ldots, a_{n} *of the scale of relation, and where the auxiliary quantities* u'_0, \ldots, u'_{n-1} , *defined by* (5), *are linear homogeneous functions of the first n terms* u_0 , \cdots , u_{n-1} of the series.

Application to Matrices.

3. Let us now apply the formula (9) so found to the recurring series that consists of the successive positive integral and zero powers of a linear homogeneous substitution in *n* variables, or in other words of an *n*-ary matrix $L = (l_{ij})$, where $l_{ij}(i, j = 1)$, \cdots , *n*) is the element in the *i*th row and *j*th column. Let L^0 be the corresponding unit matrix. We wish to express all the powers of *L* as linear homogeneous functions of the first *n* powers L^0 , L , \cdots , $L^{n-1,*}$ The first $n+1$ powers of L satisfy the well-known \dagger Hamilton-Cayley equation

(10)
$$
L^n = a_1 L^{n-1} + a_2 L^{n-2} + \cdots + a_{n-1} L + a_n L^0,
$$
 where

$$
\quad\text{where}\quad
$$

$$
a_1 = \sum_{i=1}^n l_{ii}, \quad -a_2 = \sum_{i=1}^n \sum_{j=1}^n \begin{vmatrix} l_{ii} & l_{ij} \\ l_{ji} & l_{jj} \end{vmatrix} (i < j), \quad \cdots,
$$

and

 $(-1)^{n-1}a_n = |l_{ii}|,$

the determinant of L. Multiplying (10) by L^{m-r} , we obtain the scale of relation

 $L^m = a_1 L^{m-1} + \cdots + a_n L^{m-n}$.

Hence we have only to define a set of auxiliary matrices $L_0, L_1, \cdots, L_{n-1}$ by the equations

$$
L_0 = a_1 L^{n-1} + \dots + a_n L^0,
$$

\n
$$
L_1 = a_2 L^{n-1} + \dots + a_n L^1,
$$

\n
$$
L_{n-2} = a_{n-1} L^{n-1} + a_n L^{n-2},
$$

\n
$$
L_{n-1} = a_n L^{n-1},
$$

^{*}This problem I stated and partly solved in the BULLETIN, vol. 13 (1907), pp. 337-338.

tCf. Bôcher, Higher Algebra (1907), p. 296.

and our problem is completely solved by the equation

$$
L^{m+n} = A_m L_0 + A_{m-1} L_1 + \cdots + A_{m-n+1} L_{n-1},
$$

where the A ['] s are scalar quantities defined, as before, by (6) and (8).

To illustrate this method, we shall calculate the 12th power of the ternary matrix

$$
L = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -2 & 2 \end{pmatrix}.
$$

In this case $a_1 = 2, a_2 = -2, a_3 = 1$,

$$
L_0 = \begin{pmatrix} 1 & -2 & 2 \\ 2 & -3 & 2 \\ 2 & -2 & 1 \end{pmatrix}, \quad L_1 = \begin{pmatrix} 0 & 1 & -2 \\ -2 & 4 & -3 \\ -3 & 4 & -2 \end{pmatrix}, \quad L_2 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & -2 & 2 \\ 2 & -3 & 2 \end{pmatrix},
$$

$$
L^{12} = A_9 L_0 + A_8 L_1 + A_7 L_2,
$$

$$
A_7 = (a_1^7 + 6a_1^5 a_2 + 10a_1^3 a_2^2 + 4a_1 a_2^3) + (5a_1^4 + 12a_1^2 a_2 + 3a_2^2) + 3a_1 a_3^2 = 2;
$$

similarly $A_8 = 2, A_9 = 1$. Therefore

$$
L^{12} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.
$$

CORNELL UNIVERSITY, *January,* 1911.