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But generally dty/d^ and — 1/y + px/y2 do not vanish, so 
that (7) reduces to the condition dcj)1/dpl = 0 . Hence the 
theorem : 

To the simultaneous equations 
dó dó 

<M?> y, P) = 0, j x + p-^ = 0 

correspond dualistieally, the equations 

<t>i(xv Vv Pi) = °> d4>i/dPi = °-
The same result would be obtained by operating with the 

analytic expressions for the most general dualistic transforma­
tion. The special transformation (5) was chosen for the sake 
of simplicity. 

UNIVERSITY OF COLORADO, 
A ugust, 1903. 

HYDBODYNAMIC ACTION AT A DISTANCE. 

Vorlesungen nber hydrodynamisehe Fernkrâfte naeh C. A. B J E R K -
NES'S Theorie. Von V . BJERKNES. 2 Bande, 8vo. Leip­
zig, J . A. Barth, 1900-1902. Bd. I, xvi + 338 pp., 40 
figs. Bd. I I , xvi + 316 pp., 60 figs. 

C. A. BJERKNES is dead. The news is scarcely yet spread 
over the scientific world. No more fitting time could be found 
for calling attention to his life-work on hydrodynamic action at 
a distance. Pupil of Dirichlet at Göttingen, professor of 
mathematics and physics at the university in Christiania, ardent 
admirer and follower of Faraday and Maxwell, Bjerknes more 
than twenty years ago had developed practically to completion 
a theory which never has received much attention owing to the 
manner of its publication. That the work is now before the 
public in a complete, accessible, and easily intelligible form is 
due to the editorial patience of the son, V . Bjerknes. 

The first volume, designed primarily for mathematicians, 
contains the theoretical development of the mutual actions of 
pulsating and oscillating spheres immersed in a common in­
compressible perfect fluid. Fortunately the mathematical 
analysis is so elementary and so carefully explained that the 
most meager training amply suffices for its comprehension. In 
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the second volume, which will appeal almost exclusively to 
physicists, are found the same laws and the formulas governing 
them, deduced experimentally much in the manner in which the 
laws of electricity and electromagnetism were discovered and 
formulated by Coulomb and Faraday. The remarkable fact is 
that the experimental results are numerically so large. The 
experiments, which were hastily shown to some of us at the 
Abel centenary, exhibited the same order of magnitude, the 
same degree of conclusiveness as the corresponding experiments 
in the fields of electricity and magnetism. I t is fortunate that 
the firm of Ferdinand Ernecker has undertaken to prepare for 
the market apparatus similar to that constructed by Bjerknes 
for use in his private laboratory. A description of the appara­
tus is found in volume I I of the work under review. 

To the untrained intuition the phenomena connected with 
hydrodynamic actions can yield nothing but puzzles. That 
bodies moving immersed in a common fluid should produce 
some actions and reactions on one another is readily granted ; 
what sort of actions these may be is not easily divined. For 
example it is well known that a sphere, free to move and unin­
fluenced by external forces, may remain at rest in a constant 
current. That this apparently contradicts all experience and 
all common sense is due to the imperfection of the spheres and 
fluids with which we ordinarily come in contact. Under cer­
tain circumstances it may even come about that a sphere moves 
up stream against a strong current. This hydrodynamic para­
dox, as it is called, has been exhibited far and wide in toys 
placed upon the market to the mystification of more than chil­
dren. Even the trained physicist finds it safe to trust rather tó 
analysis than to intuition. 

The analysis in the case of arbitrary bodies is far too diffi­
cult to follow out. In the case of anchor rings, to which the 
cosmographie speculations of Lord Kelvin have given such 
interest, the theory of mutual actions and reactions has not yet 
reached a satisfactory development, notwithstanding the classic 
memoir published more than twenty years ago by J. J. Thom­
son. The present authors when dealing with hydrodynamic 
actions at a distance restrict themselves for the sake of sim­
plicity to those actions arising from or experienced by spheres 
pulsating or oscillating with a definite period and separated 
from one another by a distance great in comparison with the 
radius of the spheres. If the distance between the spheres be 
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taken as unity, the radius will be a small number, the powers 
of which may serve as a measure for the different orders of 
approximation and the different orders of magnitude of the 
actions which take place. The analysis is carried out in such 
detail that actions of magnitude down to and including the 
seventh order are taken into account. 

If a sphere 
(x - a)2 + (y- bf + (» - c)2 = d2 

pulsate about its fixed center (a, 6, c), the radius d and the 
volume E = \ird? are functions of the time t If the pulsa­
tion take place periodically with period T, the quantity 

(È)m = ± ^ | *- ft+\È)2dt, where È •• 
dE 
~dt' 

is the quadratic mean of the rate of change of volume and may 
be regarded as defining the intensity of pulsation. The sign + 
or — is chosen according as the sphere be dilating or contract­
ing at the origin of time. 

During the pulsations the particles of the fluid in which the 
sphere is immersed move radially to and fro. The magnitude 
and the direction of the velocity of this displacement at any 
given point of the fluid are derivable from a velocity potential 

^ 477T' 

I t is found convenient to express the rate of cubic dilation 
E as the product of the mean rate (E)m and a periodic function 
f(t) which is written as a time derivative for reasons of analogy. 

È={É)J{t). 
Then 

XÈ)m 
* = - / ( Q Anrr 

Thus the velocity potential is divided into two factors, of 
which the first, depending on the time, is purely kinematic, while 
the second is purely geometric. 

To a first approximation the velocity potential of a number 
of pulsating spheres is the sum of the potentials due to the indi­
vidual spheres 
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The interesting case to consider is that of synchronism in 
which the periodic functions f.(t) appertaining to the different 
spheres are identical. The potential again becomes separable 
into a kinematic and a geometric factor 

* i 

By comparison with the potential function <t> due to a system 
of magnetic poles magnetized wTith intensities Iv 

it appears that the lines of flow set up in a liquid by a system 
of spheres pulsating with intensities (Et)m are identical with the 
lines of force set up by a system of magnetic poles of intensities 
It = — {È^)m distributed geometrically in the same manner as 
the spheres. 

Further magnetic analogies are immediately derivable by 
considering a system of two spheres pulsating with equal in­
tensities and opposite phases. The potential is 

^ \ \irrl Airr2 ) 

In case the vector r12 joining the center of the first or " posi­
t ive" sphere to that of the second or "negative" sphere be 
infinitesimal and the radii of the spheres be infinitesimals of 
higher order, the system is called a doublet. The potential of a 
doublet takes the form 

47rr3 

where S = ET12 is by definition the vector kinematic moment of 
action of the doublet, and r is the radius vector from the center 
of the doublet to any point in space. The corresponding 
potential for a " small " magnet is 

I • r 

where I is the vector intensity of magnetization. 

*Xhe notation for vectors which we adopt here is that of Gibbs. See 
Vector Analysis by E. B. Wilson, reviewed in the BULLETIN, February, 1902, 
by A. Ziwet. 
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Passing to the case of a rigid sphere moving with a velocity s 
of translation, the potential is found to be 

The vector S == 27rd3s = | Ek may be defined as the kinematic 
moment of action and the potential again takes the form 

With these conventions appears the remarkable and funda­
mental fact that the velocity fields set up by a doublet of 
pulsating spheres and by a sphere moving with translation are 
identical, provided only that the kinematic moment of action is 
the same in both cases. In the case of translation the moment 
of action is three halves the product of the volume by the 
velocity ; for the doublet it is the product of the intensity of 
pulsation by the distance between the spheres. To treat an 
oscillating sphere it is necessary to replace the velocity of 
translation and the moment of action by their mean values. 

The parameters a, b, c, d which define the position of a 
sphere suffer changes of which the velocities are a, 6, c, d. 
These parameters and their velocities are divisible into two 
parts, one slow and progressive, the other fast and oscillating 
about some mean value. Let 

a = a° + a\ b = b° + b\ c = c° + e\ d=d° + d\ 

a = a0 + a\ b = b°+b\ c = c° + c1, d = d° + d\ 

As the spheres are not subject to permanent large changes in 
magnitude, d° is zero and d° is constant, a0, b°, c° change 
slowly and the velocities a0, 6°, c° are comparable to the veloci­
ties of finite masses of matter — the velocities encountered in 
molar physics, a1, b\ e\ d1 change rapidly, but remain always 
small in comparison with d°, the radius of the sphere. The 
velocities a1, 61, e1, dl may attain great values and are compar­
able to the velocities found in molecular physics. Evidently 
the linear means of the actual velocities a, b} c, d are identical 
with the linear means of the molar velocities a0, 6°, c°, d°, and 
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the quadratic means are to a first approximation identical with 
the quadratic means of the molecular velocities a1, 61, c1, d1. 

The potential of a system of spheres simultaneously under­
going pulsations and translations is 

and may evidently be written in the form 

where A, B, C, D are functions of the geometric parameters 
a, 6, c, d and are independent of the velocities a, b, c, d. In 
case of synchronous pulsations and oscillations the geometric 
functions A, B, (7, D may be replaced by their linear mean 
values, that is, by these values when for a, b, c, d are substi­
tuted a0, 6°, c°, d°, and the velocities a, b, c, d may be replaced 
by their quadratic mean values al

my b]n, cl
my d]n, which are equal 

to a^, bin, eliy ^m- The potential then takes on a mean value 

K = Z iA>l + sym + cym + DÜI). 
i 

The authors next pass to the discussion of an arbitrary 
velocity field, potential and solenoidal. The function <f) is de­
veloped according to powers of x — a, y — b, z — c into the 
form 

4> = </>0 + </>! + <fc + * * ' + 4>n + ' « '. 
Here 

</>! = « 0 — a) + / % — b) + ry(z — c), 

where a, /3, 7 are the values of the first partial derivatives of 
<j> at the point a, b, c. 

</>2 = R(* - of + l$,(y - bf + i7v(* - of 
+ $y(y - &)(* - 0) + etc., 

where aa, yS ,̂ 7y, y8y, etc., are values of the second partial deriv­
atives of cj> at the point a, 6, c. In vector form the expansion 
may be written 

cf> = <£0 + r • \7(f> + r • VV<£ • r + . . . , 
where 

V . V<£ = 0. 
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The term </>1 = r • V<£ defines a parallel field. The equipo-
tential surfaces are planes ; and the lines of flow, straight lines. 
The second term defines what Bjerknes calls a deformation 
field. The equipotential surfaces are quadrics to which the 
lines of flow are everywhere perpendicular. 

After these preliminary considerations the authors take up 
the general kinematic actions and reactions between a sphere 
and a current. The potential due to the motion of a sphere 
immersed in a fluid originally at rest is divided into two parts ; 
the internal, that of the motion of the sphere itself, and the 
external, that due to the motion induced in the fluid by the 
motion of the sphere. In the case of simple pulsations or 
oscillations these potentials are as given above. But as the field 
of the stream acts on the sphere, the relations become far more 
complicated and require a more elaborate treatment. If, in 
the general case, the interior potential of the sphere be 

the exterior is 

9 — ~ ^ — 2 ^ ^i ~~ ' ' ' ~~ n _±. i "̂ âw+î n~" ' ' '• 

The potential of a stream in which a sphere at rest is immersed 
is likewise divided into two parts. I f the original, that is to 
say incident, stream be defined by the potential 

</> = 4>0 + 4>l + • • ' + 4>n + ' ' •> 

the total resulting stream has the potential 

/ d*\ , / n d2n+1\ , 
$ = 4>o + ( ! + 1 ys ) </>! + ••• + [ i + —^ ^ ) * „ + • • • , 
of which 

1 d* A n d 2 W + 1 rk 

2~p 9i + * • * + ^TjTy 7^+î 9« + ' • * 

is the reaction or reflex potential arising from the obstructing 
presence of the sphere at rest in the stream. It results that 
for a sphere moving in a current the total external potential 
takes the form 
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of which the first term arises directly from the pulsation, the 
second gives the difference between the potentials of the sphere 
and of the current, and the third is due to the incident stream. 
This formula serves as the starting point of a number of appli­
cations to the motion of spheres advancing and pulsating in 
parallel or deformation fields. The cuts which accompany the 
text are admirably drawn and instructive. 

To pass to dynamic considerations, use is made of the for­
mula for the pressure p at any point of the fluid, expressed in 
terms of the velocity potential <£, the pressure P which would 
exist if the system were at rest, and the density q, 

dó 

By somewhat lengthy analysis, filled with approximations, the 
authors succeed in establishing the formula for the total (ap­
proximate) force acting upon the sphere, 

F = - q~ {i?(|s - -la)} - qÈir - §qE{(i - a) . W<M-

I t is to be noted that a is the velocity of the stream <£, and 
that of the sphere. This value for F is exact if the field cf> be 
a parallel field, a deformation field, or a combination of both. 
In other cases the error depends on the degree of divergence of 
the field from the nearest possible combination of a parallel and a 
deformation field. In practice the divergence is so slight that 
the expression above differs from the exact value of F by a 
quantity of the eighth order at most and may consequently be 
regarded as quite satisfactory. 

The equation of motion for a sphere of mass M immersed in 
the fluid and acted upon by an external force f is 

Jlfa = MB = F + f. 

The integration of this equation gives the complete theory of 
hydrodynamic action at a distance. The special cases which 
arise, according as some of the terms of F are missing or as <f> 
has a special form, yield interesting results easily confirmable 
by experience. These the authors consider first. 

As the whole trend of the work is to exhibit the analogies 
to electricity and magnetism with especial regard to the 
point of view of Maxwell, there is great attention paid to the 
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medium, that is, the liquid in which the actions take place. 
The reciprocal of the density, or the specific volume as it is 
also called, carries the name of mobility and corresponds to the 
polarizability of the mediums in electricity and magnetism. 
The velocity is multiplied by the density q to give the intensity 
of the field in the fluid. The kinematic moment of action of a 
sphere is likewise multiplied by the density q to obtain the 
dynamic moment of action. The velocity potentials, (f> in the 
fluid and <ï> in the sphere, are replaced by the potentials of the 
field intensity, qcj> and §<E> respectively (where Q is the density 
of the sphere). 

The total force F is separated into two parts. The force of 
hydrodynamic induction 

is a perfect time derivative and derives its name from electric 
and magnetic analogies. The force of hydrodynamic energy 

Fen = - qÈ& - \qE {(s - &) • W</>} 

differs in no essential way from the external force f. The first 
integration of the equation of motion gives 

" = - Jf ^ ~ 2') + MJQ (Fen + * ) ^. 

The last term is the velocity generated by the energy forces ex­
ternal and internal, and will be denoted by sen. Then 

' " e + i î ^ + e + ig^ 
As the greater number of the fields with which the authors 
deal are set up by pulsating and oscillating spheres, the value 
of & oscillates about zero. This gives rise to a new nomen­
clature. The first term in s, above written, is called the per­
manent velocity ; the second, the temporary. Subsequently the 
force of energy is likewise subdivided into the permanent force 
of energy F^.en, and the temporary 
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I t is evident that no temporary force of energy exists, unless the 
densities of the liquid and sphere differ. The force of induc­
tion is divided into the self-induction 

^ - i n d = - ^ { ^ ( i s ) } , 

which depends not at all on the stream but only on the sphere, 
and the foreign induction 

ï / . t a d - + g | - { - K ( ^ ) } , 

dependent upon the velocity of the stream and the volume of 
the sphere. 

After a discussion, for about eighty pages, of the results ob­
tainable from this subdivision of the total force into four 
partial forces, there follows a short chapter on rotary effects. 
As the fluid is frictionless, the individual spheres can not be set 
into rotation about their axes ; but if a doublet or an oscillating 
sphere be considered, the line of centers of the spheres com­
posing the doublet or the line of oscillation of the sphere is 
subject to change. The moment of rotation due to the force of 
energy is very simple, 

and that due to the induction is 

- ? | W - o * (**-!<% 
where r — r0 is the vector drawn between the positions of the 
center of the sphere at two successive instants. 

To this point the question has been to treat the mutual in­
fluence of a stream <£ and a sphere. If now the stream be the 
result of the motions of other spheres the expressions above 
found for forces and moments will give the actions of the other 
(distant) spheres upon the sphere in question. As the stream 
<f> must be a composition of a parallel and a deformation field 
if the formulas obtained may be considered as exact, and as the 
streams set up by other spheres do not in general come under 
this restricted category, the formulas for forces and moments 
are only approximate. The error, however, is very small — 
of the eighth order at most. The formulas are accurate down 
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to and including the seventh order. Thus if the ratio of the 
radius of the spheres to the distance between them be of the 
magnitude one tenth, the errors are comparable to one one-hun­
dred-millionth. 

Properly speaking, the self-induction is not an action at a 
distance. But the foreign induction is ; and is of the second 
and third orders. The permanent forces of energy are of the 
second, third, and fourth orders. The temporary forces of 
energy are of the fifth, sixth, and seventh orders and are called 
actions of higher order to distinguish them from the others 
which are all stronger. 

Everything is now ready for discussing the mechanics of 
a system of spheres advancing and pulsating in a fluid—the 
mechanics which would appear to a person situated in the fluid, 
and ignorant of its presence or unwilling to take cognizance of 
the medium as a transmitter of actions which follow the laws 
of our ordinary mechanics. I t is found that for the forces of 
lower order, that is, for the foreign induction and the perma­
nent forces of energy : 

1. The law of inertia holds intact. 
2. The second law, that the impulse is in the line of the 

force and proportional in magnitude to it, also holds. 
3. The forces due to distant spheres may be compounded 

according to the parallelogram law. 
4. The forces are independent of the velocity or acceleration 

of the point of application. 
5. The principle of equal action and reaction holds for the 

forces of energy, and although the action and reaction arising 
from the induction are not equal and opposite, yet the in­
equalities influence mainly the motion of the individual spheres 
and produce no sensible effects on the "mola r " motions of 
systems of spheres in large number, provided only that the 
distance between the constituent spheres be large in comparison 
to their radii. 

6. The hydrodynamic actions are conservative in nature. 
From this it results that to an observer situated in the fluid 

and made up of spheres as we are made up of atoms the sys­
tem of mechanics of molar masses of spheres would appear 
identically to follow the laws of Newton. In reality there 
would be imperceptible differences, due first to the statement 
under caption 5 and secondly to the actions of forces of 
higher orders, which fail to obey most of the six captions stated 
above. 



1 5 0 HYDRODYNAMIC ACTION AT A DISTANCE. [ D e c , 

Of the experimental effects observable upon spheres we have 
mentioned none directly. The formulas quoted above enable 
us to infer many facts of more or less obvious analogy, with 
electric and magnetic phenomena : 

1. The self-induction causes a sphere to move more slowly 
than in free space by the ratio Q : (Q + §#). 

2. If the external force f be chosen so as at each instant to 
equilibrate the internal force of energy Fen, the total motion is 
due to induction, the induced field is a parallel field, and the 
sphere moves with the velocity ~|g : (Q + %q) of the field. 

If by the axis of a doublet or oscillating sphere be meant the 
direction of the vector kinematic movement of action S, then 

3. Spheres pulsating in the same phase attract, in opposite 
phases repel each other. 

4. A pulsating sphere and an oscillating sphere whose axis is 
directed toward the center of the pulsating attract ; if the axis 
is directed in the opposite direction they repel each other. 

5. I f the axis of the oscillating sphere does not pass 
through the center of the pulsating sphere, this latter moves in 
the direction of the axis of the former which at the same time 
turns its axis toward the pulsating sphere. 

6. I f two oscillating spheres have parallel axes, attraction 
takes place in case the directions are the same ; repulsion in 
case they are opposite. 

7. If the axes of two oscillating spheres lie in the same 
line and have the same direction the phenomenon is repulsion ; 
if opposite directions, attraction. 

And in general when the axes are arranged arbitrarily the 
spheres undergo translations and rotations according to the 
laws which would govern magnets if the signs of the forces 
were all changed. 

To consider the temporary forces of energy, which are of 
higher order, it is necessary to mask all the actions of lower 
order. By a glance at the formulas it appears that the actions 
of lower order vanish if the sphere upon which they are sup­
posed to act is at rest or simply pulsating, and that the tem­
porary actions are increased by increasing the difference in 
densities between the sphere and the liquid. An investigation 
shows that : 

1. An oscillating sphere attracts a sphere at rest if the 
sphere be heavier than the liquid, but repulses it if it be lighter. 
The force is of the seventh order. 
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2. For a pulsating system the result is the same except 
that the order of the force is the fifth. 

3. Two spheres heavier than the liquid and pulsating with 
opposite phases repulse each other at long distances and attract 
at short distances. There is an intermediate position of equi­
librium. Spheres lighter than the liquid and pulsating in the 
same phase attract each other at long distances and repulse at 
short distances. 

The analogies which suggest themselves during the course of 
the work on hydrodynamic actions at a distance are many. 
The fact that the motions must be divided into visible and 
invisible recalls the system of mechanics of Hertz, in which 
hidden masses and hidden motions are freely introduced to 
make the system come under the canonical heading. The be­
havior of the temporary forces calls to mind the laws of molec­
ular actions assumed by theorists for constructing the kinetic 
theory of gases. All assume a force function which gives at­
traction at great distances and repulsion at small. The order of 
the force differs with different authors. The fact that forces 
of all orders come into play gives a chance to draw analogies 
with the behavior of matter in regard to gravitation, adhesion 
and cohesion. But of all the analogies the most fruitful seems 
to be that which relates to electricity or magnetism. The corres­
pondence seems to be nearly complete. The pulsating sphere 
corresponds to an electric charge or a magnetic pole; the oscillat­
ing sphere, to a doublet or short magnet. The correspondence 
is, however, negative ; where attraction occurs in electricity and 
magnetism, repulsion is found in hydrodynamics. Why this 
should be is not known. Perhaps it is only chance, or perhaps 
it is due to some subtle properties of matter and electricity 
which hitherto have evaded discovery. 

The following table gives in résumé the correspondences which 
exist between the quantities occurring in hydrodynamics and 
in electricity or magnetism : 

q: 

È: 

JE: 

ELECTRIC MEDIUM. 

Ponderomotive constant 
of activity. 

Polarizibility. 
Free pole intensity. 

True pole intensity. 

F L U I D . 

Density. 

Mobility. 
Kinematic intensity of pulsa­

tion. 
Dynamic intensity of pulsa­

tion. 
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S : True electric or magnetic Kinematic moment of action. 
moment. 

qS : Free electric or magnetic Dynamic moment of action. 
moment. 

qS : Electric or magnetic field Hydrodynamic field inten-
intensity. sity. 

S : Electric or magnetic po- Velocity, 
larization. 

Having completed our account of the voluminous work 
under review, it is well to ask what use, what gain accrues 
to us. In the first place the sole fact that here is a large field 
of hydrodynamics worked out in detail, analytically and exper­
imentally, is sufficient cause for congratulation. The problems 
of hydrodynamics which have been carried through to the end 
are few. The subject and the presentation are often difficult. 
The theory of the tides, the theory of resistance offered to boats 
are examples. The theory of C. A. Bjerknes has its difficult 
points ; but so clearly is all explained that the reader does not 
perceive the burden of the difficulties. At the present state of 
our knowledge the electric and magnetic analogies seem to be 
more interesting than valuable. This the authors recognize 
with their characteristic frankness and no small profit may be 
obtained by considering, the justness with which they estimate 
and discuss their work. 

Another great value and interest in the work lies in its rela­
tion to cosmographical speculations. Some years ago one of 
the presidents of the British Association said in his annual 
address that since the scientific world, especially the English, 
had taken such a fancy to devising schemes on which to explain 
the universe, there would be large interest even if small utility 
in collecting and comparing the different suggestions of which 
practically all are of hydrodynamic origin. First is Kelvin's 
vortex atom and it is doubtless responsible for the rest. Some­
one pointed out that one vortex anchored at each end to the 
boundary surface of the universe would answer all purposes. 
Hicks brought out a "bubb le" theory according to which 
matter was to be hollow spaces in the ether. The development 
of the theory may be read with great difficulty in McAulay's 
Utility of Quaternions in Physics. Later Pearson produced an 
" ether-squirt " theory. An atom, according to him, consists 
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of a point discharging ether into space with a pulsating rate. 
The mathematical investigations may be found in the Cam­
bridge Transactions and in the American Journal of Mathematics. 
They are not easy to read. C. A. and V . Bjerknes do not pre­
tend to have laid the foundations of the universe. They have 
treated a broad problem in hydrodynamics and treated it clearly, 
completely, systematically. To those who would read with any 
ease the developments of Hicks's and Pearson's theories the 
work of Bjerknes is a practical necessity ; to mathematician and 
physicist alike it is interesting ; and had it appeared twenty 
years ago when first complete, it would doubtless have attracted 
much more attention and possessed a much greater influence than 
now. 

EDWIN BIDWELL WILSON. 
PARIS , 

June, 1903. 

SHORTER NOTICES. 

Vorlesungen uber Geschichte der Trigonometrie. Von D R . A. 
VON BRAUNMÜHL. Zweiter Teil. Leipzig, B. G. Teubner, 
1903. x i + 2 6 4 p p . 

T H E first part of von BraunmühPs History of Trigonometry 
was reviewed in the BULLETIN, volume 6 (1900), page 404. The 
second part is fully up to the standard of the first. The com­
pleted work will take its place as the fullest and most authorita­
tive history of trigonometry that we have. Cantor's great work, 
Vorlesungen über Geschichte der Mathematik, comes down only 
to the year 1758, so that the present history of trigonometry 
covers nearly one hundred and fifty years of this science which 
have never been treated before with any degree of thoroughness. 

The author begins the second part with the history of loga­
rithms. In this connection he gives an account of John 
Speidell, the author of the first table of natural logarithms. 
Hitherto, German writers have overlooked Speidell. De Mor­
gan's interesting account of him, given in the article " Tables " 
in the English Cyclopoedia, does not seem to have been used 
by von Braunmühl. He examined the reprint of SpeidelPs 
work, the New Logarithmes, that is given in Maseres's Scrip-
tores Logarithmici, volume 6, page 713. Maseres reprinted 
from the edition of 1628, yet von Braunmühl, unaware of 
this fact, refers in a footnote, page 26, to a remote source 


