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dependent. With the aid of Theorem V it can be shown that 
a necessary and sufficient condition for the verification of the 
hypothesis of Bôcher's theorem is that Mk(uv u2, • • -, un) be of 
constant rank m < n. 

NORTHWESTERN UNIVERSITY, 
May, 1906. 

SIGNIFICANCE O F T H E TERM H Y P E R C O M P L E X 
NUMBER. 

BY PROFESSOR JAMES B Y R N I Ë SHAW. 

(Read before the Chicago Section of the American Mathematical Society, 
April 14, 1906.) 

ESSENTIALLY four definitions of quite different logical im­
port have been given for the term hypercomplex number, or 
multiple number. The four things so denned differ consider­
ably in their mathematico-philosophical meaning, and while 
two of them are in a way equivalent, neither of the others can 
be correlated with these two or with each other as equivalent. 
I t is proposed to examine these four definitions rather critically. 

I . The n-tuple. 

The first definition I shall denominate the Dedekind defini­
tion, although Hamilton discussed, many years before, entities 
defined in the same way. I t is of a pure arithmetical character, 
since it implies only the existence of a set of things we may call 
numbers, marks, or entities, according as we conceive them to 
belong to a domain of integrity, an abstract field, or, in general, 
an aggregate that we can call a range. At first these entities 
were in a scalar domain, then they were generalized to a rational 
domain, then to an abstract field^ and obviously we may take 
them from any range. The definition runs substantially thus : * 

A set of n ordered marks (entities) av • • -, an of a field 
(range) Fy is called an /i-tuple element a. The symbol a = 
(av • • -, an) employed is purely positional without functional 
connotation. Its definition implies that a = b if, and only if, 
ai = K ' * '> Cln = K 

* Dickson, " O n hvpercomplex number systems"; Transactions Amer. 
Math. Society, vol. 6 (1905), pp. 344-348. 
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This system of w-tuple elements is then made to be linear 
and associative by a set of postulates of such a nature that the 
sum and the product of any two elements is a third element. 
Like all arithmetic definitions, this definition has the merit of 
being free from existential questions. If marks of a field (or 
entities of a range) exist, these elements exist. The element is 
a conception which is a function of its n marks, or n coordin­
ates. The conception is one needed in many applications of 
mathematics, hence its introduction is justified. But logic­
ally these elements are not extensions of the ordinary numbers 
and can be so called only by an extension of the meaning of 
the term number, and this extension must be in an altogether 
artificial manner. As Bertrand Russell points out with regard 
to the elements defined in the next definition, we cannot iden­
tify * unity with any of the w-tuple elements, not even with the 
modulus, which may be written 

( 1 , 0 , 0 , - . , 0 ) . 

For unity is not n-tuple, not even an n-tuple with n — 1 zero 
coordinates. The distinction is analogous to that which insists 
that unity and positive unity are two different conceptions. 

The n-tuple has no reference to anything else. I t is a com­
pound conception built up directly from the range given. Its 
laws of combination are purely arbitrary, since there is no 
reason à priori why, in (a, 6) (as, y) == (ymax + y121ay + ymbx 

+ 722i%> Vmax + Vi22ay + %ubx + 7222%);the e i & h t ? ' s should 
have one value rather than another. The thing to do, on this 
basis, obviously is to study all possible types of algebras of 
such n-tuples, and find their uses, if any. 

I I . The Manifold. 

The second definition I shall call the Russell definition, 
although it has appeared before in works of other logicians. 
I t runs thus : 

What defines a hypercomplex number is a one-many relation 
whose domain consists of real numbers (that is, ordinary ration-
als, irrationals, etc.), and whose converse domain consists of 
the first n integers (or, in the case of complex numbers of in-

* Principles of Mathematics, vol. 1, p. 380. 
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finite order, of all integers). These relations are indicated by 
ev e2, • • -, en. Thus, in a == alel + a2e2 + •. • + anen, ax is corre­
lated to 1, a2 to 2, • « -, an to n. The relation is one-many be­
cause a. may equal a given number 6, for i = 1, 2, • • •, n ; that 
is, b is correlated to each integer ; so for every number. These 
one-many relations may be defined to be the complex numbers. 
In this way a purely logical definition is obtained. We are 
not to identify 1 el -f 0e2 + • • • + 0en with ev that is, the com­
plex number is a function of the coordinates, not of the relations 
e. Evidently we may use any other range than that of all real 
numbers, and this definition becomes as general as the first, 
which it most resembles. Russell proceeds immediately to show 
that this virtually defines a complex number to be an n-dimen-
sional entity. I t is substantially the definition at the founda­
tion of vector analysis, where the relational symbols ev e2) • • •, en 

are expressed by directions. 
I t is sufficiently clear that these manifolds are not in the 

ordinary number system any more than were the n-
tuples. 

Their sums and their products are likewise manifolds whose 
coordinates are determined by certain laws of combination. 
True, we may call them numbers, but the identification of an 
ordinary number with any one of the manifolds is highly arti­
ficial. In fact, students of space analysis or vector analysis 
would scarcely conceive of any such identification being possible, 
any more than they would think of identifying an angle with 
its number of degrees. 

The connection of the n-tuple and the manifold with the 
bilinear function of n variables is evident. 

This is the point of view of the qualitative-unit mathemati­
cian, a unit 1 correlated to the n integers gives the n units 
lev le2, • • -, len) of the system. These are usually written 
ev • • •, en9 although lel is not really ex ; for ex really expresses 
only that something is correlated to 1. The correlation may 
as well be with n directions in space, and might be written 
h h &?•••• I n this case the qualitative phase is a little more 
apparent. Of course we are left free to say what aeA x be2 

shall mean ; this gives rise to a multiplication table, meaning 
that if a is correlated to 1, b to 2, then ab shall be correlated 
t 0 7i2iei + 7122

62 + ' ' • + %2A- T h i s v i e w appeals^ strongly to 
the quaternionist or vector analyst who desires a flexible symbol­
ism, although many use the cumbrous n-tuple forms. 
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I I I . The Operator. 

The third definition I shall call the Peano definition, al­
though it appeared long before in Hamilton's quaternions. 
This definition looks upon the hypercomplex number as an 
operator. What Peano* calls a complex number is incapable 
of multiplication, as he explicitly says, hence it is not the kind 
of entity we are discussing here. But he does not include 
quaternions, \/ — 1, and the like, in the class of complex num­
bers. These he defines as operators. Thus, \/ —• 1 is the sub­
stitution |£]~i|, that is, if we have given a non-multiplicative 
manifold (x, y), then by \/ —- 1 (x, y) we mean (— y, x). 
Obviously matrices come under this head, as do linear substitu­
tions. 

I t will readily be granted, I suppose, that these operators 
are not numbers, although Hamilton identifies quaternions 
that are purely scalars with the domain of positive and nega­
tive numbers. But he means that the scalar 1 is an operator 
such that applied to a, any vector, 1 a = a. If we were to de­
fine numbers as operators, then, of course, scalars are numbers. 
But numbers defined on a pure arithmetical basis are not op­
erators. 

I t is to be noted carefully in these three definitions that the 
product or sum of any two elements is a third element of the 
same character. No possible combination ever leads us away 
from the range under consideration. In the first case we have, 
for example, the products of two n-tuples : (a,b)(x,y) = 
(aa57ni + ay7i,2 + bxyl2l + byyl22,axy2]l + ayy212+ bxy22l + 
byy222), an n-tuple. To connect these with numbers, we virtu­
ally must define real numbers to be n-tuples. In the second 
case we have for the product of two manifolds (ael + be2) 
(xet + ye2) = [(axyul + ayjn2 + bxy]2l+ byyl22) ex+ (axy2ll 

+ a3/Ï2i2+ ^7221+ %7222)62~l> a manifold. To connect with 
numbers, we must define numbers as manifolds. In the third 
case we have for the product of two operators {aix + bi2) 
(xix + yi2) ( ) == [axyul + ayyU2 + bxyl2l + byyl22) ix + (axy2U 

+ ay%i2 + to722i + %7222) h~\ ( )> a n operator. To con­
nect with numbers, we must define a number as an op­
erator. 

^Formulaire (1901). 
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I V . The Congruence, 

The fourth definition I shall call the algebraic definition. 
I t is so called by Russell, who says indeed regarding this 
method * " . . . the algebraic generalisation is very inferior to 
the arithmetical, since the latter gives all irrationals by a uni­
form method, whereas the former, strictly speaking, will give 
only the algebraic numbers. But with regard to the complex 
numbers, the matter is otherwise. No arithmetical problem 
leads to these, and they are wholly incapable of arithmetical 
definition. But the attempt to solve such equations as x2 + 1 = 
0, x2 + x + 1 = 0 at once demands a new class of numbers, 
since, in the whole domain of real numbers, none can be found 
to satisfy these equations. To meet such cases, the algebraic 
generalisation defined new numbers by means of the equations 
whose roots they were. . . . But the algebraic generalisation 
was wholly unable (as it was, in truth, at every previous stage) 
to prove that there are such entities as those which it postu­
lated." 

Without agreeing or disagreeing with this statement as it 
stands, we may place the algebraic definition on the following 
unimpeachable basis : f Let us consider that i is such an entity 
that wherever we find the expression i2 + 1 we may write 0 
for it ; that is, we reduce all our problems, as it were, modulo 
i2 + 1. Then wre may write x2 + x+l=x2 + x + \ + ^ = 
x2 + x + l + 3 _ 3 (i* + i ) = x

2 + x + \ - f i2. This evi­
dently has the factors x + ^ — \ | / 3 i and x + J + ^ j / 3 i. 
Hence we may speak of the roots as — J + ^ j / 3 i and — | — 
J l / 3 i» We have not made any assertions at all regarding the 
nature of % and may if we choose look upon it as simply a 
perfectly arbitrary number, or algebraic form destitute of 
numerical value. We may look upon all radicals in the same 
way ; thus x2 + 6 x + 7 has no rational roots. But if we work 
modulo ƒ — 2, we find at once that we may write x2 + (>x + 7 
= x2 + 6x + 9 — ƒ , and we say x + 3 ±j = 0. We call j an 
extension of our number system. So we call i an extension of 
the number system. 

* Principles of Mathematics, p. 377 et seq. 
f With regard to this basis, I desire to acknowledge valuable suggestion 

from Professors Moore and Dickson. 
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If now we go farther and work modulo i2 + 1, ƒ + 1> &2 + 1> 
/2 + 1, • • -, where i,j, k, I, • • • are different forms, we find that 
we may take (i +j)2 + 2 = 0 if ij +ji — 0. Hence it is sug­
gested that we must either consider ij = 0, or else consider that 
ij and ji are not equal. That is, we must choose between nil-
factors with commutativity, or else give up commutativity. 
We do the latter and arrive at quaternions. So that we have 
expressions reducible modulo 

i f + 1 , j* + l, if + 1, i* + l , Jl+1, A? + l , . . . , 

hJi +j\iv JA + kJv kA + *À> v 2 +M» • • •> 

*1̂ 2> hJv h*2l T U ^1^2? ^2^1? «?A> J 2*1? 

^1*2* ^ 2 * 1 ' ^1^2? *2ÛV 

If we use only iv j v hv we find we may factor the expression 

x*-2ax + a2 + b2 + c2 + d2, 
namely 

cc2 — 2«x + a2 + b2 + c2 + d2 = (x — a + b\ + c^ + dkY) 

(x — a — bix — c/t — dij). 

We have thus arrived at quaternions. Here again we may 
consider ivjv \ as merely formal, or we may look on them as 
extensions of*the number system. In the end the latter view 
seems more profitable. 

We may then state the algebraic'definition for the general case 
as follows : Let there be an expression, or set of expressions, 
in terms of q, r, • • • such that we reduce all expressions in 
terms of the entities of a given range, modulo these given ex­
pressions, where q, r, • • • represent any entities for which this 
can be done. Then the entities q, say qv q2, • • -, and the enti­
ties r, say rv r2, • • -, etc., define extensions of the given range. 
If the number of these ideal entities is finite we arrive at an 
algebra of a finite number of dimensions, otherwise an algebra 
of infinite dimensions. 

V . Conclusions. 

This brings us to one of the objects of the whole discussion. 
Let me put it in the form of a simple question. Do positive 
and negative numbers constitute a complex number system of 
two units e0= + 1, ex = — 1, with the domain of ordinary 
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arithmetical rational and irrational numbers for the coordinate 
range, or do they not constitute a complex system, and, if not, 
why not? Surely + 1 and — 1 are units and are qualitatively 
distinct. According to the second definition, then, we may 
define ax{ + 1) + a2( — 1) as a complex number of two units. 
But in this algebra we know that ax{ + 1) + a2( — 1) = (ax — 
a2)( + 1 ) when ax > a2 ; = 0, when ax = a2 ; and = (a2 — ax)( — 1 ) 
when a2 > av Hence these qualitative units are such that 
though themselves distinct, when coordinates are attached, we 
arrive at expressions which are not unique. Thus if (av a2) = 
(óp 62), we may infer ax = bv a2 = b2; and if ( a ^ + a2e2) = ( 6 ^ 
+ 62e2), then ax = bv a2 = 62. But if aL( + 1) + a2( - 1) = 
bx{ + 1) +62(—1), the most we can infer is that al=bl±:b, a2 = 
b2±zb. We meet the same problem in operators and simply 
evade it by defining ( + \)a + ( — l)a = Qa. The question still 
remains. 

If an 7i-tuple may reduce to an (n — m)-tuple it ceases to be 
properly an n-tuple. Hence the w-tuple algebra must exclude 
the positive-and-negative-number calculus as not an algebra. 
So also if the n-manifold may have its number of dimensions 
reduced, it ceases to be an n-manifold. So this calculus must 
be excluded here. A vector algebra of positive and negative 
quantities is one-dimensional and not properly a vector algebra 
at all. In fact, the n-tuple and the manifold exclude any possi­
bility of ever reducing the number of positions or of units by 
additions of their coordinates which belong to different positions 
or different units. Technically, the units are linearly inde­
pendent so far as entities of the range are concerned. Now 
+ 1 , - 1 , are not linearly independent so far as the domain 
of the integer or the real number are concerned. Thus, for 
example 2( + 1) 4- 1( - 1) = 1( + 1). 

The third definition places the difficulty farther back. Thus 
(4- 1) and (-— 1) are independent or not according as ( + 1) a 
and (—• 1) a,where a is the operand, are independent or not. 

The fourth definition admits such lack of independence, for 
we define — 1 by this very lack of independence. Indeed, we 
define — 1 to be the entity x such that 

£ C + 1 = 0 or x + a = a — 1. 

That is, we work modulo x + 1. We extend our old arith­
metical addition to a new ideal range. On the basis of the 
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fourth definition, positive and negative numbers do constitute an 
algebra of two distinct qualitative units, but not a two-dimension­
al algebra. In fact, we may assert at once that the fourth defini­
tion defines ideal numbers which are qualitatively distinct, but 
which may not be able to be ordered as many-dimensional. We 
do not at first know whether the different ideals are many-dimen­
sional or not. Thus q2 — 2wq -f t2 = 0 is satisfied by any 
number of sets of quaternions, and the dimensions may thus 
become infinite. 

The distinction may be illustrated by the difference between 
a line in a two-dimensional bounded non-euclidean space and 
such space itself. The portion of the line external to the 
space may be called ideal, but the real and the ideal (qualita­
tively different) portions of the line are yet one-dimensional. 

Modifications of the usual theory of algebras are necessary in 
these algebras with, we may say, deficiency of dimension. 
Thus for positive and negative numbers we do not have a 
characteristic equation of order two, which we should expect, 
but simply the equation 

(+ l) + ( - l ) = 0 . 
Another example occurs in ordinary complex numbers, which 
constitute an algebra of four qualitative units, e0, ev e2

v e3
v 

with the equations e0+ e\ == 0 = ex + e\. The characteristic 
equation is not of order four, but for p = xe0+ yeY-\- ze\ + we\ 
is (p — x + z)2+ (y — wf= 0. 

As another example we might define an algebra by working 
modulo cj — 1, es

2—l, exe2—-ëz
2ev ea+e* + 1, e^-h e^-f ev 

These examples show the great power and generality of the 
fourth definition. I t is evident that we define an algebra thus 
by what may be called its invariant equations. 

The criticism made by Russell, that algebraic definitions do 
not guarantee the existence of the thing defined, does not apply 
to this method of putting the definition. If algebra exists, 
then we may work modulo f(g) if we choose, and f(q) is 
simply an expression in the algebra. We thus arrive at ex­
pressions containing q. If we choose to call these hypercom-
plex numbers, we do not thereby destroy them. If under given 
conditions it turns out that we may work modulo a whole in­
finity of expressions f(q^> f(q2)> • • • > t n e n w e n a v e s ^ p t y 
found a kingdom where we searched for much less. 

April, 1906. 


