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GROUPS G E N E R A T E D BY TWO OPERATORS 
SATISFYING TWO CONDITIONS. 

BY PROFESSOR G. A. MILLER. 

(Read before the American Mathematical Society, October 29, 1910.) 

T H E largest group G generated by two operators slf s2 satis­
fying two conditions of the form 

s^sf .... = 1 , sf1^2 . . . = 1 

is, in general, of infinite order. For some special values of 
the exponents av a2, • • • ; fiv /32, •. • the order of G is neces­
sarily finite,* but the general necessary and sufficient condition 
that the order of O be finite does not seem to be known. We 
proceed to a consideration of all the possible cases where a series 
of consecutive exponents is composed of numbers which have 
the common value unity while all of the other exponents are 
equal to zero, as these cases appear fundamental in the general 
problem. 

§1. Conseeutive Exponents Equal to Unity While all the Others 
are Zero. 

I t is easy to verify that all these possible cases are included 
in the following five general forms : 

(*A)ft = (Vi)* = h (*A)tt = ( « A A = !> 

(*A)ft = (Vi)*«2 = h (*A)a*i = (*A)^i = !> 

( s A ) a 8 i = ( V i ) 8 s 2 = 1 -

As the first two conditions are equivalent to the single condi­
tion (SjS^8 = 1, 8 being the highest common factor of a and /3, 
the order of G is infinite in this case.f When a = /3 the 
fourth pair of conditions reduces also to a single condition and 
hence the order of G must also be infinite in this special case. 
We proceed to prove that G must be a cyclic group of finite 
order in each of the other possible cases. 

To prove this fact we may first observe that G must be cyclic 

*American Journal of Mathematics, vol. 31 (1909), p. 167. 
f Ibid. 
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whenever sv s2 satisfy any one of the given five pairs of con­
ditions except the first, since the cyclic group generated by 
sxs2 includes the operators sv s2 in each of these cases. When 
either the second or the third pair of conditions is satisfied, the 
order of sxs2 is explicitly a divisor of a and hence the order 
of G is a divisor of a. That the order of G is exactly a in 
each of these cases results directly from the fact that it is pos­
sible to find two operators in any cyclic group of order a such 
that they satisfy the conditions imposed upon sv s2. This 
result may be expressed as follows : 

If two operators sv s2 are such that identity can be obtained by 
taking them alternately as factors, both when we have an even 
number and also when we have an odd number of such factors, then 
they generate a cyclic group whose order divides one-half of this 
even number, and every cyclic group may be generated by two 
operators satisfying two such conditions. 

To simplify the considerations as regards the two remaining 
pairs of conditions it may be well to observe the following elemen­
tary theorem : If a and /3 are any two numbers and if G is an 
arbitrary cyclic group it is always possible to find a pair of 
generating operators of G such that they satisfy the condition 
£ a =^.* When the fourth pair of the given conditions is satisfied 
it results directly that the order of sxs2 is a divisor of | a — /3 |. 
When a = /3 the order of G is infinite, as was observed above. 
When a 4= /3 G is clearly a cyclic group of order | a — /3 |, since 
it is possible to find two generators of such a cyclic group which 
satisfy the conditions imposed on sv s2 by these conditions. 

I t remains to consider the last one of the five given pairs of 
conditions. Since sx and s2 are commutative it results that these 
conditions may also be expressed as follows : 

«J+1 s«=sf s£+ 1= 1. 
Hence 

oa+l o - a «J8(a+l) — „-a/3 _(a + l)(|34-l) 
°1 °2 » °1 2 2 

From the last equation it results that s£+/3+1 = s*+/3+1 == 1. 
Hence the order of G is a divisor of a + /3 -f 1. Moreover, in 
any cyclic group whose order is a + /3 + 1 it is possible to find 
two operators which satisfy these conditions and also generate 
the group. This proves that the order of G is exactly a + /3 + 1 
whenever sv s2 satisfy this pair of conditions. The preceding 
considerations constitute a proof of the following theorem : 

* Quarterly Journal of Mathematics, vol. 36 (1905), p. 51. 
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If identity can be obtained in two ways by forming the con­
tinued product with two operators sv s2 taken alternately as factors, 
then the largest group G generated by sv s2 is of finite order except 
when the number of factors in both products is even, or when the 
number of these factors is the same odd number in both products 
and the same operator occurs an odd number of times in each. 
When the total number of times that each factor appears in the two 

products is the same and the number of factors in each product is 
odd then G is a cyclic group whose order is this total number.* 

§ 2. Conditions Imposed upon the Possible Groups by the Single 
Relation (s^)* = {^2

siYf a an<^ & being Relatively Prime. 

Since the operators sv s2 are supposed to satisfy the equation 

(Sls2y = ( V l y 

where a, /? are relatively prime, it results immediately from the 
fact that sxs2 and s2sx have the same orders that each of these 
two operators generates the other. Hence we may assume that 

«A = (Vi)Y-

The group G generated by sv s2 involves invariantly the cyclic 
group generated by sxs2 since this cyclic group is generated 
also by s~l - s1s2-sx = s2sv Hence G involves an invariant 
cyclic subgroup which gives rise to a cyclic quotient group. 

Suppose that the order of s1s2 is n. I t is evident that n is 
prime to 7. Moreover, it is possible to select sv s2 so that n 
is an arbitrary number prime to 7, for a generator of the cyclic 
group of order n is transformed into its 7th power by an operator 
s2 whenever 7 is prime to n. I f we let t represent this generator 
and s^t represent sv we have a set of operators which satisfy 
the given conditions. The order of s2 is a multiple of the ex­
ponent to which 7 belongs modulo n, but it is not restricted in 
any other way. Hence the order of G is any multiple of n 
multiplied by this exponent, but it is not subject to any other 
restriction. This proves the following theorem : 

If two operators satisfy the condition ( s^ )" = (s2s^, a and 
/3 being relatively prime, the order of sxs2may have any arbitrary 
value n which is prime to a and /3, and hence sxs2 = (s2

8i)Y-
The order of s2 is an arbitrary multiple of the exponent e to 

*Cf. American Journal of Mathematics, vol. 31 (1909), p. 182. 
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which 7 belongs modulo n, and hence the order of G, the group 
generated by sx and s2, is an arbitrary multiple of en. The 
group generated by sYs2 is invariant under G and leads to a 
cyclic quotient group and hence all such groups are solvable. 

From this theorem it results immediately that if two operators 
satisfy two conditions of the form 

0A)a = (Vi)** 
a, /3 being relatively prime, they may always generate an arbi­
trary cyclic group, since it is always possible to assume that the 
order of sx is arbitrary and that si = s~1. Hence two operators 
satisfying two such conditions must always generate a solvable 
group, but these conditions are insufficient to restrict the order 
of the possible groups. That is, two such conditions may 
always be satisfied by the two generators of any group in an 
infinite system of solvable groups of finite order. 

§ 3. Consecutive Exponents Equal to Unity in Both Members of 
Two Equations. 

At the end of the preceding section we considered the possible 
groups when the two conditions may be expressed as follows : 

(V2)a i = (Vi)*S («A)"* = ( V i ) ^ 

where av fil ; a2, /32 are two pairs of relatively prime numbers^ 
When these exponents are not relatively prime these conditions 
are not generally sufficient to restrict the possible groups to 
solvable groups, and it is evident that whenever each member 
of the equations involves an even number of operators, the 
two operators being taken alternately, there can be no upper 
limit to the order of the possible groups, since any operator and 
its inverse could be used for sv s2. I t remains therefore only 
to consider the cases where at least one member involves an 
odd number of such factors. 

When one member involves an odd number of such factors 
while the other involves an even number the equation is evi­
dently equivalent to one of the following : 

( V 2 ) % = 1 > («Vl)^2= 1 -

Hence (sv s2) is the cyclic group generated by sxs2. I f the 
second conditional equation also reduced to one of the form 
considered in section 1, the matter would require no further 
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consideration. Hence we may assume that the second equation 
assumes the following form : 

(V2)a i*i = ( V i ) * ^ -

Since the preceding condition implies that sv s2 are commuta­
tive, this equation becomes 

3«1-01+ 1 _ . aji-ai+l o r ^ ^ 2 - ^ 

For the same reason the first equation must assume one of the 
following two forms 

6 1 6 2 > bl " " 6 2 

Hence it results that 

Jd ==z o2^—kl _ _ Ji—kl Q „ <M ___ e2l—M -__ o—A—hi 

These conditions fix an upper limit for the order of s2 and hence 
also for the order of the cyclic group generated by sv s2, unless 
21 is equal either to h or to — k. That is, two equations of the 

forms (^2)% = 1, (s^)"1^ = (S2SiY^s2 define a cyclic group of 
finite order unless 2a 4- 1 = ax — /3t ; cmd two equations of the 
forms (s2s,)^2 = 1, (^iS2)

aisl = (s2slY
1s2 define a cyclic group oj 

finite order unless 2/3 = ftl — ax — 1. When the special condi­
tions are satisfied these operators generate a cyclic group whose 
order has no upper limit. 

I t remains to consider the possible groups when the two 
given conditions are of the forms 

(V2)ai*i = (Vi)<% (V2)
a2*i = ( V i ) ^ 2 -

On multiplying the members of the first equation by the 
inverses of the members of the second, there results the 
equation 

(V2)a i"a2 = (Vi) 3 1^ 2 -

If the two numbers ax — a2, /3X — /32 are relatively prime, this 
equation implies that the cyclic group generated by sts2 is in­
variant under (sv s2), as was observed above. Since each of the 
two conditional equations implies that sv s2 correspond to the 
same operator in the quotient group of (sv s2) as regards the 
invariant subgroup generated by sxs2, and as sx and s2 must 
also correspond to inverse operators in this quotient group, it 
results that this quotient group is of order 2, if it is not 
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identity. Suppose that n is the order of s^. As n is prime 
to both ax — a2 and ft — ft according to our hypothesis, it re­
sults that a positive number x0 less than n can be found so that 
(ft — ft)a?0 == 1 mod n. Hence s2sx = (s^)8, 7 == (ax —• a2)#0 

mod n. Since s2 is (sxs2)
8 it is necessary that y2 == 1 mod n. 

From this it results that n is a modulus of the following con­
gruences : 

(ft - ft) ;r0 s 1, (a, - a 2 ) \ 2 = 1. 

Hence (ft — ft)2 == (ax — a2)
2 mod n. The value of n must 

therefore be a divisor of | (ft — ft)2 — (ax — a2)21, and as the 
order of (sv s2) cannot exceed 2w, this proves that the two con­
ditions under consideration generally restrict the order of the 
group generated by sv s2. In fact, we have proved the theorem : 

The largest group generated by two operators which satisfy the 
two equations 

(sxs2y\ = ( v i ) % (sihY\ = (Vi)*f*2> 

where ax — a2 and ft — ft are two relatively prime numbers, is 
solvable and has an order which divides 2| (ft — ft)2 — (ax — a2)

21. 
When this group is abelian it must be cyclic* As an illus­

tration of the fact that two such equations may define a cyclic 
group and also a non-cyclic group of order 2 | (ft—ft)2—-(o^—-a2)

2 \ 
we may use the following two sets of equations : 

W2) sx = s^Sp 81s2s1 = (s2sj s2 ; 

1V2) Sl = = W l ) S2> S l V l = V l S 2 ' 

From the first set we obtain sxs2 = (s2sA)~2 = s2sv since 
(s^Y — 1 ; and hence the first equation reduces to s2 = 1 while 
the second becomes I — SjS2 or sx = s2. Hence we may as­
sume that s2 is of order 6 and that (^2) is the cyclic group 
of order 6, since such operators clearly satisfy each of the two 
conditional equations of the first set. 

On the other hand, the second set of equations implies that 
sxs2 = (s^)2 , and hence s2 is again unity. As sx transforms 
sxs2 into its inverse, it results that (sv s2) is the symmetric 
group of order 6 in this case. I t is also easy to verify that if 
we assume that sv s2 are two operators of order 2 whose 
product is of order 3, the given conditional equations will be 
satisfied. I t should not be assumed that the order of srs2 is 

* American Journal of Mathematics, vol. 31 (1909), p. 182. 
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always equal to | (/3X — /32)
2 — (aL — a2)

2|. In fact, this number 
is 5 when (sls2)

ssl = (s2sl)\ and s182s1 = s2sxs2 but s^ in this 
case is identity, as may easily be verified. All that has 
been proved is that the order of s^ must always divide 
| (ft1 — /32)

2 — (ax — a2)
21 when the two numbers ax — a2, /3X — /32 

are relatively prime. By assigning different values to the 
exponents av av j3v /32 so that ax — a2, /3j — /32 are rela­
tively prime we may thus obtain defining relations for an 
indefinite number of solvable groups of finite order. For in­
stance, it is easy to verify that the two equations 

define the group of order 32 which involves a cyclic subgroup 
of order 16 while the remaining operators transform the operators 
of this cyclic group into their seventh powers. 

§ 4. The Special Case where {8ls2)
alsl = (s2

siYls2 an<^ 
( % ) a i A = ( V i ^ ^ -

In this special case it is evident that the second equation 
may be replaced by the simpler one sxs2 = (s2s1)~~1. Hence the 
first equation becomes 

(8^8, = ( « A ) - ^ 2 , or ( V a ) - i + ^ + 1 « « ; . 

Since s2sL is transformed into its inverse by s2 and its 
(ax + /8X + l)-th power is commutative with s2 it results that 
the order of sxs2 is a divisor of 2(ax + /3X + 1). On the other 
hand, it is easy to see that sv s2 may be so selected as to 
generate the dicyclic group of order 4(ax + /3l + 1), and hence 
the order of s2s2 is exactly 2(ax + $x -f 1) whenever the 
operators sv s2 are subject only to the two conditional equa­
tions expressed in the heading of this section. To prove this 
fact we may assume that t = s}s2 is an operator of order 
2(at -f fix -f 1) and that s " 1 ^ = t~l. In the dicyclic group of 
order 4(at + $l + 1) which involves t we may let sr be any opera­
tor of order 4 which is not generated by t, and then s2 may be so 
selected that s^ = t. The operators sv s2 determined in this 
manner evidently satisfy the conditions imposed on s^ by the 
equations expressed in the heading of the present section. 
Hence the theorem : 
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If two operators are restricted only by the two equations 
(s\s2)ai8i ^ (s2siYls2> (si82)ai_lsi =Z (S2si)(il+ls2 ^ey generate the di-
cyclic group of order 4(ax + /3X + 1)» 

From the symmetry of the equations it results that the same 
group is generated by sv s2 when they satisfy the two condi­
tions (s^y^ = (Vi)^1§2' ( s i \ ) a i + 1 ^i = (V i ) 0 1 ~\ - ^ n e c^o s e c o n " 
tact of the present paper with the one entitled " Finite groups 
which may be defined by two operators satisfying two condi­
tions " * should be noted. 

FUNDAMENTAL REGIONS FOE CYCLICAL GEOUPS 
OF LINEAE FEACTIONAL TEAN8FOEMATIONS 

ON TWO COMPLEX VAEIABLES. 

BY PROFESSOR J . W. YOUNG. 

( Read before the Southwestern Section of the American Mathematical Soc­
iety, November 26, 1910. ) 

T H E purpose of this note is to call attention to a simple 
method for obtaining fundamental regions for cyclical groups 
of linear fractional transformations on two complex variables. 
The simplicity of the method is due to the fact that the deter­
mination of a fundamental region for a group of the specified 
kind is made to depend merely on the construction of such a 
region for a simply isomorphic group on a single complex vari­
able. The method, moreover, may be readily extended to the 
case in which the number of variables is n} and to certain 
restricted types of groups which are not cyclical and not linear. 

Let V be any (non-identical) linear fractional transformation 
on two complex variables, and let T be the cyclical group 
generated by V, i. e., consisting of all transformations Vn(n = 0, 
=1= 1, db 2,• • •). We interpret F a s a collineation in a com­
plex plane, and will consider separately each of the five types 
to which F may belong according to the configuration of its 
invariant points and lines. 

Suppose first that F i s of Type I, i. e., has three and only 
three invariant points forming the vertices of a triangle ABC. 
Every transformation of T then has the same configuration of 
invariant elements. The group T transforms the points on 

* American Journal of Mathematics, vol. HI (1909), p. 167. 


