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number of conditions in order that ƒ may be an mth power 

Each one of the Hessians Hcj>0, K. (j = 1, 2, • •• , p — 2) is 
of order 2m — 4 in the variables which it contains, and so the 
number of vanishing coefficients in each is 2m — 3. Hence 
these give (2m — S)(p — 1) conditions in addition to the 
(m+^_1) *— m(p — 1) — 1 assumed ones. But of the 2m — 3 
conditions obtained by equating to zero the coefficients of a 
binary Hessian covariant only m — 1 are independent, as the 
m coefficients of the form can all be expressed in terms of a 
single quantity when the Hessian vanishes. Hence we have as 
a total number of conditions given by the original factorability 
conditions of f and the Hessians 

("+r!) - m(p - 1 ) - 1 + (m - i)(P - 1 ) = c+r') -P, 
which is thus the minimum number required. Hence the rela­
tions derived in § 2 furnish a minimum set. 

In the same way it may be shown that (6), (7), (8), (9) are 
all minimum sets. 
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1. The principal theorem of this note expresses the general 
term of a recurring series rationally in terms of the first few 
terms and the constants of the scale of relation. Although I 
derived it in 1908, I have only recently learned that practically 
the same theorem was published by D'Ocagne in 1894 (Journal 
de L'Ecole Polytechnique, volume 64, pages 151-224) and by 
Netto in 1895 (Monatshefte für Mathematik und Physik, volume 
6, pages 285-290). Nevertheless it may be worth while to 
publish my own work for three reasons : first, because my 
proof is simpler than those of D'Ocagne and Netto ; second, 
because I have stated the result in a more explicit form than 
that of either of these authors * ; third, because I have applied 

* D'Ocagne gives an explicit statement of the theorem (p. 163) for the 
special case in which the series is a " su i t e fondamentale," but not for the 
general case. 
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the result to the series of powers of a matrix, and this appli­
cation is, I believe, entirely new.* 

2. Let U= u0 + ux -f • • • + un_x -f . . . -f um + • • • be any 
recurring series of order ny and let 

(1) u =^a,u i+aji o+ • • *4-a u (m=n, n+1, • • •) 
N / m l m—1 ' 2 m—2 ' ' n m—n \ 7 * 7 / 

be its scale of relation. The general term um is evidently a 
linear homogeneous function of the first n terms u0, • • • , un_x 

and a rational integral function of the n constants av • • •, aw 

of the scale of relation. Our problem is to determine the ex­
plicit form of this function. 

The corresponding power series will be 

(2) U(x) = u0 + uxx + • • • + un_lX
n~l + Un(x)9 

where 
(3) Un(x) = uy+...+ u ^ - i +.-.; 

that is, UJx) is obtained from U(x) by removing the first n 
terms. These series will always be convergent for a certain 
range of values of x. In all that follows we assume that x is 
chosen within that range. 

From (1) and (3) we easily derive the identity 

(1 — a.x — a0x
2 — • • • — a xn) • U (x) = u xn 

\ I Z 71/ 7l\ / 71 

+ (»,+ I - a ,w>"+ 1 + («,+, - «A+! ~ «2w>"+2 

= («!«„_! -f H a„M0K + (a2M„_, + • • • + Ö A K + 1 

+ • • • + ( « ,M , + a M „V2"-2 -f a u .x2"-1, 
i ' V n—1 n—1 ' » n—2/ ' » n—1 / 

which can be written in the form 

u'wxn + u[xn+l + • • • + <_ 2 .T 2"- 2 + u'n_xx
u-1 

(4) UJx): 1 — a.x —- a0x
2 — • •. — a xn 

i l n 

provided we define the auxiliary quantities u0, •• •, uf
n_r by the 

equations 

* For other applications see the papers of D'OcagDe and Netto, especially 
the former. 
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«i = «,«„-! + • • • + «„«„> 
u[ = a2un_x + ••• + auv 

(5) 

n—2 n—1 n—1 ' » n—2 

The right-hand member of (4) is the so-called generating func­
tion of the series Un(x). We wish to expand it in ascending 
powers of x. This is easily accomplished, because of the well-
known fact that 

1 — axx — a2x
2 — . . . — anx

n 

a i = U an=0 a i * ' 
Z . . . V* i-i—-— -^- af1 • • • aanxai+2a*+ • ••+nan. 

Hence, if we define ^4m, for every positive integral and zero 
value of m, by the equation 

_ (a, + . . . + a ) ! 
(6) ^ - S ^ r ; - - ; ! - ^ 1 • • • « ? , 

where the summation extends over all the positive integral and 
zero values of av • • -, <xn, for which ay -f 2a2 + . . . + nan = m, 
we see that (4) can be written in the form 

UJx) = E A
mtu>m+n + * * ' + <-1a?w+an"1). 

Arranging this with respect to x} we have 

(7) 0 » = è K^OT + « l ^ + • • • + <_^m_„+1K+n, 

provided we agree that 

(8) ^ m = 0 when m < 0. 

Equating coefficients of xm+n in (3) and (7), we obtain the 
required formula 

(9) u , = u'^1 -f ^i-4 , -f . . • + «I J , , 
\ / m-rn 0 m ' 1 m—1 ' ' »—1 m—n+1 
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for the general term um+n of the recurring series U, where the n 
consecutive coefficients Am, • • • , Am_n+V defined by (6) and (8), 
are rational integral functions of the constants av • • •, an of the 
scale of relation, and. where the auxiliary quantities u0, • • •, un_v 

defined by (5), are linear homogeneous functions of the first n 
terms uQ, • • ., un_x of the series. 

Application to Matrices. 

3. Let us now apply the formula (9) so found to the recurring 
series that consists of the successive positive integral and zero 
powers of a linear homogeneous substitution in n variables, or 
in other words of an w-ary matrix L = (lif), where lij(i,j — 1, 
• . -, n) is the element in the ith row and jth column. Let L° 
be the corresponding unit matrix. We wish to express all the 
powers of L as linear homogeneous functions of the first n powers 
L°y L, • • -, Ln~\* The first n + 1 powers of L satisfy the 
well-known f Hamilton-Cayley equation 

(10) L» = axL
n~l + a2L

n~2 + . . . + an_xL + anL\ 
where 

n n n 
ai = Z hi' - «2 = S Z 

and 

the determinant of L. Multiplying (10) by Lm~~n, we obtain the 
scale of relation 

Lm = aJT1-1 + ... +a Lm~n. 
1 ' ' n 

Hence we have only to define a set of auxiliary matrices 
La, Lv • • -, Ln_x by the equations 

L0 = axL"-1 + ... + anL\ 

Lx = a2L-1 +•••+ a L\ 

J^ 
*This problem I stated and partly solved in the BULLETIN, vol. 13 (1907), 

pp. 337-338. 
tCf. Bôcher, Higher Algebra (1907), p. 296. 

t l 

hi 
L. 

*3 

hi (*• <J)> 

= a ,Ln~l + a L' 

= a Ln-\ 
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and our problem is completely solved by the equation 

Z«+" = AmL0 + Am^L, + ... + Am_n+lLn_v 

where the A9 8 are scalar quantities defined, as before, by (6) 
and (8). 

To illustrate this method, we shall calculate the 12th power 
of the ternary matrix 

/ 0 1 (V 

L = ( 0 0 1 

\ 1 - 2 2, 

In this case ax = 2, a2 = — 2, a3 = 1, 

/ l - 2 2 \ / 0 1 - 2 

Z 0 = 2 - 3 2 , i1 == ( - 2 4 - 3 

\ 2 - 2 1 / \ _ 3 4 - 2 , 

L12 = ^ 9 i 0 + ^ + A7L2, 

A7 = (aj + %a\a2 + \0a\a\ + 4 ^ ^ ) 

+ (5a* + 12a*a2 + Sa2
2) + 3a x ^ = 2 ; 

similarly ^48 = 2, -49 = 1. Therefore 

CORNELL UNIVERSITY, 
January, 1911. 

file:///0a/a/

