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is moreover according to the independence theorem an inter­
mediary integral of the system of equations (4). If now we 
choose any particular solution of equations (4) y = y(x), z = z(x), 
then a pair of values of a and /3 always exists, which we will 
write <xQ, /30, such that p(x, y(x), z(x),aQy /30) = y(x\ q(x, y(x\ 
z(x), a0, /30) = z(x). When we substitute for y, z, p and q in 
the identity (11) the functions y(x), z(x), y\x), zf(x)y we obtain 
an identity in x ; but (11) becomes in this case the total differ­
ential quotient of m with respect to x. 

dm 
, \ — s 0, m = const. 

Since y{x), z(x) were chosen arbitrarily, every solution of the 
system of equations (4) substituted in m gives a constant; hence 
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is an integral of the system (4). 
A substitution which leaves system (4) invariant transforms 

the integral of which (4) are the Lagrange equations either into 
itself or into a new integral which has the same Lagrange equa­
tions. In this latter case, the one integral being given, the 
construction of such a substitution is equivalent to the con­
struction of an integral. 

COENELL UNIVERSITY, 
December, 1906. 

ALGEBRAIC NUMBERS AND FORMS. 

Zahlentheorie. Fünfter Teil : Allgemeine Arithmetik der Zahlen-
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1905. xxii + 548 pp. 

Einleitung in die allgemeine Theorie der Algebraischen Grossen. 
By JULIUS KÖNIG. Leipzig, B. G. Teubner, 1903. x + 564 
pp. 
T H E R E has been but little activity in America in this im­

portant and fascinating field. I t seems appropriate, therefore, 
to preface this review with an elementary introduction to the 
subject. We shall consider the simpler features of the theory 
of quadratic number systems, for which the phenomena are 
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typical of the general case, while the treatment may be made 
so simple that the fundamental ideas are not obscured by the 
algebraic intricacies and abstract character of the general 
theory. I t is highly desirable that a very large circle of 
readers shall acquire a clear insight into the nature of this im­
portant field ; it is hoped that not a few will be induced by this 
introduction to pursue this interesting subject in its generality, at 
least as far as developed in the admirable treatises under review. 

Although the fundamental laws obeyed by integers, èuch as 
unique decomposition into primes, were observed by Gauss to 
hold true for his complex integers a + Uy this is rarely the 
case with the system of integral algebraic numbers determined 
by a root of a given algebraic equation with integral coefficients. 
Thanks to the genius of Kummer, Dedekind, and Kronecker, 
the introduction of " ideals" brought complete harmony out of 
chaos, and marked one of the greatest triumphs of mathemat­
ical endeavor. The elaboration and extension of the theory 
have given rise to an extensive literature, a detailed report of 
which has been prepared by Hubert, Jahresbericht der Deutschen 
MathemaMker-Vereinigung, volume 4 (1894-95), pages 1 7 5 -
546. In addition to its great theoretical importance, the sub­
ject has vital relations with other branches of mathematics, e.g., 
Galois's theory of algebraic equations, algebraic functions and 
their integrals, and diophantine equations. 

A number T is called algebraic if it is the root of an equation 

xn + a, xn~l + • • • + an = 0, 

with av • • -, an rational numbers. Of all such equations satis­
fied by T, there is an unique one of minimum degree m, neces­
sarily irreducible, and T is called an algebraic number of the 
mth degree. When m = 2, T is called quadratic. 

If the above coefficients a. are integers, T is called an integral 
algebraic number. Examples are i / 2 , 3 i / — 1, \ +\v — 3 . 

We consider the system R(T) of all rational functions of T 
with rational coefficients, where r is a given quadratic algebraic 
number. We may set T = r + s i /d , r and s rational numbers, 
s =|= 0, while d is an integer, other than + 1, not divisible by a 
perfect square. Evidently the system R(T) is identical with 
the system i?(i /d) of all rational functions of \/d with rational 
coefficients. 
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Lemma I . In R(\/d), the integral algebraic numbers are 
given by x + y0, where x and y are integers, and 

6 = i /d , if d == 2 or d = 3 (mod 4) ; 

0 = 1(1 + Vd), ltd ml (mod 4). 

Consider a+ &i/d, a and 6 being rational, b =|± 0. I t and 
its conjugate a — b\/d satisfy the equation 

s* _ 2a* + a2 - de2 = 0. 

Assuming that the coefficients are integers, we determine the 
character of a and b. Since 2a and 4a2 — 4db2 are integers, 
while d has no square factor, 26 must be integral. Hence 

a = a /2 , 6 = ft/2, (a and /3 integers). 

I t remains to require that a2 — db2, viz., J(a2 — dft2), be inte­
gral. If d s 2 (mod 4), a2 must be even and hence a and /3 
both even. If for dm 3 (mod 4) a were odd, J ( l — 3/32) 
could not be integral. I f c?== 1 (mod 4), a and /3 must both 
be even or both odd, so that a + bVd is of the respective 
forms X + fi\/d, X -f- fi\/d + #, where \ and /x> are integers 
and 6 = ^(1 +Vd). Setting rc = \ — fi, y = 2fjb or 2fi + 1, re­
spectively, we get cc + yd. The lemma is therefore proved. 

Given two integral algebraic numbers a and ft of a domain* 
R{9), we shall say that a is divisible by ft if there exists in 
H(0) an integral algebraic number q such that a = ftq. 

For d = — 1, the integral algebraic members of R(i) are 
Gauss's complex integers x + yi. Two complex integers a and 
ax have a greatest common divisor 8, defined by the two 
properties : 

1. a and ax are divisible by 8; 
2. Every common divisor of a and ax is a divisor of S. 
Here S may be determined (uniquely up to a factor ± 1, db i) 

by the following process : Set aj ax = a + bi and determine a 
complex integer f = a? + yi such that the norm (a — a?)2 + 

* Our interest will always center in a domain defined by a root 0 of a 
given algebraic equation. There is little interest in the arithmetic of the 
system of all integral algebraic numbers of all degrees. In fact, decomposi­
tion is then unlimited. Thus a —ct^a^, where a% is integral algebraic 
when a is. 
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(b — yf of a J ax — f shall be less than unity ; we have only to 
select integers x and y such that | « — œ | ̂ i J, | 6 •— y\~\t 

Then 
a = f a t + a2, norm a2 < norm a1? 

where a2 is a complex integer. If a2 4= 0, we proceed similarly 
with ax and a2, and determine complex integers £x and a3 such 
that 

ax = ^àg + a3, norm a3 < norm ar 

Since the norms of av a2, «3, • • • form a series of decreasing 
positive integers, we must reach a term ar + 1 of zero norm. 
Then ar is the required number S. I t is now a simple matter 
to prove * that every complex integer can be expressed as a 
product of primes in one way and essentially but one way 
(i. e., up to a factor db 1, db i). 

In general, the state of affairs is entirely different. For 
illustration, we take Dedekind's simple example d = — 5 (De-
dekind, 1. c , page 451 and 547; König, pages 19, 93). In 
R(0), where 0 = V-— 5, the integral algebraic numbers are 
x + y0, x and y integers (Lemma I ) . Here there are two 
ways of factoring 9, viz., 

(1) 3 . 3 = (2 + 0 ) ( 2 - 0 ) , 

while 3, 2 dz 0 differ from the units (here ± 1) and each is in­
decomposable in 12(0), i. e., has no factor other than itself, its 
negative, and db 1. For example, if 

2 + 0 = (x + yO)(z + w0), 
then 

2 - 0 = (x - y0){z - w0). 

By multiplication (or by taking the norms in the first equation), 

(2) 9 = (x2 + by2)(z2 + bio2). 

But x2 + by2 = 3 is not solvable in integers. Hence one of 
the assumed factors of 2 + 0 must be db 1. This discussion of 

*Dirichlet-Dedekind, Zahlentheorie, 1894, pp. 434-450. On p. 450 
Dedekind cites eight further examples of quadratic number systems in which 
an analogous g. c. d. process holds. For the case of negative discriminant, 
Birkhoff has determined geometrically (Amer. Math. Monthly, Aug., 1906) 
all such quadratic number systems. 
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(2) shows that also 3 is indecomposable. Hence 9 has two 
sets of indecomposable factors (1). There are other respects in 
which the laws of arithmetic here fail. Although 3 is inde­
composable it does not have the true nature of a prime, since 
by (1) 3 divides the product (2 + 0)(2 — 0) but does not 
divide either factor. Again as König points out, the numbers 
9 and 3 — 60 have no greatest common divisor in the sense 
1, 2, above. In fact the only factors (apart from sign) of 9 
are 1, 3, 9, 2 ± 0 ; the only factors of 3 — 60 are 1, 3, 1 — 20, 
2 — 0, 4 — 0, 3 —6(9. The common factors are 1, 3, 2 — 0, 
no one of which is divisible by the other two, as seen above. 

To overcome these difficulties Kummer would introduce 
" ideal prime numbers " a, /3, 7, such that 

3 = a/3, 2 + 0 = a2, 2 - 0 = /32, 1 - 20 = £7. 

Thus each member of (1) decomposes further into a2/32, so that 
there is only one decomposition of 9 into ideal primes. Again, 
there is now a greatest common divisor of 9 and 3 — 60 = a/32y, 
viz., a/32. Dedekind * has given a complete treatment by 
Kuramer's ideals of the laws of divisibility in the system of 
integral algebraic numbers of this domain i?(\/— 5) ; he empha­
sizes, however, the delicacy of the problem and the necessity of 
" the greatest circumspection." Kummer and his followers 
succeeded in applying his method to but few types of domains 
(cf. Bachmann, pages 150-159). In addition to the practical 
difficulties, there is the logical objection to Rummer's theory 
that an ideal number is not defined in itself, but merely its 
presence or absence as a factor of an existing integral complex 
number (the criteria being congruential conditions). As Rum­
mer's work is now of mere historical interest, we pass to 
Dedekind's method which is open to none of the objections 
cited. We shall go into details only for quadratic domains. 

Let 0 denote a fixed quadratic number defined as in Lemma 
I , and consider the system 1(0) of integral algebraic numbers 
£ = x + y0, x and y being integers. If p is a fixed number of 
1(0), the set of products %/JL is closed under addition and sub­
traction, since £ ^ =b £2/x = (^ ± %2)fi ; and also under multi­
plication by any number p of I, since p(^) = (/>|)AS and since 

* Bulletin des S'-ienees mathématiques et astr., ser. 2, vol. 1 (1877), p. 69. In 
a series of five articles in this and the preceding volume Dedekind gives an 
elemental y account of Kumnier's method and the origin of his own theory. 
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the product p% of two numbers of J belongs to I. This par­
ticular set of all the multiples of fi will be called a principal 
ideal (fi). In general, we define as an ideal any system 8 of 
numbers * of 1(0) which have the two properties stated, viz., 

(A) The sum and difference of any two (equal or distinct) 
numbers of the system S are themselves members of this 
system 8; 

(B) Every product of a number of the system 8 and a num­
ber of the system 1(0) is a number of the system 8. 

We proceed to give a simple formula for the numbers of 
such an ideal 8. We first investigate systems 8 having prop­
erty (A) only. The numbers of S fall into two sets : kv k2, 
ks, • • -, and lx + mx0} l2 + m20, • • -, where no m. = 0. Let k 
be the greatest common divisor of the integers | ^ | , \k2\, • • -, 
and m that of |mx|, |m2|, • • • A suitably chosen linear com­
bination of the L + m.0 gives I + m0, I an integer. Hence the 
system 8 contains k and I + m0. Conversely, any number 
x + y0 of 8 is a linear function of k and I + m0. For if y = 0, 
x must be a multiple of k ; while if y 4= 0, then y = qm, so that 

(x + y0) — q(l + m0) == x — ql 

is an integer and hence of the form qk. We thus have 
Lemma I I . Any system of numbers of 1(0) which has 

property (A) may be exhibited as the set [k, I + mô'] of all 
linear homogeneous functions with integral coefficients of k and 
I + m0, where k and m are positive integers and I an integer. 

We next require that 8 shall have also property (J5). The 
necessary and sufficient conditions are that k0 and (/ + m0)0 
shall belong to 8. By Lemma I, there are two cases 

(3) 02 - d = 0 ; 02 - 0 + i ( l - d ) = 0. 

In either case, the preceding conditions require that k and I be 
divisible by m. Hence 8 «= [ma, m(b + 0)], where a and b 
are integers, a > 0. In this notation, we examine more min­
utely the condition that m(b + 0) - 0 shall belong to 8. For 
case (3j), this equals md +mèö. But 6 m(6 + Ö) occurs in 8. 
By subtraction, we get the integer mb2 — md, which occurs in 
8 if and only if b2 —• d is a multiple of a. Treating case (32) 
similarly, we obtain 

* We exclude the system composed of zero only. 
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Lemma I I I . For a quadratic domain defined by a root of 
one of the equations (3), the ideals are given by [ma, m(b + 0)], 
where a, b and m are integers subject to the respective con­
ditions 

(3') b2 - d = 0 (mod a) ; b2 + b + J ( l - d) = 0 (mod a). 

Multiplication of ideals is defined as follows : If /x ranges 
over the numbers of an ideal 8, and // over the numbers of an 
ideal S', then the products fju/jf and their sums form an ideal 
S", called the product of the factors 8, S', and designated SS'. 

In particular, for 02 = d, the product of 

8 = [ma, m(b + 9)~\, b2 == d (mod a), 

and the conjugate ideal 

8Y = [ma, m(— b + 0)] 

is the ideal /SS1? expressed initially in the form 

[m2a2, m 2 a ( - b + 6), m2a(b + 6), m\ - b2 +*d)], 

viz., the aggregate of the linear homogeneous functions with 
integral cofficients of these four numbers. Let c denote the 
integer (62 — d)/a. After obvious modifications, we have 

8Sl — [m2a2, 2m2ab, m2ac, m2a(b -f 6)~\. 

The greatest common divisor of the first three numbers is 
m2ag, where g denotes that of a-, 2b, c. If a and c had the 
common factor 2, then b2 — d = ac = 0 (mod 4), and 62 ^ 0 
(mod 4) since d has no square factor; hence would 62 = 1, 
d ~ 1 (mod 4), which contradicts the present hypothesis (Lem­
ma I) . Hence g is odd. If g > 1, è2 — d = ac = 0 (mod g2), 
and d would have a square factor #2. Hence # = 1. Since a, 
26, c have the greatest common divisor 1, a suitable linear 
combination of them equals 1. Hence 

8S1 = [m2a, m2a(b + 6)~\ = [m2a, m2a6~\, 

and hence is formed of all the complex integral multiples of 
m2a, i. e., is the principal ideal (m2a). 
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For the case (32), we denote the second number (3') by ae, 
and find similarly that the greatest common divisor of a, 26 + 1, 
c is unity, since d = (26 + l)2 — 4ac. Setting Sx = [ma, 
m(b + #)], where 0 is the second root of (32), we find as before 
that SSl is the principal ideal (m2<x). Hence we have 

Theorem I . For a quadratic domain, the product of any 
ideal and its conjugate is a principal ideal. 

Corollary. If 88' = 88", then 8' « 8". 
For, if 8X is the ideal conjugate to 8, then 88x is a principal 

ideal, say (t), where t is an integer. Then 

8^8' = 5 ^ " , (t)8' = (f)8", 

so that the ideals 8' and 8" include the same numbers. 
Theorem I I . I f all the numbers of an ideal O belong to 

an ideal A, there exists an ideal B such that AB = C, and 
conversely. 

Under this first hypothesis, the numbers of CAX belong to 
the principal ideal AA1 = (t), Ar being the conjugate to A. 
Thus the numbers of CAX are \t, \t, • •., the X's in 1(0). 
Siiice properties (A) and (B) hold for the ideal CAV we have, 
for every number p of 1(0), 

\t + X2t = Xi, \t - X2̂  = \f, p(\t) = \t, 

\ v \j, \k belonging to the set \ , X2, • • • . . Since the factor t 
may be dropped, the numbers Xv X2, • • • themselves have the 
characteristic properties (A) and (B) of an ideal, and hence 
form an ideal B. From CAX = B(t) and AAx=.(t) follows 
C= AB, by the preceding corollary. 

The converse proposition that every number of AB belongs 
to A follows from the definition of multiplication of ideals and 
properties (B), (A). 

According to Dedekind, who is followed by Bachmann, an 
ideal Cis said to be divisible by an ideal A if all the numbers 
of C belong to (occur in) A* According to Hurwitz,* Hubert, 
and others, an ideal C is divisible by an ideal A if there exists 
an ideal B such that C = AB. In Theorem I I , we have shown 
(for quadratic domains) that the two definitions f are in com­
plete accord. 

* " Ueber die Theorie der Ideale,'J Qötlinger Navhrivhten, 1894, pp. 291-
298. 

t Dedekind's objections to the second definition are given in the ööttinger 
Nachrichten, 1895, pp. 106-113. 
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Lemma I V . A positive integer t occurs only in a finite 
number of ideals of a given quadratic number domain. 

For, if [k, I + mö] is an ideal containing ty it follows from 
the proofs of Lemmas I I and I I I , that k is a divisor of t, and 
m a divisor of k, while obviously I can be reduced modulo h 

Theorem I I I . Any ideal A is divisible by only a finite 
number of ideals. 

I f Ax is the ideal conjugate to A, then AAX is a principal 
ideal (t), by Theorem I . This integer t thus occurs in every 
ideal which divides A. 

The principal ideal (1), which is evidently composed of all 
the integral algebraic numbers of the domain, plays the rôle ot 
unity in multiplication and division. An ideal, different from 
(1) and divisible by no ideal other than itself and (1), is called 
a prime ideal. 

Theorem I V . If the prime ideal P divides the product 
AB, it divides A or P . 

Suppose that P does not divide A. Then the ideal com­
posed of the linear combinations of the numbers of both A and 
P divides P and yet is distinct from P, and hence is (1). 
Hence 1 = a + ir, where a is some number of A, ir some num­
ber of P . Let /3 be any number of P . Then /3 = a@ + 7r/3. 
By hypothesis, a/3 occurs in P . Hence by the definition of 
ideals, /3 occurs in P . Hence B is divisible by P . 

Theorem V . Every ideal A, other than (1), can be 
expressed in one and but one way as a product of a finite 
number of prime ideals. 

If A is not itself a prime ideal, it has a divisor Ax distinct 
from (1) and A, and A = AXA2, where A2 is distinct from A 
and (1). If one of the ideals Ax and A2 is not a prime ideal, 
it equals the product of two ideals, and we get A = A[A'2A'r 

This procedure ultimately terminates, so that A is divisible by 
a prime ideal. In fact, by Theorem I I I , A is divisible by 
only a finite number n of ideals. Hence A is not equal to a 
product of more than n ideals, equal or distinct, but =J= (1), 
since a relation A = BlB2^ P n + 1 would require the existence 
of the n + 1 distinct ideal divisors Bv BYB2, • • -, BXB2 • • • Bn+V 

We therefore obtain a factorization A = Px • • • Pr into prime 
ideals. 

This factorization is unique in view of Theorem I V . 
I t now follows that ideals obey the fundamental laws of 

divisibility holding for integers. The arithmetic of ideals thus 
becomes a subject of decided interest and importance. 
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There remains the question of the disposition to be made of 
the difficulties encountered in the arithmetic of the integral 
algebraic numbers forming the system 1(0). To every number 
ft of 1(6) corresponds a principal ideal (//), and conversely. If 
ft\ = v, then (/^)(X) = (v). To each non-principal ideal A we 
may make correspond * a fictitious entity called an " ideal num­
b e r " a, such that AB = G implies a/3 = 7. When J. is a 
prime ideal, a is called a " prime ideal number." This scheme 
is not to be confused with Kurnmer's. He required very com­
plicated machinery which worked only for special domains. 
On the contrary, we are now throwing the burden on the simple 
theory of ideals and deriving by formal correspondence the 
needed properties of the ideal numbers. 

The text by Bachmann is very appropriately dedicated to 
Dedekind, as it develops Dedekind's original theory of integral 
algebraic numbers and employs almost exclusively the methods 
insisted upon by the latter. In a few instances, however, 
Bachmann departs from Dedekind's purely arithmetical stand­
point which does not permit the use of arbitrary variables and 
undetermined coefficients. The deviations occur in the exposi­
tion of HenseFs work and in making use of the simplifications 
due to Hurwitz and others. In fact, König (page 482) insists 
that " die von verschiedenen Autoren für die Dedekind'sche 
Idealtheorie gegebenen ( Vereinfachungen ' beruhen durchweg 
auf einer mehr oder weniger verhüllten Anwendung der 
Xroneckerschen Grundideen." The exposition by Dedekind 
(Zahlentheorie, pages 434-657) is in parts very elementary 
and amply illustrated by simple examples, but in other parts 
is very abstract, requiring the reader to hold in mind an array 
of technical concepts, symbols and names. By using fewer 
abstract proofs and adopting a more expansive style of pres­
entation, Bachmann has produced a book everywhere reada­
ble. As noted above for ideals, so for the more general con­
cept modulus, viz., a system of numbers closed under addition 
and subtraction, Dedekind says that if all the numbers of a 
modulus C occur also in the modulus A then C is divisible by A 

* Instead of relying upon the principle of correspondence, it seems allow­
able to the reviewer to define our ideal " numbers -1 to be the ideals them­
selves. In thus speaking of an ideal (viz.f a certain aggregate of integral 
algebraic numbers) as a "number," we have the precedent that certain 
ordered aggregates (au a2l • • -, an) of real numbers a1% • • -, an are called 
hypercomplex numbers, the customary limitation that n shall be finite not 
being essential. Again, we may define an irrational number to be the 
inferior class of rational numbers obtained by a Dedekind cut. 
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and C is a multiple of A9 and writes C>A. Since the aggre­
gate (7is smaller than the aggregate A, the terms "divisible" 
and " multiple " are used in a technical sense, reverse to the 
usual numerical sense. While one may carry in mind the 
technical names it is asking too much to reason with a familiar 
symbol in the reverse of customary usage. We therefore welcome 
Bachmann's introduction of an entirely new symbol for "con­
tained in " and replacing Dedekind's > . I t would seem prefer­
able, however, to the reviewer to use the symbol a = 0 (A) to 
denote that the number a is contained in the modulus A, and 
similarly C s O (A). In the spirit of modular systems, this 
notation would naturally mean that the numbers of C are con­
tained in the modulus A, and also, as in the elements of con­
gruences, that C is divisible by A. If Dedekind's theory of 
the modulus were presented with this notation, the reader 
would not find it necessary continually to struggle with himself. 
For the special case of ideals, the notation is used by Hilbert in 
his Report (page 183). 

Bachmann states at the bottom of page 154 that for quadratic 
domains R(*/d) the introduction of ideals is necessary if there 
is more than one class of quadratic forms of determinant d. 
There may however be two classes differing by the factor — 1 
(cf. Dedekind, 1. c , page 451). A few misprints may be 
noted; page 227, line 7, contains a misprint f o r p ; page 231, 
line 12, contains a misprint for 7. 

The present volume by Bachmann serves admirably its 
purpose of affording a simple and attractive introduction to 
Dedekind's theory of the general arithmetic of algebraic num­
bers ; there is promised a supplementary volume treating of 
special types of number domains. 

The treatise by König is much more than a presentation of 
results contained in the memoirs of Kronecker and his follow­
ers ; it must be regarded also in the light of an original contri­
bution to the subject, containing new points of view, complet­
ing fragmentary results, replacing incomplete by adequate 
proofs, and undertaking new developments of fundamental 
nature. The text is far more than a commentary on Kron-
ecker's fundamental " Festschrift zu Herrn E. E. Rummer's 
Doktor-Jubilaum, 10. Sept. 1881." The subjects treated in­
clude the divisibility of forms, factorization of forms, Kron-
ecker's abstract formulation of the adjunction of a root of an 
algebraic equation, Galois's theory, Kronecker's method of 
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elimination, general theory of resultants, discriminants, func­
tional determinants, algebraic manifolds, divisor systems 
(modular systems), algebraic and arithmetic theories of linear 
diophantine problems, theorems of Noether and Hubert, and 
finally the theory of integral algebraic quantities. The concepts 
of this rich array of general material are so interwoven that a 
report upon a particular part would be entirely unsatisfactory, 
while the limitations of space here preclude a survey of the 
whole. Although the theory of ideals does not play as pre­
dominating a rôle in this subject as in the theory of algebraic 
numbers, a few remarks in this direction will afford a suitable 
sequel to the earlier part of this composite review. The intro­
duction of "ideal quantities" to bring harmony into the laws 
of divisibility of integral algebraic forms is accomplished in a 
most pleasing manner by König. 

At the outset we consider the two domains 

(A,xv . . . , xm), [A,xv --;xm], 

formed respectively of all rational, and all rational integral 
functions of the indeterminates xv • • -, xm with coefficients in 
A, where (for the purely arithmetical theory) A denotes the 
system [1] of all integers, while (for the algebraic theory) A 
denotes a field * composed of real or complex numbers (some 
of which may be indeterminates other than the x's). Let 
F09 • • -, Fn denote any forms in the domain \_A, #J such that 

Ftf,+ F1z*-l + ...+ Fn = 0 

is irreducible in (A, #.). Let its roots be av « • -, an% Let 

F = (A, xv • • -, xm ; a) 

be the domain obtained by the adjunction of a = ax to (A,xt). 
Then T is formed of the quantities 

g(a) = (G0 + &ta + . . . + G ^ t f - 1 ) + H, 

where the G's and H are any forms in \A, a\] such that 
H 4=0. Then 

n o r m # ( a ) = = n # K ) 

equals the quotient of two quantities of [^4, xj. 

An aggregate closed under the four rational operations, addition, etc. 
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Let uv • • -, um be new indeterminates and let Uv U2, • • • de­
note distinct products of powers of the u's subject only to the 
condition that Ur = Us implies r = s. We consider the gen­
eral form 

I t satisfies the equation 
n 

n o r m ( . - / ) S n [ ^ - / ( « i ) ] = 0 

wrhose coefficients are forms in uv • • -, um9 the coefficients of these 
forms being quotients of quantities in [.4,#.] and therefore 
quantities in (A,x.). This norm is an exact power of a form 
N(z), irreducible in (A,x.9 ut) *, as follows readily from the 
irreducibility of the equation for the a?s. We may suppose the 
coefficients in N(z) = 0 free of denominators. I t is a funda­
mental theorem in Kronecker's theory that there exists a 
greatest common divisor process for two forms in a domain 
[A, x0 u j , when there is such a process for numbers of A ; 
the latter is obviously here the case since A is either a field or 
the system [1] of all integers. Hence our fo rm/ satisfies an 
equation G0z

d + • • • -f Gd = 0, irreducible in [A, x., u j , such 
that Cr0, • • -, Gd have no common divisor. In case G0 is a unit 
(divisor of 1), we may set GQ = 1 and call the root ƒ an 
" integral algebraic form " (with respect to the domain T). 
I t is easy to establish the equivalence of this definition with the 
following. The form ƒ is an integral algebraic form if and 
only if it satisfies some equation 

*»+ 6^-1 + ... + Gd = 0 

whose coefficients are forms of the domain \_A, x.9 u^\. By-
suppressing the indeterminates u.} we obtain the definition of 
the integral algebraic quantities of T. Denote by [T] and 
[ r ] w the domains composed of all these integral algebraic 
quantities and forms, respectively. Each domain is closed 
under addition, subtraction and multiplication. 

A non-field domain D is called complete (vollstândig) when 
any two of its quantities have in D a greatest common divisor 
By in the sense 1, 2, above. As already noted, [A, #J is a 
complete domain. But a domain [ T ] , just defined, is complete 

* The 11*8 should appear in the notations of the domains, bottom of p. 464 
(König). 
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only in the very simplest cases ; this point is illustrated in the 
above example of the numbers a + b V— 5, a and b integers. 
Hence we cannot here define, as in algebra, a primitive form 
to be one in which the greatest common divisor of its coefficients 
is 1 (or a unit). Following Kronecker (Festschrift, § 15), 
we say that for a domain [T] a form <f> is "pr imi t ive" if 
norm <j> is a primitive form of the indeterminates u. in the ele­
mentary sense. 

We may now make a clear statement of the problem of the 
association of ideal quantities. We seek to enlarge the domain 
[T] into a complete domain [Gr] in such a manner that not 
merely the additive and multiplicative combinations, but also 
the properties relating to divisibility of the quantities of [ r ] 
shall remain valid in the new domain [Gr]* In symbols, if 
a, /3, 7 are any quantities in [1H], there shall exist quantities 
a, /3', y in [Gr] such that a + /? = y implies a + /3' = 7', 
aft = 7 implies a/3' = 7', and conversely, while if a is [or is 
not] divisible by y8 then a is [or is not] divisible by /3', and 
conversely. The most exacting requirement is that [Gr] shall 
be a complete domain. 

All these conditions are met in the simplest manner by the 
domain [Gr] of all the quotients y,Jev, where yu is an arbitrary 
form of [T]w and ev an arbitrary primitive form of [ r ] w , addi­
tion and multiplication in [Gr] being defined by 

%i + %/==s %X' + 7 > , Vu # OV ^ %/)C 

The sum and product belong to [Gr] since the product of two 
primitive forms ev and e'v, is a primitive form, and since the 
domain [ r j w is closed under addition and multiplication. The 
units of ['(?] are the quantities e'uJ€v, where also the numerator 
is primitive. One of the conditions that [Gr] be a complete 
domain is that it be not a field,* and this is satisfied since 2x = 1 
is not solvable in [^G^. In fact, 2yu=,ev is impossible since 
the norm of the primitive form ev is not divisible by 2. Finally, 
any two quantities yu/

€
v
 an(^ 7^/€«r °^ [ ^ ] have m [Gr] a 

greatest common divisor, which (or any product of it by a unit) 
may be exhibited as the form 

w / .* r r ' / f 8 s> 
(r) (s) 

* Were it not for this condition, we could take as [(?] simply the field 
[T] composed of all quotients of the quantities of [ r ] . 
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where Cv C2, • • • denote the coefficients of the form <yu ; C'1} 

C2, - - - the coefficients of y'u, ; while Wr and W's denote distinct 
products of powers of the variables wv w2, • •. Naturally, 
we do not enter here upon the proof* that 8w has the prop­
erties 1, 2 of the greatest common divisor. 

The quantities of [G] are called " ideal quantities" of [ T ] , 
although some of them already occur in [ T ] . That the ideals 
here admit of addition as well as multiplication is a pleasing 
feature of König's theory not found in Dedekind's theory of 
ideals, nor in Kronecker's exposition. Ideals of the König 
type appear in Weber's treatment (Algebra, volume 2) of the 
more special theory of algebraic numbers. 

L. E. DICKSON. 
THE UNIVERSITY OF CHICAGO. 

CORRECTION. 

PROFESSOR Wilczynski has kindly called my attention to the 
following misstatements in my review of his Projective Differ­
ential Geometry (BULLETIN, pages 190-194). 

P . 191. The second member of the expression for 03 x 

should be completed by adding — 27P20g. 
P. 191, line 5 from bottom. Strike out first sentence and 

substitute " The osculating cubic may hyperosculate Cy" 
P. 191. For last clause read : " I f 0Stl = 0, then Cy is a 

curve of coincidence points." 
P . 193, line 6. For 04 read 0r 

P . 193, line 6 from bottom. For "second" read "same." 
P. 193, line 2 from bottom. After " r a n g e " insert " i n 

certain cases." 
V I R G I L SNYDER. 

NOTES. 

A T the meeting of the London mathematical society held on 
February 14, the following papers were read : By G. A. M I L ­

LER, " Groups defined by the order of the generators and the 
order of their commutator " ; by T. STUART, " On the reduc­
tion of the factorization of binary septans and octans to the 

* König, p. 479. Misprints in the accents occur in the formula at the 
middle of this page ; while at the top of p. 474, fiu should read /J». 


