ON A DEFINITIVE PROPERTY OF THE COVARIANT.

BY MR. C. J. KEYSER.

(Read before the American Mathematical Society at the Meeting of April 29, 1899.)

The general homogeneous entire polynomial of degree n in k variables x may be denoted by

$$F_{n}(x_{\!\scriptscriptstyle 1},\,x_{\!\scriptscriptstyle 2},\,\cdots,\,x_{\!\scriptscriptstyle k}) \equiv \sum c_{e_{\!\scriptscriptstyle 1}e_{\!\scriptscriptstyle 2}\dots\,e_{\!\scriptscriptstyle k}}\,x_{\!\scriptscriptstyle 1}^{\,e_{\!\scriptscriptstyle 1}}x_{\!\scriptscriptstyle 2}^{\,e_{\!\scriptscriptstyle 2}}\cdots\,x_{\!\scriptscriptstyle k}^{\,e_{\!\scriptscriptstyle k}}$$

where $e_1 + e_2 + \cdots + e_k = n$. Let

$$\varphi_n(\xi_1,\,\xi_2,\,\cdots,\,\xi_k) \equiv \sum \!\! \gamma_{e_1e_2\dots\,e_k}\, \xi_1^{\ e_1} \xi_2^{\ e_2} \cdots \xi_k^{\ e_k} k$$

represent the polynomial into which F is converted by the substitutions

where the λ 's are subject to a single restriction : their determinant D shall not assume the value zero.

If there is such an entire homogeneous polynomial

$$\phi_{_{m}}(x_{_{1}},\ x_{_{2}},\ \cdots,\ x_{_{k}}) \equiv \sum h_{_{e_{_{1}}e_{_{2}}\,\ldots\,e_{_{k}}}} x_{_{1}}{^{e_{_{1}}}} x_{_{2}}{^{e_{_{2}}}} \cdots\ x_{_{k}}{^{e_{_{k}}}},$$

where $e_1 + e_2 + \cdots + e_k = m$ and where each coefficient h is an entire homogeneous polynomial of degree p in the coefficients c of F, that

$$\psi_{\scriptscriptstyle m}(\boldsymbol{\xi}_{\scriptscriptstyle 1},\,\boldsymbol{\xi}_{\scriptscriptstyle 2},\,\,\cdots,\,\,\boldsymbol{\xi}_{\scriptscriptstyle k}) \equiv M \cdot \psi_{\scriptscriptstyle m}(\boldsymbol{x}_{\scriptscriptstyle 1},\,\,\boldsymbol{x}_{\scriptscriptstyle 2},\,\,\cdots\,\,\boldsymbol{x}_{\scriptscriptstyle k})\,,$$

the γ 's entering the left member of the identity as the c's enter ψ_m of the right member, then $\psi_m(x_1, x_2, \dots, x_k)$ is named covariant or invariant of F according as m > 0 or = 0.

Supposing such a function ψ to exist, it remains to determine the nature of the factor M. The ξ 's and the γ 's being linear respectively in the x's and the c's, the two members of the identity in question are, apart from the factor M, each of degree m in the x's and of degree p in the c's. It follows that M is a function of the λ 's only. M is, more-

over, rational since ψ is an entire polynomial and the equations of transformation are linear.

We may, then, write $M \equiv P_1 : P_2$, where the P's are homogeneous entire polynomials in the λ 's and contain no common factor. Suppose first that M is not identically equal to a constant k'. If P_1 be not of the form k_1D^{ρ} , then the λ 's may be so chosen as to reduce P_1 to zero without causing either P_{i} or D to vanish; for, if not, the locus $P_{i} = 0$ would be a component of the locus $P_2 \cdot D = 0$, which is impossible inasmuch as D is not factorable and P_1 and P_2 have no factor in common. But if the λ 's be chosen as indicated, M=0 and consequently $\psi_m(\xi_1,\,\xi_2,\,\cdots,\,\xi_k)$ is seen to be identically zero, a result incompatible with the original suppotition that the c's are entirely arbitrary. In like manner, if P_2 is not of the form k_2D^{ρ} , it is possible by a suitable choice of the λ 's to cause P_2 to vanish without reducing either P_1 or D to zero; but under this hypothesis covariants could not exist, for, on multiplying by P_2 , the left member and hence the right member of the identity would be Finally, if M = k', then we may write identically zero. Accordingly M must be of the form $k'' \cdot D^{\rho}$. $M = k'D^0$. By means of the transformation $x_1 = \xi_1, x_2 = \xi_2, \dots, x_k = \xi_k$, it is readily found that k'' = 1. It thus appears that, under the definition, either no covariant exists or the factor M is of the form D^{ρ} .

In vol. I. of Jordan's Cours d'Analyse is found a proof of this proposition, in which the argument turns on the reversibility of the substitutions. A second demonstration, by Professor E. B. Elliott, occurs in vol. 16 of the Messenger of Mathematics and in his Introduction to the algebra of quantics. Here M is shown to be homogeneous, its degree in the λ 's is determined, and then by help of the reversibility of the transformation a partial differential equation connecting M with its derivatives with respect to the λ 's is obtained, whence the form of M is readily ascertained. In still a third proof by Professor Thomas S. Fiske, in vol. 19 of the journal just cited, the proposition defining the form of M is derived as a corollary from the converse there established of the multiplication theorem for determinants: A rational entire function having n^2 arguments and subject to the same law of multiplication as a determinant is a power of a determinant.

COLUMBIA UNIVERSITY, NEW YORK.