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the theorems employed in analysis which rest on intuition and 
analogy. Thus no mention has been made of the theorem re­
quired to justify the ordinary use of the inner normal. But 
the theorems we have stated are sufficient to show in what 
direction further proof is necessary if the fundamental theorems 
of analysis are really to rest on an arithmetic basis. 
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1. The Theorem for the Plane. 

JORDAN has proved * that a simple f closed plane curve di­
vides the totality of the points of the plane not on the curve 
into an interior and an exterior region. He assumes the theo­
rem for the polygon. For the regular curve f we here give a 
simple proof which goes back to fundamental principles, in­
cludes the polygon as a special case, and can be extended to the 
analogous theorems in more than two dimensions. 

In two dimensions the method is as follows : Let a point be 
conceived as a number pair, the plane as the totality of such 
points, and a curve as an assemblage of points defined by one 
or more equations. The fundamental conception on which our 
proof rests is that of the order of a point. The order is a point 
function, uniquely defined for every point of the plane not 
lying on the curve, and its value is always an integer, positive, 
negative or zero. Before proceeding to this definition we will 
first define the angle 0 from the line 

* Jordan, Cours d'Analyse, 2d éd. 1893, vol. 1, §§96-102. # 
f A simple curve shall be defined as a continuous curve without multiple 

points, and a regular curve as a continuous curve such that the portion jonrng 
any two points of the curve consists of a finite number of pieces, each of which 
is simple and has a continuous tangent at all its points, inclusive of its ex­
tremities. Similarly for surfaces. 
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to the line 

sin 6 = K 
ax 

ax 

a2 

a2 

I : y = a2t+b2, x=alt+bv (t^t^t^), 

V : x = a[t + b[, y = a2t + b'2} (t'0 ~ t = t\)9 

as any simultaneous solution of the equations 

cos 0 = A 

where /e is the positive number tc — (-j/a2 + a\ • l /a j 2 -f-aa2)-1. 
Let a closed curve be defined by the equations 

x = <t>{t)> y = ^ ( 0 > 
where )̂ and -v/r are continuous functions of t having the primi­
tive period co, 

4>(t + co)= 4>(t), f(t + co) = ^(t). 

Let O be any fixed point not on the curve, and let P0 and P 
be a fixed and a variable point respectively, both on the curve. 
Let 6{t) be such a determination of the angle P0OP that it is 
a continuous function of the parameter t of the point P . Then 

6(t + œ) = 6{t) + 2nnr, 

where n is a positive or a negative integer, or zero. This num­
ber n I define as the ORDER of the point O with respect to the curve. 
The absolute value of n is independent of the position of P0 , 
or of any consistent choice of the parameter. The sign of n de­
pends only on the choice of the parameter t. This choice cor­
responds arithmetically to the geometric sense in which the curve 
is described. The points of the order of a given point can be 
shown to form one or more continua. 

THEOREM. A simple regular closed plane curve divides the 
totality of the points of the plane not on the curve into two con­
tinua, of each of which the curve is the total boundary. 

The proof is given by the aid of two lemmas. The first as­
serts that, in any region about a simple point of a regular closed 
plane curve (with or without multiple points), there are two 
points of two orders differing by unity, and it is shown that a 
continuous curve joining them must cut the given curve. 
From this it follows that the points of the plane not on the 
given curve form at least two continua. 
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The second lemma asserts that, if a simple regular curve 
(with the possible exception of one or both of its extremities, 
in case it is not a closed curve) lies within a region R, then 
the totality, R~, of points of R not on the curve forms at most 
two continua ; if at least one end point of the curve is interior 
to R, the points of R~ form one continuum. This is proved 
first for a curve which can be represented by the equation 

where $(x) and <j>'(x) are single-valued and continuous, by 
showing that any point of R~ can be joined to one of two pre-
assigned points in R~ by a continuous curve in R~. This is 
done by the aid of a neighborhood of an arc of the given curve, 
which is divided by the curve into two continua. If an end 
point of the curve is interior to R, these can be joined into one 
continuum. If the whole regular curve lies in a finite region, 
it can be divided into a finite number of such parts, which are 
thought of as constructed successively, and the lemma is shown 
to be true at each stage. If the curve is infinite, it is sufficient 
to consider three arbitrary points in R~ and a suitable finite 
portion of the curve. Thus the lemma is extended to the 
whole curve. If, in particular, R be taken as the whole plane, 
it follows that the points of the plane not on a given regular 
simple curve form at most two continua. I t is then shown 
that every point of the curve is a boundary point of each region, 
and that every boundary point of either region is a point of 
the curve. This proves the theorem. 

The order of an exterior point is 0, that of an interior point 
is ± 1. Hence we have obtained an arithmetic proof of the 
following theorem, which we state for greater clearness in geo­
metric language : When P describes the simple regular closed 
curve O, the angle 6 comes back to its initial value when O is an 
exterior point of C, and increases by 2>T or —- 2TC when O is an 
interior point 

2. The Corresponding Theorem for Surfaces. 

Consider any finite surface R in space of three dimensions. 
Let R' be a region of the surface whose boundary C ' is a 
single simple closed curve which divides the surface into two 
or more regions. Define the positive sense of this boundary 
arbitrarily. Let R" be any other such region whose boundary 
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is C". Draw curves which, together with C' and 0", divide 
R into mutually exclusive regions R. (i = 1, 2, 3, • • •) each 
bounded by only one simple closed carve Cv where O. divides 
R into two or more regions. If it is then possible to define the 
positive sense for each of these boundaries so that, when each 
boundary is traced in the positive sense, each segment common 
to two of the curves Ci will have been traced once in one direc­
tion and once in the other, the surface is said to be bilateral.* 
The present discussion is confined to bilateral surfaces. When 
the positive sense of the boundaries of the regions R. is thus de­
fined, the positive sense of the boundary of R" is defined to be the 
same as the positive sense of the boundaries of the region or 
regions R. of which the boundary of R" consists, in so far as 
these boundaries coincide. Thus the positive sense of any 
simple closed boundary of a region on the surface is defined, 
and by means of this definition the positive normal is defined 
wherever it exists. 

Let O be any point not on the surface. Refer the surface to 
a system of spherical coordinates with origin at 0. Let R be 
any region on the surface, and let its boundary be the curve C 
whose equation is <f> == ƒ(#). If R does not have points on 
both the positive and negative polar axes (f> = 0, r > 0, and 
<fi = 7T, r > 0, define the solid angle 0 ( 0, R) subtended by R 
at 0 as follows: 

0 ( 0 , R)= f (cos0=bl)d0, 

where the upper sign is used if R and C have no point on the 
positive polar axis <£> = 0, r > 0, and where the lower sign is 
used if R and C have no point on the negative polar axis (ƒ> = TT, 
r > 0. Both signs yield the same value when R has no point on 
the polar axis <fi = 0. Any region R can be divided into parts 
Rv each falling into one or both of these classes, and ® (O, R) is 
then defined as 2 0 ( 0 , R.). The solid angle is thus uniquely 
and consistently defined. The order of a point in two dimen­
sions is a limiting case as the point 0 approaches the plane. 
The solid angle is susceptible of an algebraic sign, and is con­
tinuous for all positions of 0 not on the surface. The spheri­
cal excess of a region on the surface of a sphere, and of the 
corresponding solid angle, is defined as the limit of the spherk 

* Cf. Möbius, Gresammelte Werke, vol. 2, p. 477. 



1 9 0 4 . ] THE THEOKY OF WAVES. 3 0 5 

cal excess of the inscribed polygon. By subdividing the re­
gion by meridians and parallels, and allowing the subdivisions 
to approach zero, the solid angle is shown to equal the spheri­
cal excess. 

If R is a closed surface, 

0 ( 0 , R) = 4nir, 

where n is a positive or negative integer, or zero. The number 
n is defined as the ORDER of the point O with respect to the surface. 
The order of O with respect to a closed surface is equal to the 
order of O with respect to a plane section through 0, when this 
is defined. The remainder of the proof that a simple regular 
closed surface divides space into two continua, of each of which 
the surface is the total boundary, is similar to that in two 
dimensions. The method here used is equally applicable to 
space of n dimensions. 

UNIVERSITY OF MISSOURI, 
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T H E T H E O R Y O F WAVES. 

Leçons sur la Propagation des Ondes et les Equations de VHy­
drodynamique. Par JACQUES HADAMARD. Paris, A. Her­
mann et Fils, 1903. xiii + 375 pp. 

I N handling mathematics and especially mathematical phys­
ics, in which the data are never quite so extramundane as in 
some branches of pure mathematics, there are two things which 
serve to determine the correctness of results. One is intuition ; 
the other, rigorous accuracy in analysis. The great investi­
gator like Gibbs, even when dealing with such critical ques­
tions as arise in statistical mechanics, never has need of epsilons 
and deltas to insure the results against error. There are others 
of us however to whom the rigorous proof is more convincing 
and even necessary to conviction. Furthermore, as one pro­
ceeds from the more evident to the more refined phenomena of 
physics, the need of exact demonstrations becomes constantly 
greater. M. Hadamard has shown us in the Transactions * an 
example of what may be obtained from the critical rigorous 

*Vol. 3 (1902), pp. 401-422. 


