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7. As in § 210, p2n + 4pn — 1, being relatively prime to p, 
must divide (_p3n—l) (p2n — 1) and thus also 4p"(p8ft—1) 
and hence* 4(17pn —5) and hence divides 

20(p2n + 4pn—1) — ($$pn — 20) = pn(20pn +12 ) 

Hence (pn + 2)2 — 5 must divide 304, since 

3(68pw - 20) + 5(2(tyn + 12) = S0epn. 

Thus pn + 2 < 18 > v/309^ 

But pn = 13, 11, 9, 5, 3 are readily excluded ; while pn = 7 
yields 76 a divisor of 304 and indeed of (73 — 1) (72 — 1), 
but is excluded since — 1 is a non-residue of 7. 

8. With the hypothesis of Jordan § 211, thata2+&2+c2=0, 
etc., we have a2 == b2 = •••. Hence 3a2 = Sb2 = ••• = 0 and 
ma2 = 1. Thus either a2 = b2 = — = 1 or 2a2 = 26* = — = 1 , 
when 1 — a2 = a2 = square. 

UNIVERSITY OF CALIFORNIA, 
November 20, 1897. 

WEBER'S ALGEBRA. 

Lehrbuch der Algebra. By HEINRIOH WEBER, Professor of 
Mathematics in the University of Strassburg. Braun­
schweig, Friedrich Vieweg und Sohn. 1895-96. 8vo. 
Vol. I., pp. 653 ; Vol. I I . , pp. 796. 

For some years the need of a thoroughly modern text­
book on algebra has been seriously felt. The great strides 
that algebra has taken during the last twenty-five years, in 
almost all directions, have made Serret's classical work 
more and more antiquated, while modern books like Peter­
sen's and Carnoy's make no claims to give a large and com­
prehensive survey of the subject. The appearance of any 
book modelled on the same broad plan as Serret's Algèbre 
Supérieure would thus be greeted with a hearty welcome, 
but when written by such a master as Heinrich Weber, we 
greet it with expressions of sincerest joy and satisfaction. 

As Weber himself tells us, he has cherished for years 
the plan of this great undertaking ; but before deciding to 
execute it he has traversed in his university lectures many 
times this vast domain as a whole, and has treated various 
parts separately with greater detail. No wonder, then, that 

* Jordan has 6Sp —12, thus losing the divisor 76. 
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we find everywhere in perusing the pages of his work, evi­
dence of mature judgment in the choice of the matter 
treated, in the amount of space devoted to each subject ac­
cording to its relative importance, in the harmonious 
grouping of the parts, in the manner of presenting the dif­
ferent theories. Our admiration is no less excited by its 
pedagogic excellencies ; Weber's German is simple and con­
cise, the demonstrations are clear and rigorous, and many 
of them are of extreme elegance. After a point of view has 
been gained, the author disposes of one problem after the 
other as they are met in his path, and, as these are always 
clearly stated, the reader has the pleasure of knowing in 
advance the goal in view. The typography, which does so 
much to make a book readable, is excellent ; not only the 
theorems, but also the more important results are made 
prominent by italics. We should have been glad to see 
more illustrative examples given, but the great size the 
work has already taken on, probably forbade this ; perhaps 
the employment of a third kind of type, quite small, as for 
example in the works of Lie, would have been useful here. 

Now in regard to the plan of the work : Weber's idea has 
been to write a work which shall lead the reader by easy 
steps from the most elementary notions to the most advanced 
and modern theories. Various auxiliary notions and theories 
are developed with great skill as found necessary, so that 
the reader nowhere needs to consult other works for in­
formation in order to continue his reading with pleasure and 
profit. As was to be expected, the chief interest of the work 
centers in the distinctly modern theories of Galois and Klein, 
of finite groups and algebraic numbers, while the older in­
variant theory as developed in the Higher Algebra of Sal­
mon, for example, is scarcely touched. Eeferring the reader 
to the latter parts of this review for more detail we wish to 
note here that, in our opinion, the author's presentation of 
Galois's theory, with its many excellent examples, is beyond 
all comparison the most satisfactory yet given, whether in a 
work on algebra or one devoted exclusively to this theory ; 
we recommend it most heartily for all who wish to acquaint 
themselves with this difficult but essential part of modern 
algebra. No less heartily can we praise the section devoted 
to explain Kronecker's theories applied to algebraic num­
bers. This certainly is the most novel part of the whole 
work, and Weber has earned by it the thanks of the whole 
mathematical community. We do not doubt that many 
will find Kronecker's algebraic methods more congenial 
than the purely arithmetical but more abstract methods of 
Dedekind. 
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"We turn now to a review of its contents. We must re­
mark, however, at the outset that it is impossible to give 
more than an imperfect account of them ; the wealth of 
material is so great that even a passing notice would be be­
yond the limits of the space at our disposal ; we shall thus 
have to content ourself with signaling what is most novel 
and important. The whole work contains over 1,400 pages. 
I t is divided into two volumes, of which the first contains 
the more elementary theories and can serve by itself as an 
excellent introduction to algebra. Each volume is divided 
into books which mark the great theories to be treated ; the 
first volume contains three, the second four such books. 
They treat the following topics: The Foundations, The 
Roots, The Theory of Galois, Abstract Groups, Linear 
Groups, Application of the Theory of Groups, Algebraic 
Numbers. 

V O L U M E I . 

BOOK I. THE FOUNDATIONS. 

As one of the features of the work is to develop all neces­
sary auxiliaries it will not surprise us that an introductory 
chapter is devoted to the development of the number con­
cept. Indeed, an analytical demonstration of the funda­
mental theorem of algebra that every equation has a root 
cannot be rigorously given without basing our reasoning on 
the notions of maxima and minima, of limits, and con­
tinuity, all of which rest on the notion of irrational num­
bers. Weber goes to work in a very abstract and general 
manner. Multiplicities are defined and these are subdivided 
as ordered, discrete, dense, and measurable. The irrational 
numbers are introduced by means of Dedekind's Schnitte or 
partitions, and his definition of continuity is also followed. 
The ordinary definition of addition and subtraction is 
given; but the treatment of multiplication and division, 
based on the broad Euclidian notion of ratio, is original and 
beautiful in the extreme. Negative numbers and zero are 
now introduced and so the continuous system of the real 
numbers is completed. The principle all along employed 
may be stated thus : A multiplicity being given, some of its 
elements are selected to form a new thing. These at first 
are endowed with no properties ; they are mere symbols. 
We proceed now to give them one property after another, 
such as greater and less, etc., taking care that no new prop­
erty conflicts with those already given. This process ended, 
we have a definite concept which possesses reality in the 
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same sense as the abstract number one or two does. Let us 
illustrate this by showing how the complex numbers x + iy 
are created. From the multiplicity of the real numbers any 
two a, b are taken to form a new thing which we can denote by 
the symbol (a, b). Their totality forms anew multiplicity. 
We proceed to give them the character of real numbers. 
Two of them (a, b) and («, P) are equal only when a = a, 
b = p. The operations of addition and multiplication are 
defined thus 

(«,&) + (",P) = (a+a,b+p)9 

(a, &)•(«, P) = (aa — bp, aP + ba). 

Subtraction and division are defined as the inverse opera­
tions and their result is unique. When b = 0 in (a, b) we 
say (a, 0) = a, and for simplicity we denote (0, 1) by the 
symbol i. Then 

(a, 0) (0 ,1) = (0, a) =ai, 

while (a, 0) + (0, b) = (a, b) = a + ib, 

and (0,1) (0, 1) = i2 = - 1, 

In so small a space as this the complex number and the four 
arithmetical operations upon it are defined. Of the mystery 
that once surrounded this number not an atom is left by 
such a treatment ; fractions and irrational numbers, negative 
and complex numbers, all stand on the same footing ; all 
are equally real or unreal. 

This remarkable chapter closes with a few properties of 
complex numbers and Gauss', or, as I suppose we now 
should say, WessePs, representation of (a, b) by a point in 
the plane.* 

The next two chapters are devoted to the theory of rational 
functions and determinants; in the first of these the notion 
of divisibility is extended to integral functions of x and im­
portant conclusions drawn, such for example as Gauss' 
theorem on the nature of the coefficients in f=fj2 ; while in 
the second all the more fundamental theorems of deter­
minants and their minors are given, together with an appli­
cation to systems of linear equations. 

* It is a fact not y et generally known that a Norwegian mathematician, a 
surveyor by profession, Caspar Wessel, brother of the poet John Herman 
Wessel, has the honor of having first invented the representation usually 
accredited to Gauss or Argand. Cf. Sophus Lie, edition of Wessel's paper 
(1797) in the Danish Academy, entitled Om Direotionens Analytiske-
Betegning, etc. Kristiania, A. Cammermeyers Forlag. 
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Chapter I I I . contains two demonstrations of the funda­
mental theorem of algebra. The first rests on d' Alembert's 
proof improved by Legendre and Cauchy. The leading 
idea is that if f(x) does not vanish at the point x, another 
point x + h can be found so that 

!ƒ(* + *) I <I/O0|. 
From this Cauchy inferred that for some value of x1 say £, 
ƒ(£) actually vanishes and here he has been followed in 
English by such a careful writer as Chrystal.* This is all 
the more remarkable as Gauss already, in the fourth 
paragraph of his Dissertation, f observed that this con­
clusion must be separately proved. I t is a pleasure to see 
a perfectly rigorous and simple demonstration such as 
Weber gives; the objection just made to Cauchy's proof is 
removed by showing that if g is a lower limit of | ƒ(#) | then 
some value of x exists where \f(x) | actually takes on the 
value g. The reasoning rests on the notion of Dedekind's 
partitions. In the course of the demonstration the fact is 
made use of that every binomial equation has at least one 
root, and for this a purely algebraical demonstration is 
given depending also on the use of partitions. The solu­
tion of these equations by exponentials, although already 
given, is not employed in this connection, since from Web­
er's standpoint the great and fundamental theorems of 
algebra must be proved as far as possible by algebraic 
means. A source of dissatisfaction with the preceding dem­
onstration lies in the fact that, although the existence of a 
root is established, no indication is given how it may be 
found ; to remove this a second demonstration, a modifica­
tion of Lipschitz's, is given.J This chapter also contains 
the solution of the equations of second, third and fourth 
degrees; in regard to the cubic, a very elegant form, due to 
Cayley,§ is given, which has the great advantage that in 
giving the radicals all their possible values only three val­
ues result, instead of nine as usual. In passing, we may 
remark that in the second volume (p. 319) an analogous 
form for the biquadratic is given ; we hope they will find 
their way into our American text-books. 

Chapter IV. is devoted to symmetric functions ; applica­
tion to discriminants, resultants, and theory of elimina­
tion is made. In connection with the last subject Tschirn-

* Algebra, vol. 1, p. 244. 
fWerke, vol. 1, p. 10. 
X Lehrbuch der Analysis, vol. 1, p. 248 seq. 
| Mathematical Papers, vol. 5, p. 54. 
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haus's transformation is introduced and its application to 
the cubic, biquadratic, andquintic is shown. The most re­
markable feature of the chapter is the proof that the de­
composition of integral rational functions of n variables 
into their irreducible factors for a natural domain of ration­
ality is unique. In the introductory chapter the analogous 
theorem for integers was established. The demonstration 
rested on the fundamental theorem that if aft is divisible 
by y, and if a is relative prime to y, then p must be divisible 
by y. This, in turn, rests on the fact established by Euclid's 
algorithm of the greatest common divisor that, if a and /5 be 
relative prime, then two integers £, y can be found so that 
Ça + TjIS == l . Precisely the same path is followed here and 
the perfect parallelism of the reasoning affords the reader 
a deep satisfaction. * Our only regret is that the author has 
not thought it worth while to indicate a method whereby 
the decomposition could be actually performed. As Kro-
necker has shown in the Festschrift* this may be effected by 
using Lagrange's formula of interpolation which "Weber has 
already developed in the second chapter. Thus only a few 
extra words would have been necessary, which a notion so 
fundamental as reducibility and irreducibility might surely 
justify, all the more when we find that five pages are de­
voted to considering Lipschitz's algorithm for finding the 
roots of an equation. 

Chapter V. considers the theory of linear transforma­
tion. This is first applied to represent a quadratic form as 
the sum of squares and then to prove Sylvester's law of 
inertia. Application is now made to forms of nth degree 
which leads us naturally to consider their invariance. Gen­
eral methods for generating invariants and covariants are 
given, and the theory is applied with great beauty to cubic 
and biquadratic binary forms and equations. 

Chapter V I . takes upHermite'swell-known modification 
of Tschirnhaus's transformation so as to employ the theory 
of invariants. The quadratic form Sylvester has called 
the Bezoutian is discussed ; the important theorem that the 
determinant of the Bezoutian is the nth part of the dis­
criminant of ƒ(#) is proved and a convenient method for 
calculating the Bezoutian is given. The theory is applied 
to the cubic and to Klein's principal form of the quintic 

(1) x* + ax2 + bx + c = 0. 

* Orelle, vol. 92, p. 11. Other methods have been indicated by Mer-
tens, Eunge and Mandl. 
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In regard to the latter it is shown that if we take Her-
mite's transformation in the form 

y = *.F0 + W s + -PA + F*%) 
where the Ff& have the usual significance, the «'s can be 
so chosen that the resulting equation in y is a principal 
equation for all values of £2, £3, the only irrationality neces­
sary to introduce being VbD where D is the discriminant 
of (1) . This result is useful later. Another remarkable 
result, due to Gordan, is proved, namely, that making use 
only of the same irrationality, the equation (1) may be 
given the form 

3* + log* - I0r2
2 + Sf = 0 

which involves but a single parameter. As the Bring* Jer-
rard normal form which contains also but a single param­
eter requires a cubic irrationality, a decided gain is 
hereby made. 

BOOK II. THE ROOTS. 

The first four chapters of this book deal with the ques­
tions concerning the reality of the roots of real equations, 
their number in a given interval, their superior and inferior 
limits, and methods for their numerical approximation. 
The fundamental significance of the Bezoutian in questions 
regarding the reality of the roots is due to the fact that if 
it is the sum of p positive and n negative irreducible 
squares, then p + n + 1 is the total number of roots of the 
equation ; there are n conjugate pairs and p — n + 1 real 
roots. The determination of p and n is now effected. "We 
should mention in passing the application of Kronecker's 
discriminantal surface* to the discussion of the reality of 
the roots of the biquadratic. Another theory of Kronecker 
is here discussed with admirable clearness ; we mean his 
theory of characteristics applied to determining the num­
ber of roots of F= 0 in a given contour. We cannot pass 
this by without a short sketch. 

Let <p(x, y) = 0 be a closed curve ; space within <p we call 
positive, without <p negative. Let the same be true for <p = 0. 
Certain parts of the plane will thus lie within one and with­
out the other ; for such areas <p.<P is negative, they are called 
Binnenraüme or polar spaces. Let ƒ = 0 be a third closed 
curve not passing through the points of intersection of 

* Kronecker discusses this particular case of his general theory, in the 
Berlin Monatsberichte, 1878, p. 119. 
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<P and (p. Passing around ƒ in the positive sense, a point of 
intersection with <p is called a point of entrance if we pass 
into the polar space of <p, <p and a point of exit if we pass 
out of such a space ; they are denoted respectively by 

If i( f; <p, <p) denote the number of points of the first 
kind for the whole circuit about ƒ and o(f; <p, (p) that of the 
second, the characteristic of ƒ, $P, <P is 

and this number remains unchanged for all 6 permutations 
of ƒ, <p, <P* We apply these notions to the equation 

F{z) = zn + a^-1 + ... + an = 0 
= <p(jx,y) + # (« , y), 

the coefficients being real or complex. 
Let ƒ(#, y) = 0 be any arbitrary closed curve : as 

<p = 0, (p = 0 are not closed, we close them anyway by curves 
lying however wholly outside ƒ = 0. The theorem is estab­
lished that the characteristic of this system is equal to the 
number of intersections of <p = 0, <p = 0 inside ƒ = 0 ; that 
is, h is the number of times F(z) vanishes inside the contour 
ƒ = 0. To determine h we take the coordinates of ƒ = 0 as 
functions of a parameter t which passes from — oo to + oo 
as we pass around ƒ. Sturm's theorem permits us to divide 
the contour of ƒ into segments which contain each but a 
single intersection with <p or <p, say y ; this will be a point 
of entrance or exit according as <p<P is positive or negative 
at the beginning of the interval. A simple application of 
this theory gives us a third demonstration of the funda­
mental theorem which is essentially that given by Gauss in 
his dissertation. 

Chapter X I . deals with continued fractions and their 
well-known application to quadratic irrationalities and the 
Pellian equation. 

In the next chapter, the last in the second book, we touch 
for the first time one of the great subjects of the present 
work, the theory of the roots of unity. Only the elements 
are here given. The irreducibility of the equation whose 
roots are here the <p(n) primitive nth. roots of unity is 
proven not only for the natural domain, but for that con­
taining roots whose degrees are relatively prime to n. 
A slight oversight which crept in here is corrected in 
the appendix of the second volume. The connection of 
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the primitive nth roots of unity with the primitive con­
gruence roots of n affords Weber a splendid oppor­
tunity to make an excursus on congruences, where im­
portant facts are established for later use. But Weber does 
not stop here. The determination of the nth roots of unity, 
or, what is the same thing, the problem of dividing the cir­
cumference of a circle into n equal parts is but a particu­
lar case of the division of an arbitrary arc into n equal 
parts, or, analytically, the division by n of the argument of 

oc x 
the circular functions. The equations for sin - and cos — 

^ n n 
are thus considered, and the absolute term of the latter 
gives us the well-known identities : 

2 ^ n cos ? ^ = ± 1 n odd 
n 

n i 

0 ^ T T . 2vmn , - y = l , 2 • — — 
2 2 n sin = ± Vn ' 2 

n 
The determination of the proper signs of the right-hand 
sides affords an opportunity to introduce the Legendre-

— I , and prove the law of quadratic 

reciprocity. The present chapter illustrates how admirably 
the author understands to weave in those auxiliary theories 
which will be needed later. 

BOOK III. GALOIS' THEORY. 

One of the characteristic features of modern algebra is 
the prominent part the theory of Galois plays. This 
theory, dealing with the most subtle and hidden properties 
of algebraic equations, is unusually difficult to present 
simply and correctly. The algebra of Serret has the hon­
orable distinction of being the first to give an account of it. 
Appearing for the first time in the third edition (1866), it has 
come down to us substantially unchanged in the succeeding 
editions. The fundamental ideas are well and carefully ex­
posed by Serret and this work has probably introduced more 
mathematicians to Galois' ideas than all others together. 
But two objections are open to Serret's treatment ; firstly, 
thanks to the labors of later mathematicians, the theory 
may now be presented more simply and comprehensively; 
secondly, and chiefly, we are disappointed by finding that 
Galois' ideas which pour such a flood of light on all ques-
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tions concerning the solution of equations, are not applied 
to anything except the single problem treated by Galois 
himself, namely, equations of prime degrees. The treat­
ment of the equations of second, third and fourth degrees, 
the demonstration of the algebraic insolubility of general 
equations of higher degrees, the solution of Abelian equa­
tions and the equations upon which the determination of 
the points of inflection of a cubic curve depends, all this is 
done by the antiquated pre-Galoisian methods. Besides 
the Algèbre Supérieure, we Americans are probably best 
acquainted with the presentation given in the English 
translation of Netto's work. But, although the part of this 
work devoted to the theory of substitution groups is un­
questionably of great merit, the part devoted to exposing 
Galois' ideas is universally regarded as unfortunate. 

All Americans will thus welcome most heartily the ac­
count given by Weber in this third and last book. In the 
second volume the more advanced parts of the theory are 
given ; here only the most important and fundamental no­
tions are treated. This is done with the utmost care and 
simplicity; the reader is led along by easy steps to con­
sider the notion of domain of rationality, Körper or body, re-
ducibility, adjunction, and so comes to normal bodies and 
the Galoisian resolvent. At this stage he is introduced to 
substitution groups. ISTow this method of approaching the 
theory of these groups in connection with the Galoisian 
theory is original and admirable. Usually the student has 
to wade through chapters on this driest of theories before 
their application, which gives them life and interest, comes 
into sight. Here, on the contrary, he meets them in the 
midst of his progress, their significance is clear, their appli­
cation immediate and continuous. Another excellent feat­
ure of Weber's treatment is the care taken to keep in mind 
exactly what is in the domain of rationality, and in particu­
lar to avoid surreptitiously introducing roots of unity without 
studying the effect of their adjunction on the group of the 
equation. This is constantly done by many writers. For 
equations whose domains naturally contain variable param­
eters, no reduction in general takes place ; but even this 
is not always true ; witness the equations for the division of 
the argument of the elliptic functions. For equations how­
ever with constant coefficients, and above all when consider­
ing the solution of the equations which define the roots of 
unity themselves, this is an unpardonable sin, ISTetto, for 
example, on page 181 does precisely this. The group is de­
termined for the absolute domain ; Lagrange's resolvent is 
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introduced as a rational function which of course requires 
that now a unit (_p—l)th root has been adjoined, and the 
group is tacitly assumed to be unaltered. This is indeed 
the fact by virtue of Kronecker's theorem we mentioned in 
speaking of the 12th chapter ; but this theorem is nowhere 
even mentioned by Netto. We cannot stop to detail all the 
beauties of Weber's treatment of Galois' theory ; we must, 
however, mention one more before continuing our analysis. 
We refer precisely to that feature whose absence we criti­
cised so severely in Serret's work ; in Weber's hand Galois' 
theory is not a pretty theory too delicate for much use, but 
a powerful instrument for research, a torch for illuminating 
the difficulties and complexities which surround the solution 
of algebraic equations, and this is true whether he is con­
sidering the solution of the biquadratic, or the equation for 
finding the 28 bitangents of a quartic curve, whether he is 
studying the nature of the roots of metacyclic equations of 
prime degrees, or the abstruse questions regarding the na­
ture of relative normal bodies. 

We return to our analysis. The first two chapters, or 
about 70 pages, suffice to give the broad outlines of the 
theory ; while the remaining four chapters are devoted to 
its applications. The first of these is of course the solu­
tion of the cubic and biquadratic equations ; the variety of 
subgroups which the symmetric groups of four elements af­
fords being employed with good effect. Abelian equations 
are now taken up ; a simple reasoning shows how their so­
lution may be made to depend upon cyclic equations. Thus 
we are lead to consider with more than usual detail the 
properties of Lagrange's resolvent 

(è, x) = X0 + e x1 + £2 X2 H h e™-1 x ^ 

where e is any mth root of unity, and the #'s for the moment 
independent variables. This done, we proceed with the so­
lution of cyclic equations. In passing we observe the care 
the author takes to consider the case when his resolving 
functions vanish. This, as far as we know, is invariably 
neglected ; and so the solutions given are illusory for even 
such a simple Abelian equation as x* + 1 = 0. As an inter­
esting forerunner to the equations met in the theory of 
elliptic functions, the equations for the division of the ar­
gument of the circular functions are considered. The next 
application of the Galoisian theory is the solution of the 
equations upon which the division of the circle depends, or 
the cyclotomic equations ; we thus return once more to the 
roots of unity and the theory is considerably advanced. 
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Two methods of solution are given, both due to Gauss ; the 
first makes use of the fact that the rational function of the 
roots (the periods of Gauss) 

y = r + re+r2e+ - + r ( / _ 1 ) e , n — l=ef, n= a prime, «e = 1 

belongs to a subgroup of index e, and so gives rise to a re­
solvent of eth degree ; the second uses the resolving function 
(«, f})6 which leads to a binomial equation. The intimate 
relation between the roots of unity and the theory of num­
bers is again employed to deduce many important results. 

71 1 71 —— 1 <Y) —— 1 

The Gaussian periods of _ _ , _ _ _ , and _ _ terms are 
A O 4: 

considered. The first gives us the sums of Gauss, which are 
evaluated very elegantly; the second and third afford 
theorems on the representation of primes of the form 
3m + 1 and 4m + 1. At this point we are given a first 
taste of the great theory of algebraic numbers which is to 
occupy our attention so much in the next volume. The 
Körper or bodies considered are those generated by the cube 
and fourth roots of unity, which we shall denote in the future 
by E (p) and B (i). As an algorithm for finding the great­
est common divisor analogous to that of Euclid's exists for 
these numbers, it follows at once that their decomposition 
into prime factors is unique, aside of course from unit fac­
tors. For this purpose the representation won a moment 
ago for primes of the form 3m + 1 and 4m + 1 is employed. 

Chapter X V I I . carries the general Galoisian theory 
quite a way farther. The well-known criterion, due to 
Jordan for the algebraic solvability is deduced ; and on 
showing that the alternate group is simple for n > 4 we 
have a proof of Abel's great theorem that general equations 
of degree greater than four cannot be solved by the extrac­
tion of roots. To be quite satisfactory it is necessary to 
complete this theorem by one due to Hubert, which states 
that in order to have an affectless equation it is not neces­
sary to restrict the coefficients to independent variables, 
since there even exists an infinite number of equations with 
integral coefficients of this character. Weber gives his ele­
gant demonstration of this for equations of prime degrees. 
Another beautiful application of Galois' theory is made to 
settle the old question whether the Casus Irreducibilis is in­
deed such ; that is effected by means of the general theorem 
that normal equations of odd degree cannot become reduc­
ible on adjoining real radicals. Galois' theorems regarding 
algebraic soluble equations are now deduced and the 
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chapter closes with an application to a class of soluble 
quintics due to Runge, Acta Mathematica, vol. 7. Runge's 
equation (2) on p. 177, is# given by Weber with a wrong 
sign* which goes through all succeeding equations affecting 
in particular the final values of the parameters « and /?. 

The last chapter of the volume is devoted to the form of 
the roots of metacyclic equations of prime degrees. Abel hav­
ing shown that the general equations of degree greater than 
four cannot be solved algebraically, the problem naturally 
presented itself to him to find all equations which could be. 
This he takes up in his customary bold way in the " Mémoire 
sur la résolution algébrique des équations," left unfinished 
by his premature death. Kronecker, following in Abel's 
footsteps, arrived at results which were published in the 
Monatsberichte of the Berlin Academy for 1853. l ie com­
pletely solves the problem for equations of prime degrees, 
and in studying the forms of the roots in connection with 
Rummer ' s . ideal theory, arrives at the theorem that the 
roots of all Abelian equations in the domain of rational 
numbers are rational functions of unit roots. Kronecker 
goes even farther, and asserts a similar relation exists be­
tween the roots of Abelian equations whose coefficients lie 
in B(i) and the equations connected with the division of 
the Lemniscate. As the Lemniscate affords the simplest 
case of complex multiplication, this remark opened a wide 
field of research. We should not have allowed ourselves to 
go into these details if precisely this mémoire were not of 
determining influence for the present work. Indeed, here, 
at the outset of his career, as unfortunately so often later, 
Kronecker contented himself with sketching the analysis 
which led him to the root forms 

A + ZKvTv
r»-2Tv^-d... TV+W_/O , v = 0, 1 . . . n - 2, 

while in regard to the theorem of Abelian bodies no hint is 
given at all except that just mentioned. For more than 
thirty years this last theorem remained undemonstrated 
and unappreciated until Weber in the eighth volume of the 
Ada Mathematica gave a proof and called the attention of 
mathematicians to it as one of the most promising in mod­
ern algebra since it points the way which must be pursued 
if we are to obtain a deeper insight into the nature of alge­
braic numbers. A considerable part of the second volume 
is spent in developing the foundation upon which it rests 
and theories intimately related to it. As the preface tells 

*The slip was kindly pointed out to me by Dr. McClintock. 
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us, Weber hopes to continue the present work, giving in a 
third volume the analogous theories relating to the complex 
multiplication of the elliptic functions. But to return to 
the first part of the mémoire, as remarked, Kronecker 
merely sketches the reasoning which led him to the above 
form of the roots. Enough, however, is given to fill it out 
and this has been done in various places, but a fact has been 
overlooked which seriously limits the validity of these ex­
pressions. Certain quantities which enter the reasoning 
may vanish, certain others may be equal. How to avoid 
this was first shown by Weber in a paper which appeared 
in the Berichte of the Marburg Society in 1892. The reason­
ing rests on the employment of rational integral functions 
of the roots of the equation with indeterminate coefficients 
which are considered in the double light of a Tschirnhaus-
ian substitution and a linear substitution with non-vanish­
ing determinant. The chapter terminates in finding the 
explicit form of the roots of algebraically solvable quintics 
for an arbitrary domain. A slightly more general form is 
given than the familiar form found by Abel for integral 
coefficients. 

VOLUME I I . 

BOOK I. GEOUPS. 

We turn now to the review of the second volume. What 
strikes us at first sight is the novelty of the subjects treated, 
which, with a few unimportant exception», appear here for 
the first time in a treatise on algebra ; the 790 pages which 
the volume possesses may fairly represent the progress al­
gebra has made in the last twenty-five years. The volume 
appropriately begins with an account of abstract groups, 
which, together with the theory of functions, dominate so 
large a part of the mathematics of to-day. The origin of 
the theory of groups goes back to the theory of numbers on 
the one hand and algebra on the other. But we must al­
low that it is in the algebraical papers of Lagrange, Kuffini, 
Abel, and in particular Galois that the theory received its 
first vigorous impulse and not in the few scattered remarks 
of Gauss ; so that after all we may permit algebra to enjoy 
the enviable distinction of giving birth to this great modern 
theory. 

The definition Weber gives for abstract groups is the 
familiar one employed in his various papers in the Annalen 
and the Acta Mathematica and, indeed, much that is in the 
first chapters is taken from these mémoires. Many of the 
theorems established in the first volume for substitution 
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groups are now demonstrated afresh for abstract groups. 
The nature of a series of composition is studied ; Jordan's 
theorem on the invariance of the factors of composition is 
proved following Netto's modification of Holder's demon­
stration. We regret that Holder's theorem on the invari­
ance of the factor groups is not given. This not only con­
tains Jordan's theorem but, as Holder has pointed out, has 
an algebraical significance which is fundamental for the 
solution of equations. In fact, these factor groups must ap­
pear among the groups of a chain of simple resolvents in 
in whose roots the roots of the given equation cau be ra­
tionally expressed, and this is true whether we employ 
natural or accessory irrationalities. At the same time, a 
lower limit is given to the number of equations in any 
chain, and we have as an important consequence that, when 
this limit is reached, the irrationalities employed are natural. 
The invariance of the factor groups asserts therefore the 
invariance of the character of the resolvents, rational or not, 
which must be employed sooner or later in the solution of 
the given equation. In passing, we wish to observe that, 
contrary to the prevailing impression, these factor groups 
were first employed by Jordan in his paper u Sur la limite 
de transitivité des groupes non alternés," Bulletin de la So­
ciété Mathématique de France, vol. 1 (1873), and not in Holder's 
paper in the Annalen, vol. 34, sixteen years later. The 
notation G/H is also due to Jordan. 

These generalities disposed of, Weber now considers finite 
Abelian groups ; their structure is the simplest of all groups, 
their importance perhaps the greatest. The fundamental 
theorem that every Abelian group can be represented by a 
basis is established, and a method is given to determine all 
its subgroups. This last leads us to consider the invariants 
and characters of an Abelian group. Defining the former dif­
ferently than usual as the prime powers which enter the 
orders of the elements of a basis, it is shown that they serve 
completely to determine the group, since all groups having 
the same invariants are simply isomorphic and conversely. 
The most important example of Abelian groups is the group 
formed by throwing all numbers into classes so that all those 
congruent to a given number modulo m are in one class. The 
classes whose elements are relatively prime to m form the 
group in question ; its order is of course <p(m). An illustra­
tion of one of the results which flow immediately from this 
is Euler's theorem 

a4>(m) _ 1 m o c £ m 
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since the order of any element of a group is a divisor of 
the order of the group. The basis of these numerical class 
groups is now determined and the results at once used to 
solve the problem of representing all cyclotomic bodies with­
out repetition. This was first done by Weber in the eighth 
volume of the Acta Mathematica; the presentation here given 
being considerably amplified. The success of the method 
depends upon a proper generalization of the periods of 
Gauss. To illustrate the rather intricate details an applica­
tion to cubic and biquadratic bodies is given. These 
bodies have a heightened interest due to the fact that 
they also form all cubic and biquadratic Abelian bodies 
in the absolute domain of rationality by virtue of Kro-
necker's great theorem ; but as this theorem is proved only 
in the last chapters of the volume after an elaborate chain 
of reasoning, it is a real pleasure to see how easily the 
demonstration can be effected for these simple cases. This 
is due to the fact that in the domains R(p) and R(i) the de­
composition of numbers follows the same laws as in the 
absolute domain. The proof rests on the decomposition 
of Lagrange's resolvent into its prime factors, which for the 
general case requires the introduction of ideals. We leave 
now for the present the theory of cyclotomic bodies and re­
turn to the general theory of finite groups. One of the 
problems which presents itself here is the determination of 
all possible groups in the same way as a moment ago we 
determined all possible cyclotomic bodies ; but a problem of 
this great extent is to-day utterly beyond our reach, and 
mathematicians.have been obliged to search for the groups 
satisfying some simple conditions, for example, all groups 
whose orders are less than a certain number or whose orders 
contain only certain prime factors, etc. Fundamental here 
are a number of theorems due to Sylow ; for example, Sylow's 
generalization of Cauchy's theorem that if pk be the highest 
power of the prime p, which is contained in the order n 
of a group P, then P contains a subgroup Q of order 
pk ; of these groups Q, pa+ 1 exist, they are conjugate 
and n=-pkr(pa + 1). Two remarkable facts result from 
these investigations on possible groups ; first, that the 
number of groups whose orders satisfy one of the above 
conditions is relatively very small, and, secondly, that the 
character of the order of a group in regard to its prime 
factors serves to determine the nature of the group in many 
cases beyond expectation. Thus Sylow has shown that all 
groups of order pk are solvable, or, as Weber says, metacy-
clic ; the same is true of groups whose orders are of the 
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form paq or the product of any number of different primes, 
as Frobenius has proved. These investigations bring to 
light also the surprising result that the number of simple 
groups of low order is extremely small. Galois enunciated 
the first theorem we had on this subject ; he stated that the 
order of the smallest simple group which is not a prime is 
60. Holder, carrying the investigation to order 200, found 
only one other simple group, which is Kronecker's group of 
order 168. Cole, Moore and Barnside have carried the in­
vestigation to order 1,092. A good introduction to the 
methods employed in these researches is given by our author, 
who takes up the simpler cases. The book closes with the 
consideration of the limits of the index of a subgroup of 
the symmetric group, a problem which has its origin in the 
attempts of Lagrange and Vandermonde to find a resolvent 
of the third or fourth degree of the general equation of the 
fifth degree. 

BOOK I I . GROUPS OF L I N E A R SUBSTITUTIONS. 

The special groups studied up to the present have all 
been finite ; in the theory of linear substitutions we are led 
to consider infinite groups. We must remark, however, 
that it is only their finite divisors which will be studied in 
detail. After the first properties of these groups have been 
exposed the notion of the invariants of a finite linear group 
is introduced. Particular examples of invariants we have 
already met ; in fact, as every permutation group G is a par­
ticular case of a linear group, the rational functions of the 
n variables which in the Galoisian theory are said to belong 
to Ö, are here the absolute invariants of G while those func­
tions which take on a unit root as factor after an opera­
tion of G are the relative invariants. Thus, for the alter­
nate group the square root of the discriminant is an ab­
solute invariant ; for the symmetric group it is only a 
relative invariant. If <p(xv x2, •••, xn) is a relative invariant 
of G, those substitutions of G which leave <p absolutely un­
changed form an invariant subgroup H of G. The covari-
ants which can be formed from any invariant belonging to 
a group (?, are also invariants of G. The fundamental 
theorem is now proved that only a finite number of inde-
dendent invariants belong to any finite group of linear sub­
stitutions ; the demonstration rests on a very general lemma 
of Hubert 's and is due to Hurwitz. The first chapter of 
this book closes with an account of Klein's Formenproblem, 
but as no application is made of it till several chapters later 
we postpone speaking of it till then. 
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The next two chapters are devoted to the polyhedral groups 
and their invariants. The way Weber arrives at them is 
very interesting. First the orthogonal substitutions are 
considered as a subgroup of the linear group and it is 
shown how in particular every ternary orthogonal group 
may be considered as a group of rotations of a solid about a 
fixed point. When this group is finite it corresponds to the 
group of rotations which bring a certain body into coinci­
dence with itself, for example a cube or an octahedron. On 
the other hand, it is shown that these finite ternary orthogo­
nal groups are isomorphic with the group of linear fractional 
substitutions 

G; x, e^x), 02(aV*->^-i(>), 

where d(x) stands for 

ax + /?__ /a 0\ 
yx + ô~~ \r d)' 

The problem is taken up of finding all finite groups of this 
type. This, as is well known, was first effected by Klein ; 
his methods were considerably simplified by Gordan, and 
Weber's treatment is a simplification of Gordan's. The 
method rests on the notion of a pole of a substitution, that 
is, the two roots a, b of 

x= 6{x). 

The pole a is v-fold if v — 1 substitutions 0V 02, •••, 6V_X have 
this as a pole. These, together with the identical element, 
form a group of order v, so that -v must be a divisor of n ; 
it is further shown that these v elements have the form 
1, 0, 02, —, 0"-1, that is, they form a cyclic group Q of order v. 
If <px = 1, <p2l •••, (pp. are such that 

Q = 4>1Q + <PiQ + ~' + <t>»Q 

then ax = ^ ( a ) = a, a2 = <p2(a) ••• aM = tfv(a) 

are called the conjugate poles to a ; they are all distinct 
and v-fold. Different conjugate systems have no poles in 
common. As every element of G except the identical ele­
ment has two poles the total number is 2(w — 1), hence 

2(n - 1) = ti(? - 1) + AI'(V' - 1) + ..., 

or calling h the number of systems of conjugate poles 

2n — 2 = nh —• n — // —- ••-
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which shows that h must be either 2 or 3. A simple reason­
ing shows further that only five cases are possible, and it 
remains only to show that these cases all exist and to de­
termine the form of the elements of each group. To effect 
this Weber writes the substitutions in their homogeneous 
form and shows that if av a2, •••, <v be a system of conjugate 
poles and 

f(x) = O — ax)(x — a2) - (x— < ) , 

then / ( * X > = * / ƒ ( - ) 

is an invariant of G of degree //. These various forms cor­
responding to the different systems of poles are called the 
fundamental forms of the group. The following theorem is 
of importance here : If F(xv x2) is an invariant of G of 
lower degree than the order of (?, then F = 0 identically if it 
is not the product of fundamental forms. Also the theorem 
that if G contains only one system of v-fold poles, it may 
be so transformed that the substitutions 6{x) = ex and 

(p(x) = — occur, e being a primitive vth root and c an arbi-
x 

trary constant. With these general principles it is an easy 
matter actually to build the groups corresponding to the 
five cases above and to construct their fundamental forms. 
Because these groups are isomorphic with the groups of 
rotations of the corresponding bodies they are called the 
cyclic, dihedral, tetrahedral, octahedral and icosahedral. 
The last of these has the most interest for us on account of 
its relation to the solution of the quintic. The group con­
tains 60 elements which may be generated by 

where ™ 
£ = 6 5 

and o) = s + e - 1 . 

The three fundamental forms of the group are 

J = Xx X2 (Xl + 1 1 Xx X2 X2 J, 

its Hessian H, and the functional determinant T of ƒ and H. 
Between them exists the identical relation 

T + H* = 1728/5. 

T2 H3 

The quotients -j-b , -j^ are homogeneous forms of zero de-
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gree ; we may consider them as functions of - = x alone. 
#2 

The second of them set equal to z gives us an equation for 
x of 60th degree 

JET3 -zp p= 0 
or writing out in full 

(x*° + 522 x26 - 10005 x20 — 10005 x10 — 522 a;5 +, l ) 2 

— z(xw + llx6 — 1 ) 5 = 0 . 

This is called the icosahedral equation ; another form of it is 
obviously T2 — (1728—z) ƒ* = 0 got from the identity 
above. 

Chapter I X . treats of linear congruence groups intro­
duced by Galois in connection with the modular equa­
tions. The theory becomes clearer and broader if we con­
sider the numbers entering these substitutions I ^ j to lie 

in the congruence body defined by the congruence P (x) = 0 
mod. p where p is a prime and P (x) is an irreducible poly­
nomial modulo p of degree n. The pn numbers of this body 
will be of the form a0 + axe + ••• + an_x e"-1 ; where the a's 
are ordinary integers taken mod. p and e is an ideal number 
which Galois has introduced to satisfy the above congruence. 
The resulting groups are called congruence groups. An 
immediate application of these groups lies in the fact that 
they afford us a whole class of simple groups, since they are 
all simple except for the two cases n = 1, p = 2, 3. For 
n = 3, p = 2 we have the simple group discovered by Cole 
of order 504, which for a long time had been overlooked. 
The general theory of these groups was given* for the 
first time by Moore. The subgroups of the ordinary mod­
ular groups corresponding to n = 1 are now investigated ; 
great assistance is gained by considering them in connection 
with congruence groups corresponding to n = 2. The 
Galoisian imaginary here employed is defined by e2 = N 
mod. p and iVis a certain fixed quadratic nonresidue of p. 
Almost the same reasoning as employed in finding the 
possible polyhedral groups applies here and we find besides 
the well-known cyclic and metacyclic groups studied by 
Serret, that there are only three other kinds of groups ; tetra-
hedral for every p, octahedral for p = ± 1 mod. 8, and icosa­
hedral for p = ± 1 mod. 5. These results were first obtained 
by Gierster (1881) and are generalizations of a theorem 
due to Galois. 
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BOOK IIT. APPLICATION OF THE THEORY OF GROUPS. 

The first chapter of this book, the 10th, deals principally 
with metacyclic irreducible primitive equations whose de­
grees are powers of a prime pK. The group P of these 
equations is shown to be of the form TQ where the substi­
tutions of Q are 

lzi *" , \ modp 
\*i+ai *K +<*KJ 

and T is a metacyclic subgroup of the homogeneous linear 
congruence group S. These results are applied to equations 
of the 8th and 9th degrees. For the latter the elegant result 
is obtained that the whole group S is metacyclic so that every 
equation of the 9th degree whose group is a linear congruence 
group is algebraically solvable. For equations of the 8th de­
gree the result is obtained that the roots have the form 

6 

A X ^<Pz </<PM+I ^¥^ ^<Pz+* + B 

where A, B are rational quantities and the p's are roots of a 
metacyclic equation of degree 7. 

The next two chapters are applications of Galois' theory 
to geometry, the 9 points of inflection on a cubic and the 28 
bitangents of a quartic being the subjects considered. 
True to his plan that all necessary auxiliary notions and 
theories be developed in the course of the work whenever 
needed, the author supposes only the merest elements of 
analytical geometry to be known. Starting, therefore, de 
novo, an admirably compact and clear treatment of the 
geometrical aspect of these problems is given. The equa­
tion upon which the determination of the points of inflec­
tion depends is a triple equation ; that is if xv x2 be any 
two of its roots a third is completely determined by a rational 
relation x^= 0(xv x2). If £, y be taken mod 3 the nine 
roots of a triple equations can be represented by the symbol 
(£, fj) and three of them form a triple when ^ + £ , + £ 3 = 0 
^j+^2+% = 0 mod 3. The group of these triple equations 
of 9th degree lies in the complete linear congruence group 
r mod 3 ; conversely an equation of 9th degree is triple if it 
lies in r and is doubly transitive. The question of the 
reality of the roots of triple equations of 9th degree for a 
real domain is also disposed of. 

In considering the geometry of the 28 bitangents of a 
quartic without singularities the 288 asyzygetic systems of 
7 bitangents first studied by Aronhold are of fundamental 
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importance, because when one of these Aronhold systems is 
given the 21 remaining bitangents can be rationally deter­
mined. Another fact of importance in determining the 
group G of our equation is this ; any three of its roots cor­
responding to a syzygetic triple satisfy a rational equation 
which still holds true when this triple is replaced by any 
other syzygetic triple, but does not subsist if they are re­
placed by an asyzygetic triple. We can now conclude that 
no substitution of G replaces a syzygetic by an asyzygetic 
triple or conversely ; and therefore the elements of an Aron­
hold system are never torn asunder by a substitution of G. 
I t is shown that G contains the 288.7 ! substitutions which 
permute the 7 elements of an Aronhold system among 
themselves or replace it by another system, the eflect on the 
other tangents being completely determined as already ob­
served. The structure of G is examined ; it is simple, two­
fold transitive and contains a divisor of index 36 which is 
transitive and simply isomorphic with the symmetric 
group of 8 things. Thus the adjunction of a root of an 
equation of the 36th degree reduces the group to that of the 
general equation of the 8th degree. Finally an interesting 
discussion of the reality of the tangents is given ; it is 
shown that either 4, 8, 16, or all are real and their syzy­
getic relations are noticed. 

I t is now our agreeable task to give an account how Weber 
has used the ideas of Klein to treat the solution of the gen­
eral equation of 5th degree and the equation of 7th degree 
with a group isomorphic to that of the modular equations 
of degree 8. The fact that Weber has been very independ­
ent in his treatment of these problems will make the ac­
count only more interesting. A few words on the history 
of the term solution of an equation may not be amiss. The 
fundamental problem of algebra is the solution of equations. 
Prior to Abel's time this meant : Express the roots by radi­
cals. After Abel had shown this to be in general impossi­
ble it was necessary to change the problem to this : What 
equations can be solved by radicals ; what are the forms of 
their roots ? As the majority of equations do not admit an 
algebraic solution, the question also presented itself: In 
what shall the solution of these equations consist? This 
remained a long time unanswered. Then all at once, in 
1858, the memorable solutions of the general quintic by 
Hermite, Brioschi, and Kronecker appeared. Their results 
opened a new path which was transformed into a broad 
highway as the ideas of Galois became better known. 
From the standpoint of the Galoisian theory the solution of 
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an equation ƒ (#) = 0 consists in finding a chain of resolv­
ents of the nature Holder has described whose groups shall 
contain the factor groups of ƒ = 0 ; resolvents are chosen 
which possess some peculiar and desirable properties. This 
being largely personal, different mathematicians will select 
different resolvents. For example, Kronecker would admit 
only rational resolvents in his system, a position not ap­
proved of by many others. But the above standpoint gives 
us little hold on affectless equations of higher degrees, since 
on adjoining the square root of the discriminant their 
groups are simple. To advance a step in the solution of 
these equations Klein has formulated the problem in an 
entirely new and original manner. The foundation is 
Klein's Formenproblem, which we may state as follows : Be­
ing given a group S of linear substitutions of the variables 
xv x2J •••, xn1 express these last as algebraic functions of the in­
variants of the group. If we take a rational function of 
the #'s as 0, chosen so that its value is altered for every sub­
stitution of the group, it is shown just as in the Galoisian 
theory that the #'s can be expressed rationally in terms of 
the invariants of S and the numbers of some body. Let 
the values 0 takes on for S be 

the equation 

* ( * ) = ( * - * ) ( * - * ! ) ( * -* , ) • • • = <) 

is the Galoisian resolvent, its group is the Galoisian group 
of the Formenproblem belonging to 8. The Formenproblem 
contains thus the Galoisian theory of the solution of the 
general equation of degree n a s a special case ; here the 
group S is the symmetric group of permutations while the 
invariants of the group are the symmetric functions of the 
roots. But the number of variables entering the Formenprob­
lem may often be reduced ; for example, the solutions of the 
equations of the first four degrees depend upon Formenprob-
leme involving only a single variable ; the general quintic 
depends on one involving only two variables while the gen­
eral equations of 6th and 7th degrees depend on Formen-
probleme with 4 variables. This leads Klein to propose the 
following as the general solution of algebraic equations: 
Among the problems having isomorphic groups that one is 
considered as the simplest which has the least number of 
variables. This is called the normal problem and the solu­
tion of the others is to be effected by reducing them to this. 
How the normal problem is to be solved is a matter by it-
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self. Let us see how Weber applies these ideas to the quintic. 
The first step taken is to prove Kronecker's theorem that 
no rational resolvent of the general quintic exists involving 
but a single parameter. Suppose the quintic transformed 
to Klein's principal form : 

(1) f+baf+bby + c = 0] 

this equation is no longer general, but it possesses a rational 
resolvent with a single parameter #(#, z) = 0. This we 
may take to be the icosahedral equation already mentioned, 

(#80 + 522#25 — 10005#20 — 10005#10 — 522#5 + l ) 2 

The question is now asked what equations can be solved by 
means of the icosahedral irrationality #. To this end we need 
to find the resolvents corresponding to the different divisors 
of the icosahedral group. The most important are of course 
the resolvents of the 5th and 6th degrees corresponding to 
the tetrahedral and dihedral groups. In regard to the re­
solvent of 5th degree it is shown how it may be made iden­
tical with any given principal equation without employing 
any irrationality besides the square root of the discriminant. 
The importance of the sextic resolvent is due to its intimate 
relation with equations of transformations of the elliptic 
functions. For example, using the notation employed by 
Weber in his book on elliptic functions, the sextic resolvent 
of the icosahedron 

ƒ —1(%3 + *2y + 5s2 

is identical with the equation of transformation 

v« + 1 0 ^ - ^ 0 ) ' » + 5 = 0 

whose roots are 
/ - 2 4 g + a i V 

K r)2(5<o) M 5 / * n ! . 
IL = 5 >, / v* = - =7—r 5 = 0 , 1 , — 4 

if we only set 

z = r* a n d y = — y2v. 

If we compare this presentation of the solution of the 
quintic with that given by Klein in the Ikosœder we observe 
that, whereas Kronecker's theorem, that no rational resolv­
ent of the quintic exists having a single parameter, appears 
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in the Ikosœder as a final result, it is here made the founda­
tion on which the whole theory rests. In this way the ex­
plicit expression of & as a rational function of the roots is 
made unnecessary and yet a relation is established between 
the quintic and the icosahedral equation in a natural and 
easy manner. 

The last two chapters of this book, the 14th and 15th, 
are devoted to the Formenproblem belonging to the group 
G168 of 168 ternary linear substitutions which is isomorphic 
to the group of the modular equations of 8th degree, and 
the relation of this Problem to the equations of 7th degree. 
The first thing after showing the existence of G168 is to 
find its invariants. To affect this xv x2, xs are regarded as 
trilinear coordinates of a point in the plane and the substi­
tutions of G thus transform the plane into itself in 168 
ways. By these transformations certain points and right 
lines (the poles and axes) remain invariant, and these 
form the configuration of the group. Any invariant of the 
group <p(xv x2, #3) set = 0 represents a curve which is in­
variant for G. Of these 

j = x1 xs -j- x2 x1 -j- xz x2 

is the simplest. Other invariants may be formed by taking 
its covariants. Two of these J and C are respectively of 
6th and 14th degree. These, together with an invariant K of 
21st degree, form the complete system of the group. The 
next problem in order is the determination of X-., Xn) Xn a s alge­
braic functions of the invariants. Now G168 is simple, hence 
xx ,#2, xz are rational in the roots of any rational resolvent. 
Such a one is that generated by 

Xx -f- X2 + #3 — ~ (#2#8 + XZXX + Xflz). 

A special form of this resolvent arises when x lies on the 
fundamental curve ƒ = 0 viz : 

3* — 7 _ Az* — 7 — — Y Ah— G = 0. 

This resolvent is of interest on account of its relation to the 
transformation equations of the elliptic functions ; the gen­
eral resolvent for which ƒ is not 0 can be reduced to this by in­
troducing an accessory biquadratic irrationality, as Klein 
has remarked. I t is now shown how the equation of the 7th 
degree F = 0 whose group P168 is isomorph to G168 may be 
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reduced to the above Formenproblem. Obviously it is only 
necessary to show that three rational functions Xv X2, X3 
of the roots of F= 0, can be found such that when the sub­
stitutions of P168 are applied they form the group of linear 
substitutions Gus. 

BOOK IV. ALGEBRAIC NUMBERS. 

The theory of numbers until the epoch making paper of 
Gauss on Biquadratic Residues was restricted to integers. 
But in passing from the theory of quadratic residues to 
those of higher order, he found it was necessary to enlarge 
the field of number if we were to arrive at a simple and 
comprehensive theory. For cubic residues the new numbers 
to introduce were those formed by the cube root of unity p, 
for biquadratic residues those formed of the fourth root i. 
Now in the preceding chapters we saw that the integral 
numbers in R(p) and R(i) like ordinary rational numbers 
can be resolved into prime factors in but one way, and hence 
all the theorems resting on this fundamental one will sub­
sist too. Like integers, these numbers can also be thrown 
into a certain number of incongruent classe^, so that a 
linear congruence with prime modulus, for example, has one 
root only if it has any. Similarly Fermat's theorem and 
the law of reciprocity have their analogues. Thus Gauss's 
paper opened up a vista of unlimited expanse ; for, while be­
fore we had but one class of numbers, the integers, to inves­
tigate, now an endless number presented themselves, offer­
ing abundant rewards not only in investigating their own 
peculiar properties, but promising to shed a flood of light 
on the most hidden properties of the natural integers. At 
the very outset, however, the first hardy explorers met a 
barrier which threatened to prevent them from penetrating 
very far into this virgin territory. I t was observed in fact 
that the bodies R(p) and R(i) were rather the exception ; 
that the theorem which asserts the uniqueness of decom-
composition of a number into its prime factors did not hold 
true in general.* I t is an immortal achievement of Rum­
mer's to have overcome this obstacle for cyclotomic bodies by 
the introduction of his ideals. What Kummer has done for 
the numbers formed of the roots of unity Dedekind and Kro-

* The algebraic body R(V — 5) affords a simple illustration. In this 
body 2, 3, l-\-V — 5, 1 — V — 5 are primes in the ordinary sense that 
they cannot be further decomposed in is!; nevertheless we have 

6 = 2 . 3 = ( 1 + V^b) (1—1/-^5), 
that is, 6 can be resolved in more than one way into prime facors. 
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necker have done for numbers formed of the roots of any alge­
braic equation with rational coefficients. The theory of these 
numbers is the subject of the present book. Until now the 
only orderly presentation we have had was that Dedekind has 
given of his theories in the supplements of Dirichlet's Zahlen-
theorie. But Kronecker has sketched a theory of these numbers 
from an entirely different standpoint in his Festschrift ; unfor­
tunately, as there presented, it forms only a special case of 
a general theory of algebraic quantities ; at the same time, 
according to his usual custom, only the bold features of the 
theory are outlined. We welcome, therefore, most heartily 
Weber's attempt to present some of Kronecker's notions 
and methods relating to algebraic numbers in an elementary 
and simple manner, and we do not doubt that it will be con­
sidered the most important and successful part of the whole 
treatise. Certainly the wide circulation this work is des­
tined to enjoy will give a powerful impulse to the study of 
Kronecker's ideas, as Serret's algebra did a generation 
ago for the ideas of his great countryman Galois. In passing, 
we remark that we are fortunate in possessing still a third 
work on the theory of algebraic numbers ; this is Hubert 's 
splendid Bericht for the Deutsche Mathematische Vereinig-
ung on Algebraische Zahlkörper which has appeared since the 
second volume of Weber's Algebra came out. The great 
interest attached to these speculations is shown by the 
rapidly increasing literature on the subject; we mention in 
particular Minkowski's Geometrie der Zahlen and Klein's 
last autographed lectures, Ausgewâhlte Kapitel der Zahlen-
lehre. 

We turn now to Weber's presentation of Kronecker's 
theory. A characteristic feature of this we mention at the 
start ; we mean the systematic employment of variables or 
indeterminates as a vehicle for reasoning on the numbers 
of an algebraic body. The introduction of these variables 
may at first sight seem foreign to the theory of numbers, 
but a simple reflection will do much to remove this and 
show that Kronecker is merely carrying still further the 
ideas of Gauss. Indeed, as Kronecker himself remarks,* 
before Gauss only the quadratic forms of numbers were 
known; the narrow point of view then prevalent which con­
sidered only the various representations of numbers he dis­
carded and introduced forms with real indeterminates. 
We may thus consider Gauss' whole theory of binary 
quadratic forms ax2 + 2bxy + ztf after the theory of equiva­
lence has been established, as a theory of a system of three 

* Festschrift zu Kummer's Doctor Jubilâum, Crelle vol. 92, p. 95. 
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numbers (a, b, c) ; while if we should remove the indeter­
minates x, y, which act as the vehicle of our reckoning, not 
only would it be more difficult to oversee the operations 
and results but also fundamental theoretical points of view 
would be lost. I t is precisely by the aid of these indeter­
minates together with the notion of units that the unique 
decomposition of algebraic numbers is reestablished. But 
the usefulness of these indeterminates goes much further ; 
indeed, it is in their systematic employment that the secret 
of the great power of Kronecker's methods lies. 

The first chapter is devoted to the most elementary ideas 
and theorems. A rational function of the indeterminates 
x,y} z, ••• whose coefficients lie in a numerical body & is 
called a Functionate or Form in ®. These forms behave in 
many respects precisely like algebraic numbers; indeed, we 
may consider these last as particular cases of forms. If the 
coefficients of a form to are rational numbers, the form is 
said to be rational ; every such form is the product of a 
positive rational number a and the quotient of two rational 
integral functions of the variables x,y,z,— whose coefficients 
have no common factor ; a is called the absolute value of 
t*> ; if it is an integer, to is said to be integral. If the co­
efficients of to are not rational numbers, the forms which 
arise when these coefficients are replaced by their conju­
gates are called conjugate forms ; their product Nto is called 
the norm of a ; the absolute value of Nto is the absolute 
norm Na<o of to. Every form to is root of an algebraic equa­
tion N(t — to) = 0 where t is a variable not in to ; if the co­
efficients are integral to is said to be integral. Next to the 
notion of Functionate the most important new idea is the 
Mnheiten or units. Any form to for which Njo = 1 is a unit. 
Two forms whose quotient is a unit are associated. A third 
fundamental element in the theory is the expression of the 
greatest common divisor of a number of integral forms 
a, /?, y, ••• ; this is simply the form 

d = xa + yfi + zy -\ 

where a, ?/, z ••• are new indeterminates. Equipped with 
these we are ready to raise with ease the first great pillar 
on which the theory of algebraic numbers rests, we mean 
the uniqueness of the decomposition of algebraic numbers 
into their prime factors. This is done generally for Func­
tionate following precisely the same path employed before on 
two similar occasions. The next subject treated relates to 
the bases of a body £, and its discriminant ; then we pass 
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to the consideration of congruences in respect to a form n. 
Here the first step is to show that all integral numbers can 
be thrown into a certain number of classes, each class con­
taining only congruent numbers. To efieet this the notion 
of a basis of a form is introduced and with this we can show 
that the number of incongruent classes is Na (M) . We now 
have the foundation to develop a theory of congruences 
analogous to that for integers. For example, the linear 
congruence 

ax + p = 0 mod fi 

has one solution and one only when a is relative prime to /x ; 
while the general congruence of nth degree 

aQxn + alX
n~' + - + an = 0 

for a prime form modulus n has at most n roots. Fermat's 
theorem, which in the ordinary theory is of such funda­
mental importance, plays here an equally important rôle, 
and reads thus : 

apf-i _ i = o mod n 

where y = Na(jz) is called the degree of n. 

The relation between Dedekind's ideals and Kronecker's 
forms is discussed ; it is shown that a perfect correspon­
dence is established as soon as all associated forms are re­
garded as forming a new concept to which, as it behaves 
like Dedekinds ideals, we may attach the same name. Then 
all forms associated with an integral algebraic number form 
a principal ideal 

By means of the notion of equivalence all forms are 
thrown into classes whose number h is shown to be finite 
dependent only on the nature of the body £. The compo­
sition of these classes is defined, giving rise to an Abelian 
group of order h. An immediate consequence of the gen­
eral properties of groups is that, <p being any form in Qr 
there exists a number k a divisor of h such that <pk is asso­
ciated with a number in £. The importance of this simple 
conclusion will be manifest when we come to establish Kro-
necker's theorem on Abelian bodies. We observe in pass­
ing that when h = 1 the theory of the integral numbers in 
the corresponding body is essentially the same as that of 
integers ; such bodies, for example, are R (p) and R ( i ) . 

A theorem of fundamental importance regarding the dis­
criminant of a body asserts that it contains at least one 
prime. Stated by Kronecker * in the Festschrift but with-

* Crelle, vol. 92, p. 21. 
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out proof, its demonstration is a signal achievement of Min­
kowski. A brief sketch of the geometrical ideas on which 
it rests we wish to give here. A simple analysis shows 
that the demonstration rests on the fact that a certain quad­
ratic form f(xvx2, •••, xH), which by means of a real linear 
substitution 

(1) ?< = a<fl xx + ... + ai>nxn i= 1, 2, ... n, 

can be thrown into the sum of n squares, is always less than 
a certain number. Minkowski's geometrical notions make 
the proof of this very easy. Let xv x2, ..., xn be the coordi­
nates of a point in space Rx ; if they take on only integral 
values their ensemble forms a point system called a Gitter. 
Applying the transformation (1), this Gitter goes over into 
another in the space R%. If 

F = f dx, dx0 ... dxn = lim V J#. J # . . . Ax„ 
U Ax=0 

be the volume of some figure Gx in Rx< and V% be that of 
the corresponding figure G% in R% we have 

vt = -y~D vx. 

Take now óx = f1/™; we have 

where Zt is the number of elements of volume in Gx ; but 
this number is that of the number of points in the figure 
GJ got from Gx by increasing each coordinate in the ratio 
of tlln to 1, or also the number in the corresponding figure 
Gç(t) in Rç. Calling this number y and the determinant of 

ƒ, D, we have 

F | = < / # l i m | . 
«=00 & 

Now since 

and the points of the Gitter in R% are similarly situated, the 
least value that ƒ takes on for a point in the Gitter Rx is the 
least distance between any two points in the Gitter Rç. 
Denoting this by A, describe about each point in Gç(t) an w-di-

mensional sphere of radius — ; the volume of all these spheres 

is less than that of G$', that is, less than tV$ ; and so we find 
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_ vXn/2 

V D > ~^r 

where v is the volume of a sphere of unit radius. Using in­
stead of these spheres their inscribed cubes, we find 

n 

which affords a much lower limit than obtained by Hermite, 
Crelle, vol. 40 (1850). A closer approximation using in­
scribed cylinders is 

n 
x < n ^0.404 D • 

Minkowski has obtained still closer ones. Leaving this 
subject we come to Dedekind's important theorem on the 
discriminant A of a body, which asserts that A contains all 
and only those natural primes as factors which contain the 
square of a prime ideal. A method due to Hensel is also 
given to decompose the natural primes into their prime fac­
tors ; this affords a means of obtaining representatives of 
all prime ideals of a given body. 

Up to the present the properties of algebraic numbers 
have been studied only with reference to the absolute do­
main ; Hubert and Dedekind have shown that many im­
portant facts are brought to light when we take a different 
domain. This leads up to relative norms, relative funda­
mental ideals, etc. In regard to this last it is proved that 
the fundamental ideal of a body Q containing R is the prod­
uct of the relative fundamental ideal of & in respect to R 
and the fundamental ideal of R. The extension of this to 
a body having a succession of divisors is obvious. Bodies 
are now considered which are normal in regard to R and an 
account of some of Hubert 's investigations is given. The 
Zerlegungs- Trâgheits- and Verzweigungsgruppen are studied 
and an application is made to determine the prime ideals 
which enter the relative fundamental ideal. The theory is 
also applied to determine the ideals lying in a divisor of one 
of these bodies. 

The general theory is now left and two delightful chap­
ters follow, containing applications to quadratic and cyclo-
tomic bodies. Both these chapters might be read with great 
advantage in connection with the preceding 110 pages. 
They will aid to clear up many difficult points which, up 
to the present, have been without a single illustrative ex­
ample. We pass at once to the consideration of the second, 
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which is of great interest because the facts here established 
will be of use later in proving Kronecker's theorem. The body 
in question £ is formed of the mth roots of unity ; m is taken 
to be the power of a prime <f, which is quite sufficient for 
later purposes. The firstproblem taken up is to determine all 
the prime ideals in & ; these arise from the prime q and from 
other primes. The decomposition of q is at once effected ; it 
is the fx = <p(m) power of a prime ideal of first degree. To 
decompose the other primes p we apply Hubert 's theory 
taking here for R the absolute domain. The Zerlegungs-
and Trâgheitsgruppen are determined ; as the latter is here the 
identical group, p is not divisible by the square of a prime 
ideal. The Zerlegungsgruppe is of order/, the exponent of p 
in regard to the modulus m, thus p is the product of e = p./f 
conjugate ideals of degree/. The nature of these ideals is 
examined, making use of the fact that thé Zerlegungsgruppe 
is isomorphic with a subgroup of the class groups for the 
modulus m. The investigation culminates in a generaliza­
tion of Rummer's theorem on the decomposition of La­
grange's resolvent, which we shall have occasion to cite 
later. Connected with Q. is a real body JET embracing all 
the real numbers of £. In this body q is the \y. power of a 
prime ideal of first degree ; the other primes p fall into two 
classes, for one class the prime ideals of H are also prime 
in £, for the other they split into two factors in £. In regard 
to the numerical units in ti it is shown that they are all the 
product of a real unit lying in H and a unit root in & ; these 
last are powers of a primitive mth root of unity r multiplied 
bydb 1. The next three chapters, which also terminate the 
account given of algebraic numbers, are devoted to the 
demonstration of Kronecker's great theorem that all Abelian 
bodies in the domain of rational numbers are cyclotomic 
bodies. The demonstration here given rests upon three 
main supports : the decomposition of Lagrange's resolvent 
into prime ideals, the determination of an expression of h, 
the Classenzahl or class number of £, and finally an intimate 
knowledge of the numerical units of £. Considered merely 
as a demonstration of Kronecker's theorem we should be 
obliged to criticise its great length and prefer in its stead 
the one due to Hubert,* which besides being very short, 
avoids the transcendental methods of Dirichlet introduced 

*"Ein neuerer Beweis, etc.," Göettinger Nachrichtne, January, 1896. 
Hubert's proof is purely arithmetical and rests on his theory of a Galoisian 
numerical body which Weber sketches in Chapter 19. A prominent 
feature of the demonstration is Minkowski's theorem that the discriminant 
of every body contains at least one prime. 
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by the Classenzahl. But if we consider it as a delightful 
stroll through some of the more abstruse parts of the 
general theory of algebraic numbers, stimulated by the 
knowledge that the facts picked up on the way not only 
enable us to prove Kronecker's theorem but are among the 
most important in the whole theory, we shall surely thank 
our guide for choosing precisely the route taken. We give 
now a sketch of the principal steps in the demonstration. 
A simple reasoning shows we need only to prove the theorem 
for Abelian bodies whose degree is the power of a prime 
m — qk and whose group is cyclic. Lagrange's resolvent 

(r% x) = x0 + r \ + r2sx2 + - + r ^ X - i 

is considered ; here xQ, xv ..., xm_x are the roots of a rational 
irreducible cyclic equation of degree m, and r is a primitive 
mth root of unity which generates &. 

The above resolvent gives us 

mx0=X(r% xo) s== °> l , - , m — 1 

and as (V, x0)~
l (r, x0) lies in it, it remains to show that 

(r, xê) is cyclotomic or what is the same that 10 = (r, x0)
m is 

the mth power of a cyclotomic number. To effect this w 
is decomposed into its ideal primes in & and now the de­
termination of all the prime ideals in £, together with 
Rummer's theorem, are needed. I t is found that <o is the 
product of a unit form e, the mth power of a form <p and the 
mth power of certain cyclotomic numbers K lying in a 
higher body but such that Km lies in £. We can thus write 

(1) (»=*z<pmK™K2
m-

This shows that the conjugate forms <pn
m belong to the prin­

cipal class. Suppose now that we can show 

ÇA) that the forms <pn belong to the principal class ; 

then (1) shows that <*)n has the form 

(2) a>n=ena™K?K™~. 

where en are now numerical units. Suppose secondly that 
we can show 

(Z?) that the numerical units en are mth powers oj a unit fi in & 
multiplied by a power of r ; 

then (2) shows that 

(3) (r, x0) = pp K, K2-
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where p is a unit root ; as the right hand side of (3) is a 
cyclotomic number, Kronecker's theorem is proved. There 
remains thus the demonstration of (A) and (B) ; this 
is very different according as q is odd and even. The 
former case can be easily disposed of. (J.) is proved by 
using Weber's generalization of Kummer's theorem while 
(2?) is demonstrated at once using the fact already estab­
lished that all numerical units in Q, are, aside from their 
sign, the product of a unit in H and a power of r. The case 
when q is even, that is when m is a power of 2, presents the 
most serious difficulties as Kronecker remarked in his 
paper in the Monatsberichte of 1853 already referred to. The 
demonstration of (A) for this case Weber makes depend on 
the oddness of the Classenzahl h by remarking that if <pu be­
longs to the principal class and h is not divisible by 2, <p also 
does. Concerning (J5) a simple reasoning shows that this 
is proved if it can be shown that when a real unit e in Q 
together with its conjugates are all positive, then e is the 
square of a real unit in Q. In the reasoning which follows 
we mention two theorems as fundamental. Dirichlet's 
theorem on the numerical units of any algebraic body & 
we may state thus : If among the m conjugate bodies 

£, Qv £2, ••• i2m_i, m1 are real and m2 = — ^ ~ l form conjugate 

pairs, then there exists in £ a system of //. = m1 + m2 — 1 
units ev e2J •••, s^ such that every unit in Q is represented once 
only by 

where £x £2 •• are integers and p is a unit root in £. 
The second is Dedekind's expression for the Classnumber 

lim (s •— 1) # (s) = gh 

where #(s) is the series 

the sum extending over all the ideals « in £, and g being a 
number depending on Q only. The series # converges for 
all « > 1 . 

The last chapter is devoted to transcendental numbers; 
as it has been admirably translated by Professor Beman* 
for the BULLETIN we do not need to give an account of it. 

* BULLETIN, 1897, p. 174. 
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We will close now our review regretting its inadequacy 
to give but a faint idea of the merits of this great work. 
A classic from the day of its publication, it is destined to a 
long and useful career, a monument of honor to its genial 
author. 

J A M E S P I E R P O N T , 
YALE UNIVERSITY, 

December, 1897. 

SHORTER NOTICES. 

Analytic Geometry for Technical Schools and Colleges. By P. A. 
LAMBERT, M.A., Instructor in Mathematics, Lehigh Uni­
versity. New York, The Macmillan Co., 1897. 8vo, 
216 pp. Price, $1.50. 
The volume before us differs greatly in the choice and 

arrangement of material from the standard English text­
books on analytic geometry, and clearly shows the influ­
ence of Briot and Bouquet's " Géométrie Analytique.'' In 
the first few pages Cartesian coordinates are defined, and 
exemplified by curves plotted from tables of statistics. In 
the second chapter the straight line, the circle, the conic sec­
tions, the ellipse, the hyperbola, and the parabola are allotted 
a paragraph each, and the student is hurried on in Chapter 
I I I . to the plotting of algebraic equations, and in Chapter 
IV. to the plotting of transcendental equations. 

The discussion, at this early stage, of the curves repre­
sented by the exponential, logarithmic and circular func­
tions, the cycloids, etc., should be of interest to the beginner, 
and shows the reaction against the undue prominence fre­
quently given to the conic sections in works on elementary 
geometry. I t would be absurd to expect a thorough treat­
ment of the theory of curve-tracing in such limited space, 
but one or two unnecessarily misleading statements might 
have been avoided. The tangent is defined as a secant hav­
ing two points of intersection with the curve " coincident/3 

instead of consecutive, and a similar misuse of terms occurs 
in defining a point of inflection. The point of inflection is 
the only singularity discussed, therefore the distinction 
between the analytical conditions for a point of inflection 
and a double-point, often a question of some difficulty to 
the young student, is not touched on. 


