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1. Introduction. Consider the two equations 

(1) f{xv xv . • . , xn; y, z) = 0, g{xv x2, ..., xn; y, z) = 0, 

and suppose a single point solution 

(2) xx = av x2 = a2, • . -, xn = an ; y = 6, z = o, 

is known. Under certain well-known conditions, of which one 
is the non-vanishing of the functional determinant d(f, g)jd{y, z) 
at the point in question, we may affirm that equations (1) define 
uniquely the functions 

(3) y = <l>(xl9 x2, • • •, xn), z = yfr(xv x2, . . . , xn) 

in the neighborhood of the system of values (2). In general if 
the functional determinant vanishes, the functions (3) are 
multiple valued.* There are, however, certain exceptional 
cases in which the determination of y and z as functions 
xv x2, • • •, xn is unique although the functional determinant 
vanishes. I t is proposed in this paper to examine briefly some 
of these exceptional cases. 

In a certain trivial way the corresponding exceptional cases 
exist also when we consider a single equation defining one de­
pendent variable. Suppose an equation for the determination 
of y as a function of x has the form 

(4) f(x, y) s xffa y) = 0. 

* The case of analytic functions was treated by Professor G. A. Bliss in his 
Princeton Colloquium Lectures (1909). These lectures have not yet been 
published. 
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Evidently ƒ = 0 and dfjdy = 0 for x = y = 0, and the funda­
mental existence theorem is not applicable. But we may dis­
card the factor x and if/j = 0, dfjdy =f= 0 &r œ = ?/ = 0, we 
may affirm the existence of a unique solution of the form 
2/= <f>(x). Geometrically the locus defined by equation (4) in 
the neighborhood of the origin consists of two branches ; but one 
of these is the curve x = 0, which is not expressible in the form 
y = <f)(x). Again suppose the equation has the form 

(5) M y) =ƒ*(*, y) - o, 
where ^ ( 0 , 0) = 0. Here also dfjdy = 0 at the origin ; but 
we may consider the equation f = 0 and, if dfYJdy =|= 0 for 
x = y = 0, we may affirm the existence of a unique solution of 
the form y = <j>(x). Exceptional cases such as (4) and (5) for 
one equation are trivial because they are readily excluded by 
the usual assumption that ƒ is irreducible in the arguments x 
and y. 

In the case of two equations we shall assume always that each 
equation is irreducible ; but this is not sufficient to exclude the 
exceptional cases which are similar, geometrically, to those pre­
sented by equations (4) and (5). The point of view is easily 
shown by some simple examples involving only one independent 
variable. Consider the two equations 

(6) / s y - ^ 0 , g=2yz-x2=0. 

Both equations are satisfied for x = y = z = 0 and 
£(ƒ, g)/d(y, z) = 0 at the origin. From the first equation 
y = x and, when this value of y is substituted in the second, 
we get x(2z — x) = 0. This equation is of the form (4) and 
has a unique solution z = %x. Hence for values of x different 
from zero the system (6) defines uniquely the functions 

(7) y = ${x) == x, z = yfr(x) == %x. 

Geometrically the curve defined by (6) consists of two branches 
passing through the origin ; but one branch is the z-axis and is 
not expressible by equations of the form (7). Again consider 
the two equations 

(8) ƒ = z + 2y — 2x = 0, g = 2z + 4y — 4x + 2yz — x2 = 0. 

Both equations are satisfied for x = y = z = 0, and 
d{f> 9)/d(y> z) = 0 a* ^ e origin. From the first equation 
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z = 2x — 2y and, when this value is substituted in the second, 
we get (2y — x)2 = 0. This equation is of the form (5) and 
has a unique solution y = \x. Hence for values of x different 
from zero the system (8) defines uniquely the functions 

(9) y = <f>(x) ss %x9 s = <ty{x) == x. 

Geometrically the curve defined by (8) consists of two coin­
cident branches passing through the origin, that is, the two 
surfaces touch along the curve (9). Upon each surface the 
origin is an ordinary point. 

The general method of investigating the solutions of equa­
tions (1), as illustrated by the preceding examples, is the 
following : Suppose one equation, say the first, can be solved 
by the fundamental theorem for one of the dependent variables, 
say y in terms of z, xv . • •, xn. When this value of y is sub­
stituted in the second equation it may happen that the latter 
becomes reducible in z, xv • • •, xn, and although the functional 
determinant vanishes the solution for z may be unique. For 
practical application it is convenient to formulate conditions 
upon ƒ and g in order that this process shall lead to a unique 
result. Apparently no general formulation can be made, but 
it is possible to state theorems for special cases. Two of these 
theorems are given below. 

2. In the theorem given in this section it is assumed that 
the functions ƒ and g are real functions of real variables, and 
for convenience of reference the following statement of the 
fundamental theorem for two equations is given : 

Fundamental Theorem. Consider the system of equations 

( 1 ) / ( « p *V ' • •> Xn> V> Z) = 0> 9(*V X2> ' ' 'J Xn> V> Z) = 0> 

and suppose a special solution 

(2) x± = av x2 = a2, . . . , xn = an; y = 6, z = c, 

is known. Suppose the functions ƒ and g are continuous, and 
possess first partial derivatives which are continuous, in the 
neighborhood of the system of values (2). Suppose the func­
tional determinant 

1/ f\ 
A = 

I y y &z I 

does not vanish for the system of values (2). 
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Then there exists one and only one system of continuous 
functions of the form 

A: y = <j>(xv x2, . . . , xn), z == f(xv x2, ..., xn) 

which satisfy equations (1) and the condition 

b » <f>(av a2, . . . , a J , c = ^(a1? a2, . . . , o J . 

Moreover the implicit functions A thus defined possess first 
partial derivatives which are continuous in the neighborhood of 
the system of values xx = av x2 = a2, . . . , xn = an. 

The solution described in the conclusion of this theorem will 
be referred to as a solution of the type A. When the functional 
determinant vanishes the following theorem states what seem to 
be the simplest conditions of practical value in order that there 
shall exist a unique solution of the type A. I t is assumed in 
this theorem t h a t / a n d g possess partial derivatives of the first 
and second * orders which are continuous in the neighborhood 
of the system of values (2). 

THEOREM I . Consider equations (1) and suppose 

*)• 
f(avx„, . - . , » . ; b,z) = 0, 

(a) , A N A ( i n xv •••>x 

g{av xv ••-,xn; b, z) = 0 
Suppose also 

(6) A, = 
J y Jx\ 

9v g« 
= 0, (c) A2 = 

0 fy U 

Jy Jyz Jzxi 

S'y 9yz 9zx\ 

+ o 

for the system of values (2). 
Then there exists one and only one solution of the type A. 
To sketch the proof of this theorem we observe that condition 

(c) implies either/^ 4= 0 or gy 4= 0. Assuming fy 4= 0 we may 
apply the fundamental theorem for one equation to the first of 
equations (1) and obtain a solution for y. From the first of 
conditions (a) it follows that when â  == av y = b identically in 
#o* • • •, «Li 3. Hence the solution for y has the form Si> 

(10) y — b = (xx ^a1)h(xv x2, *)• 
When this value of y is substituted in the second of equations 
(1) it follows from (a) that the equation assumes the form 

*It is not necessary to assume the existence and continuity of all the 
partial derivatives of the second order. No attempt is being made here to 
reduce these conditions to a minimum. 
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(11) (x, - a^gx{xv x2f • • - , » . ; *) = 0. 

Now the appropriate computation shows that [for the system 
of values (2)] condition (6) is equivalent to the condition g^O, 
and (c) is equivalent to the condition dgxjd% 4= 0. Hence we 
may discard the factor xY — ai in equation (11) and apply the 
fundamental theorem for one equation to obtain a solution 
z = yjr (xv x2, • •. , xj. When this value of z is substituted in 
(10) we have the final solution in the form 

(12) y = <j> (xv x2, • • -, xn), z = f (xv x2, • • •, xj. 

Each step in the process yields a unique result ; hence the solu­
tion (12) is unique and of type A. 

3. An example * of a system of equations of the type to 
which Theorem I is applicable may be found in a problem in 
the calculus of variations. The problem has been treated f in 
a paper by G. A. Bliss in the BULLETIN, volume 13 (1907), 
page 321, and the system referred to is (3), page 322. The 
equations to be solved for s and t are 

(13) ƒ = </>($, t) — r cos a = 0, g = yfr(s, t) — r sin a = 0, 

where the functions <j> and yfr satisfy the conditions 

</>(0, f) m 0, * ( 0 , 0 s 0, 
(14) 

4,(0, t) m 00* t, ±(0,t) = Sint. 

Evidently a particular solution of equations (13) is 

(15) r = 0, a=*k} s = 0, t = k, 

where k is any constant. 
For the system of values (15) the functional determinant 

fs ft 
= 

cos k 0 

sin k 0 

and the fundamental theorem is not applicable. We apply 
then the hypothesis of Theorem I . The identities (14) show 

* Other examples are to be found in papers by F. R. Moulton, "A class 
of periodio solutions, etc.," Transactions, vol. 7 (1906), p. 546, equations 
(16) ; and by W. R. Longley, "A class of periodic orbits, etc.," Transact 
Uons, vol. 8 (1907), p. 166, equations (15). 

fSee also Bolza, Variationsrechnung, p. 270. 
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that condition (a) is satisfied. Also 

I f s fr I I C0S ^ •"" C0S ^ 

\g9 gr\ | sin k — sin k 

0 f s fr I I 0 cos & —• cos & 

= 0, 

A2 = ƒ. 

0* ^ 

cos h — sin & 

sin k cos & 

0 

0 

= -— cos k. 

Hence if cos k 4= 0 the hypothesis of Theorem I is satisfied and 
we may affirm the existence of a unique solution of the type A. 
If cos k = 0, then sin k 4= 0 and the apparent difficulty is over­
come by interchanging the notation ƒ and g in equations (13). 

4. If the functions ƒ and g in Theorem I are analytic, the 
process of solving the first of equations (1) for y, substituting 
in the second, and solving for % shows that the solution for y 
and % is also analytic. The solution may be obtained, however, 
without going through this process. For simplicity this will 
be shown when there is only one independent variable x, and 
we will suppose that the equations are satisfied for x = y = z = 0. 
I f ƒ and g are regular at the origin, equations (1) may be written 

(16) / = 2 a , . ^ y * * = 0 , g - Z b ^ ï - O . 

For the system (16) the conditions (a), (6), and (c) are 

(a) 

(*) 

°W = °> 

\ ~ 
aioo 

bm 

aoio 

6010 

= 0, 

& . 0 * - 0 

) A2 = 

0 

aoio 

6ou 

(* = 

aoio 

«011 

6on 

1,2, 

aioo 

a i o i 

6101 

•), 

(0) A2 = a010 a011 am 4. 0. 

The assumption (c) implies that either a010 4= 0 or 6010 4= 0. 
Supposing am is not zero, we may without loss of generality 
take it equal to unity (by multiplying the series for ƒ by 1/&010) 
and we may also take A2 = 1 (by multiplying the series for g 
b y i / A 2 ) . 

The solution to be determined has the form 

(17) y = axx + a2x
2 + z*=0lx + @2x

2 + 

When the values of y and z from (17) are substituted in (16) 
the coefficient of each power of x must vanish. Equating to 
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zero the coefficients of the first power of x we have 
aioo + a i = 0, 6100 + bmax « 0. 

From (6) it follows that these two equations are consistent and 
hence <xx = — a100. 

Equating to zero the coefficients of x2, we have 

K i + aou*i)£i + a2 + a2oo + a020al + amai = °> 
(18) 

(&ioi + ^on^i)/3! + bma2 + Ko + bmal + bmai = °-

When the value of ax is substituted in (18) it is found that the 
determinant of the coefficients of a2 and ^ is equal to A2( = 1). 
Hence equations (18) determine a2 and /3X uniquely as rational 
integral functions of the coefficients of (16) of order * less than 3. 

Proceeding in this way, we may determine step by step the 
coefficients in the series (17). For suppose 

have been determined as rational integral functions of the coef­
ficients of (16) of order less than n. Equating to zero the 
coefficients of xn we have 

K ) l ~ « O l A o O ^ n - l + an + <f>n = 0 > 

( Ô w i - f i f l u O ^ - l + bman + ^n = 0> 

where <£n, tyn denote rational integral functions of aijW biJk of 
order less than n + 1- The determinant of the coefficients of 
fin_1 and an is equal to unity and hence these quantities are 
determined uniquely as rational integral functions of the coeffi­
cients of (16) of order less than n + 1. 

5. A method of extending the conditions of Theorem I is 
suggested by considering the geometric interpretation. Sup­
pose the equations involve three variables x, y, z, which will be 
interpreted as rectangular coordinates in space. The two sur­
faces f = 0, # = 0 then define a curve and we suppose the 
hypothesis of Theorem I is satisfied at a point which will be 
taken for the origin. Then from the conditions of the theorem 
it follows that the curve consists of two branches passing 
through the origin ; but one of these branches is the z-axis and 
is not expressible by equations of the form y = <f>{x), z = \fr(x). 

*By the order of a coefficient is meant the number i +j + &. 
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I t is apparent geometrically that if the curve consists of n 
branches passing through the origin, and if n — 1 of these 
branches are plane curves lying in the 2/3-plane, while one 
branch does not lie in this plane, then the equations ƒ = 0 , g = 0 
will have one and only one solution of the form y = 4>(x), 
z = yjr(x). When these geometric conditions are stated in 
analytic language we may formulate further theorems similar to 
Theorem I. Theorem I I is given as an example. 

THEOREM I I . Consider equations (1) and suppose 

(a) 

f(avx2, • - . , « n ; X(z), z) = 0, 

(in x29 > % l > 

where the function X(2), which is substituted for y, is continu­
ous and has a continuous first derivative in the neighborhood 
of z = c, and b = X(c). Suppose also 

(/3) 

(7) 

\ -

As = 

J y Jx\ 

9y 9n 

0 

0, 

fy 

J y Jyz 1 ^Jyy 

9v 9v, + ^'9vl 

Jxi 

Jzx\ « "* J yx\ 

9z%x + ~^9y*x 

+ 0, 

for the system of values (2). (The derivative of X is denoted 
by X'.) 

Then there exists one and only one solution of the type A. 
In order to prove this theorem we set 

(19) y = v + H*) 
in equations (1) and obtain the set 

F(xv x2, • • -, œn; ??, z) s / K a>2, • • -, » n ; V + *{*), ») = 0 , 

G(xv x2) . • -, xn ; 17, z) s ^ ( ^ , asa, . . . , a>J v + *(*)> *) = 0. 

The condition (a) becomes 

F(avx2> • • • , » „ ; 0, s) = 0, 
(a) 

& K , »tf •'•>««> 0> ^ ) S 0 ^ 
(in x2: 
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and the conditions (/3) and (7) become, respectively, 

(*) 
F„ Fv^ 

G-n Gr*i 

:0, (*) 

O F F 

F F F + 0 

for the system of values 

xx = av x2 = a2, . . . , xn = an ; rj = 0, z = c. 

Hence the hypothesis of Theorem I is satisfied for the equa­
tions F = 0, 6r = 0, and we have a unique solution of the 
form 

(20) v = vfat x» ' • ' > 0 > * = ^0*î> ^ • • *> <0> 
such that 

0 = V(av a2, . . . , a j , c = ^(04, a2, . . . , a J . 

Substituting the values of rj and » in (19), we have the required 
solution for y. 

I f there is only one independent variable x, the conditions of 
Theorem I I , for the system of values x = y = z = 0, imply 
that the equations have the form 

f(x, y, z)=~[y- \(z)] fx{xy y, z) + xf2{xy y, z) « 0, 

g(x, y, z)== [y- Mzftgfa, y, z) + xg2(x, y, z) = 0. 

The curve defined by these equations consists of two branches 
passing through the origin. One branch is the curve y = \(z) 
in the 2/2-plane and is not expressible by equations of the form 
y = £(as), z = yjr(x). 

SHEFFIELD SCIENTIFIC SCHOOL, 
May, 1910. 

STURM'S M E T H O D O F I N T E G R A T I N G 
dxjVX+dyjVY^O. 

BY PROFESSOR F. H. SAFFORD. 

(Read before the American Mathematical Society, April 30, 1910.) 

O N E of the simplest methods of obtaining the addition 
theorem for elliptic integrals of the first kind is based upon a 
method of integration which is usually referred to as Sturm's 


