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Abstract

We identify a large classR of three-dimensionalN = 2 superconformal
field theories. This class includes the effective theories TM of M5-branes
wrapped on 3-manifolds M , discussed in previous work by the authors,
and more generally comprises theories that admit a UV description as
abelian Chern–Simons-matter theories with (possibly non-perturbative)
superpotential. Mathematically, class R might be viewed as an extreme
quantum generalization of the Bloch group; in particular, the equivalence
relation among theories in class R is a quantum-field-theoretic “2 to 3
move.” We proceed to study the supersymmetric index of theories in
class R, uncovering its physical and mathematical properties, including
relations to algebras of line operators and to 4d indices. For 3-manifold
theories TM , the index is a new topological invariant, which turns out to
be equivalent to non-holomorphic SL(2, C) Chern–Simons theory on M
with a previously unexplored “integration cycle.”
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1 Introduction

The space of three-dimensional superconformal field theories is vast and
only partially explored. Many superconformal field theories can be defined
as the IR fixed point of supersymmetric gauge theories coupled to matter.
The inclusion of Chern–Simons couplings gives a large variety of IR fixed
points, as the CS coupling does not flow. Furthermore, in supersymmetric
CS theories coupled to matter, the CS coupling controls the strength of
several interaction terms in the Lagrangian.

Theories with different UV Lagrangian definitions can flow to the same IR
SCFT, in which case they are typically called “mirror” descriptions of the
same theory. The terminology arises from the case of gauge theories with
N = 4 supersymmetry and no CS terms, where supersymmetry protects the
geometry of the Higgs branch, and non-trivial IR identifications typically
exchange the Higgs and Coulomb branches of the theory. In this paper, we
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concern ourselves with N = 2 SCFTs. This is a rather interesting amount
of supersymmetry, as it allows one to add superpotential couplings to the
theory, and the UV U(1)R R-symmetry can mix with other flavor symmetries
to give interesting anomalous dimensions in the IR [1, 2].

There are several basic known “mirror symmetries” for N = 2 theories,
which typically arise as a reformulation or deformation of N = 4 mirror
symmetries [3–6]. One can leverage these basic examples to build large net-
works of dualities, starting with a complicated Lagrangian L, and applying
known mirror symmetries to a subsector L′ of the theory. This strategy is
not without danger: it relies on the assumption that in order to understand
the IR behavior of L it is reasonable to first have the subsector L′ flow to
the IR, where it can be given alternative descriptions, and then to turn on
the couplings between L′ and the rest of the theory. Despite this danger,
the strategy is still rather useful.

Given the large set of dualities constructed this way, one may seek meth-
ods for characterizing distinct IR fixed points. There are several protected
quantities that can be computed in the UV, and provide information on the
IR SCFT. There are three such quantities that are related in a surprising
manner: the moduli space L[T ] of supersymmetric vacua for massive defor-
mations of the SCFT compactified on a circle [7–9], the ellipsoid partition
function Zb[T ] [10–12] and the refined index I[T ] [13–17].

The moduli space L[T ] is a useful notion if the 3d SCFT has “enough”
flavor symmetries: to each flavor symmetry one can associate a real mass
deformation of the SCFT, and a crucial assumption is that we have enough
mass deformation parameters to make the SCFT develop a mass gap. Upon
compactification on a circle, the real masses are complexified to C

∗ valued
twisted masses Xi, and one can introduce the notion of an effective twisted
superpotential W(Xi) [18]. Crucially, W(Xi) can be usually computed in
the UV. The twisted superpotential is multivalued, both because the theory
will have multiple massive vacua, and because W(Xi) is only defined up
to shifts by integer multiples of the twisted masses. The SUSY-preserving
“effective FI parameters”

Pi =
∂W
∂Xi

(1.1)

(really a complexification of the vev of moment map operators) are also
circle-valued. Then, upon exponentiating (1.1), one is left with a well defined
and UV-computable parameter space of supersymmetric vacua L[T ] as a
Lagrangian submanifold of (C∗)2N . Here and in the rest of the paper, N
denotes the number of abelian flavor symmetry generators available in the
UV.
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The ellipsoid partition function Zb[T ] is defined by a deformation of the
flat space Lagrangian for the theory T that allows for some supersymmetry
to be preserved upon compactification on an ellipsoid. The deformation
requires a choice of R-symmetry, which does not have to be the actual
R-symmetry in the IR, and can be any linear combination of the UV R-
symmetry and the other flavor symmetry generators. The choice of R-
symmetry and the real mass deformation parameters can be combined into
N complex parameters X̂i. The partition function Zb(X̂i) can be computed
in the UV by localization methods, and bears a close relationship with the
manifold L. Indeed, it satisfied two sets of recursion relations that are a
“quantization” of the equations that carve out L in (C∗)2N [9, 19].

This phenomenon can be explained by recasting the 3d SCFT T as a
boundary condition for an U(1)N free abelian four-dimensional gauge the-
ory. Then the equations that define L can be promoted to Ward identities
for supersymmetric ’tHooft–Wilson loops brought to the boundary. If one
realizes the 3d ellipsoid as the equator of a four-dimensional half-sphere,
the supersymmetric line defects act as operators on Zb(X̂i), and the Ward
identities become operator equations for Zb(X̂i). The “quantization” of the
operator algebra arises from a known subtlety in the OPE of supersymmetric
line defects [20, 21].

One of the result of this paper is to establish a similar correspondence
for a third invariant of SCFTs: the refined index. The index is defined by
another deformation of the Lagrangian for T , which allows a supersymmetric
compactification of T on S2. The deformation again requires a choice of R-
symmetry, which does not have to be the actual R-symmetry in the IR,
and can be any linear combination of the UV R-symmetry and the other
flavor symmetry generators.1 Then one can define a refined Witten index
for the theory on the sphere, that will be a power series in a fugacity q
that measures the energy minus half the R-charge of the states. The index
is also a function of N parameters valued in (S1 × Z), associated to the
flavor symmetries of the theory. We will show that the refined index I[T ]
satisfies two sets of recursion relations, which again quantize the equations
which carve out L in (C∗)2N . The quantization arises in the same way as
for Zb(X̂i), and the construction again uses an appropriate four-dimensional
setup.

The three invariants L[T ], Zb[T ], I[T ] provide scant information on the
superpotential couplings of the theory T . Mainly, the superpotential affects
the calculation by breaking flavor symmetries, and thus reducing the space

1It is important to remark that this deformation is not the same as a topological twist
on S2. Rather, it is akin to a superconformal transformation from flat space to S2 × R.
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of available parameters. Although this may seem trivial, it is surprisingly
powerful. For example, the effect on L of adding to T a superpotential term
that carries some flavor charge vector c is simply to do a symplectic quotient
with a moment map C = c ·X in the ambient space (C∗)2N , reducing the
dimension of L by one. This accounts automatically for the effect of the
superpotential on the space of vacua of the theory! Similar statements hold
for Zb[T ] and I[T ].

Ultimately, we would like to identify an arena of N = 2 SCFTs where we
can reliably label distinct SCFTs by the invariants L[T ], Zb[T ], I[T ], or by
some refinement of these. For this purpose, we will impose two restrictions:
first, we only consider abelian Chern–Simons matter theories. In the absence
of a superpotential we may give many different mirror abelian CSM descrip-
tions of the same theory T0. Our second restriction is to define a theory T
by a restricted class of superpotential deformations of a theory T0: we only
consider a superpotential that is the linear combination of operators OI with
the property that for each OI we have an abelian CSM mirror frame where
OI is a product of elementary fields. Notice that in other mirror frames, OI

will be a non-perturbative monopole operator, and there may be no mirror
frame where all the OI are simultaneously elementary. We will denote the
resulting class of theories as “class R.”

The invariants of the theory T0 are related by a simple “change of polar-
ization” to the invariants of n free chiral multiplets, which we can denote
as L[Δ]n, Zb[Δ]n, I[Δ]n. In other words, any Chern–Simons levels and
gauging can be undone with an appropriate Sp(2n, Z) transformation [22]
on T0. Thus the invariants L[T ], Zb[T ], I[T ] of a theory in the class R come
equipped with a canonical presentation as the symplectic quotient of L[Δ]n,
Zb[Δ]n, I[Δ]n by a list of n−N moment maps CI. It is easy to characterize
the admissible sets of CI which correspond to allowed superpotentials. We
can label the UV Lagrangians for theories in the class R by the choice of
polarization Π and the list of admissible moment maps CI.

The class R is closed under a basic abelian mirror symmetry operation,
which replaces three chiral multiplets with a superpotential of the form XY Z
with Nf = 1 QED, a theory involving two chiral multiplets of opposite charge
under a dynamical gauge field. This “2 to 3 move” changes n by one unit.
All known abelian mirror symmetries can be reduced to a combination of
several 2 to 3 moves. The 2 to 3 move acts on a simple fashion on the labels
(Π, CI). Thus it is natural to conjecture that we can label IR fixed points
of theories in the class R by the equivalence classes of sets of admissible
(Π, CI) under the action of 2 to 3 moves.
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The set of such equivalence classes is a beautiful, intricate combinatorial
object, which is not fully understood. But there is at least a subset of
R that which can be given a simple geometric interpretation, in terms of
hyperbolic geometry of 3-manifolds. The space L[Δ] can be identified with
the space of “ideal tetrahedra,” i.e., tetrahedra in hyperbolic space with
vertices on the boundary. There is a class of orientable 3d manifolds that
can be glued together from n ideal tetrahedra. Hyperbolic geometry gives
us for free a polarization [23] and a set of linear moment maps, which have a
crucial feature: the 2 to 3 move relates different decompositions of the same
manifold, and any two decompositions of the same manifold can be related
by a sequence of 2 to 3 moves.2 Thus for every such manifold M we get a
specific IR fixed point TM in the class R!

The invariants L[TM ], Zb[TM ], I[TM ] must coincide with geometric invari-
ants of M . Indeed, in [8,19], it was proven that L[TM ] is the space of hyper-
bolic metrics, or equivalently flat SL(2, C) connections on M , and Zb[TM ]
behaves as an analytically continued SL(2, R) Chern–Simons partition func-
tion on M [9, 27] — sometimes called an “SL(2)” Chern–Simons partition
function [28–31]. In this paper, we show how I[TM ] also admits a geometric
interpretation, and behaves as a SL(2, C) Chern–Simons partition function
on M .

Conjecturally, the theory TM has an alternative, mirror description: it can
be defined by the twisted compactification of the A1 6d SCFT on M . This
higher dimensional definition allows a connection to the rich subject of four-
dimensional theories that can be defined in terms of the A1 6d SCFT com-
pactified on C [32,33]. This connection was an important inspiration behind
the construction. It also featured prominently in a complementary recent
construction of the theories TM , based on “R-flow” in four-dimensional theo-
ries [34]. In this paper, we will explore the connection of I[TM ] to the refined
indices of the four-dimensional gauge theories. We expect our dictionary to
be rather useful for four-dimensional N = 2 gauge theories, allowing one to
compute the refined index of 4d theories in the presence of line defects and
domain walls by borrowing results from the AGT correspondence [35–38].

Finally, we would like to remark that we expect higher rank generaliza-
tions of our construction, say based on spaces of flat GC connections on
3-manifolds for any G, or even more general Lagrangian submanifolds of
cluster varieties, to describe larger subsets of theories in the class R. For

2Mathematically, it is well known that hyperbolic 3-manifolds define elements in the
Bloch group B(C) [24–26]. The class β(M) corresponding to a 3-manifold M can be
defined by using any ideal triangulation of M , and it is invariant under 2 to 3 moves. Our
family R of theories can be viewed as an extreme quantum generalization (and in fact
refinement) of the classical Bloch group.
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example, for G = SU(N) such theories would arise from a compactification
of K M5 branes on a 3-manifold M . Mathematically, some extensions of
hyperbolic invariants of 3-manifolds to higher rank have been investigated
in [39, 40], following [41], and are known to still lie in the classical Bloch
group (cf. footnote 2). The generalization of theories TM to higher rank
should similarly lie in R. It would also be interesting to find an example of
a 3d N = 2 SCFT that is not in the class R — say has a parameter space L
which cannot be given as a symplectic quotient of L[Δ]n by linear moment
maps. We leave this problem to future work.

Our main goal in the remainder of the paper is to understand the index
I[T ] for the theories TM defined in [19]. We will also make statements appli-
cable to more general theories in class R (or even outside class R) whenever
possible. Thus, we begin in Section 2 by describing the general form of
the index for 3d N = 2 SCFT’s with a U(1)N global symmetry, and defin-
ing several familiar operations on it — for example, the descendant of the
Sp(2N, Z) action on the SCFT’s themselves. We introduce the line opera-
tors that will play an important role throughout the paper. In Section 3, we
then specialize to the index I[Δ] for the tetrahedron theory TΔ, the basic
building block of all theories in class R. Although TΔ is extremely simple,
consisting only of a single chiral multiplet, its index turns out to have sev-
eral surprising properties that will serve as model examples for the general
properties of theories in R.

We construct the indices I[TM ] of 3-manifold theories TM in Section 4,
using the building blocks I[Δ] and the actions of Section 2. We give a sim-
ple, combinatorial set of rules for building I[TM ]. As prefaced above, I[TM ]
is obtained as the “symplectic reduction” of a product index I[Δ]n, with
the reduction realized via a certain infinite summation over broken flavor
charges. We explain how the algebra of line operators acts on I[TM ], and
explore the relation between the index and the parameter space L[TM ] of
SUSY vacua. One self-consistent observation is that unconstrained chiral
operators in TM — seen as “flat directions” in the index — can be easily
detected by the asymptotics of the algebraic parameter space L[TM ]. In Sec-
tion 5, we continue analyzing the quantum line operator algebra by viewing
TM as a boundary condition for a 4d N = 2 theory T [∂M ], and considering
line operators inserted into a 4d index.

Finally, in Section 6, we describe the index I[TM ] as an intrinsic topologi-
cal invariant of M — arguing that it is equivalent to an SL(2, C)
Chern–Simons partition function on M . The fact that the index is a Chern–
Simons partition function can be motivated by dualities in six dimensions,
highly reminiscent of recent work on M-theory realizations of Khovanov
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homology [42]. Indeed, since the index is naturally defined as an Euler char-
acteristic of a graded vector space, both in three and six dimensions, it is
perfectly ripe for categorification. We hope this topic will be explored in
future work.

2 Actions on the 3d index

Let us consider a 3d N = 2 SCFT T with flavor symmetry U(1)N . The
generalized supersymmetric index was defined in [17], following [13–16, 43],
as a trace

IT (m; q, ζ) = TrHm(−1)F e−β(E−R−j3)q
E+j3

2 ζe (2.1)

over a superselection sector of the Hilbert space of the 3d theory on S2.
Specifically, the Hilbert space Hm is labeled by the magnetic flux m =
(m1, . . . , mN ) ∈ Z

N on S2 for N background U(1) gauge fields coupled to
the flavor symmetry,

mi :=
∫

S2

Fi

2π
. (2.2)

By standard arguments [44], the index (2.1) receives contributions only from
states with energy E = R + j3, where R is the R-charge of a state3 and j3

is the spin on S2, with respect to a fixed, chosen axis. With this in mind,
we can write the index more simply as

IT (m; q, ζ) = TrHm(−1)F q
R
2 +j3ζe. (2.3)

The fugacity ζ measures the flavor charge e ∈ Z
N of states, and we use a

shorthand notation ζe = ζe1
1 · · · ζeN

N .

It is also often convenient to work with the index at fixed magnetic flux m
and at fixed electric charge e. We therefore collect e and m into a symplectic

3Although we consider superconformal theories here, R does not have to be the same
as the R-charge that enters into the superconformal algebra, cf. [15].
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charge vector

γ =
(

m

e

)
, (2.4)

and define

IT (γ; q) ≡ IT (m, e; q) := TrHm,e(−1)F q
R
2 +j3 . (2.5)

Thus, IT (m; q, ζ) =
∑

e∈ZN

IT (m, e; q) ζe, or conversely IT (m, e; q) =∮
dNζ

(2πi)Nζe+1
IT (m; q, ζ), where ζe+1 = ζe1+1

1 · · · ζeN+1
N and integration is

done on the unit circle.

We note that even though the theory T is superconformal, the R-charge
used to calculate the index need not coincide with the superconformal R-
charge. The index is typically computed from a UV description of the theory,
by a deformed Lagrangian on S2 that preserves a half of the usual super-
conformal symmetries no matter how R is defined [15,45]. The powers of q
produced by such a calculation could be unconstrained. However, if the UV
theory flows to a IR SCFT whose R-symmetry is not accidental, there will
be a R-symmetry redefinition that makes the powers of q non-negative. This
is because the quantity E + j3 in (2.1) (and so R

2 + j3 when restricted to
E = R + j3) is non-negative in superconformal theories, cf. [46]. Conversely,
the absence of a such redefinition — which we have yet to encounter in class
R — would signal a breakdown of the naive expectations for the RG flow
of the UV theory.4

Finally, we should comment on the precise meaning of (−1)F in the trace.
The most natural choice would be (−1)2j3 , but it is not the choice that is
(implicitly) made in the literature on the refined index: in the presence of
odd magnetic flux, the angular momentum on S2 of a particle of odd electric
charge is shifted by a half-integral amount, but no extra (−1) sign is usually
inserted compared to the index in even flux sectors. This is equivalent to a
definition

(−1)F = (−1)2j3+e·m. (2.6)

The difference between the two conventions is fairly minimal: it is just an
overall sign change (−1)e·m of IT (m, e; q), or a redefinition of the fugacity

4This is a possibly more refined version of the requirement of positive monopole oper-
ator dimensions used to discuss the IR behavior of N = 4 gauge theories [47].
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ζ → (−1)mζ in IT (m; q, ζ). In this paper, we will stick to the modified form
of F , mostly for reasons of notational convenience and backwards compati-
bility. We will return to some of these subtleties in later sections.

2.1 The Sp(2N, Z) action

In [22], an Sp(2N, Z) action on 3d SCFT’s with N U(1) flavor symmetries
was introduced.5 The index (2.5) in the charge basis transforms very trans-
parently under this action. Namely, for g ∈ Sp(2N, Z), we have6

Ig◦T (g γ; q) = IT (γ; q) . (2.7)

For simplicity, we can illustrate the action (2.7) for N = 1 (i.e., a single U(1)
flavor symmetry) by looking at the action of the two generators T and S of
Sp(2, Z) � SL(2, Z).

A T transformation simply adds one unit of Chern–Simons coupling for
the background U(1) gauge field. The effect of the CS coupling for the flavor
symmetry background gauge field is simply to shift the flavor charge of a
state by an amount proportional to the magnetic flux. Therefore

IT◦T (m, e + m; q) = IT (e, m; q), (2.8)

which is compatible with the matrix representing T ,

T :
(

m

e

)
�→
(

1 0
1 1

)(
m

e

)
. (2.9)

An S transformation makes the background gauge field dynamical, and
adds a supersymmetric FI term for it. This effectively couples the resulting
theory to a background U(1) for a new flavor symmetry, whose conserved
current is the magnetic flux of the old, now gauged, flavor symmetry. Thus,
the new electric charge is the old magnetic flux. Gauging the old flavor sym-
metry also means that we should project onto states of zero gauge charge.
However, turning on a magnetic flux m′ for the new flavor symmetry shifts

5We refer the reader to [22], as well as [19], for details of Sp(2N, Z) transformations on
SCFT’s. Our notation here closely follows that in [19].

6Note that the Sp(2N, Z) transformation acts non-trivially on the (−1)e·m factor we
included in the definition of the fermion number. We will return to this in Section 2.2.



986 TUDOR DIMOFTE, DAVIDE GAIOTTO AND SERGEI GUKOV

the gauge charge of a state by m′, so in effect we project onto states of gauge
charge −m′. Altogether we find

IS◦T (−e, m; q) = IT (m, e; q), (2.10)

which is compatible with the matrix representing S,

S :
(

m

e

)
�→
(

0 − 1
1 0

)(
m

e

)
. (2.11)

From these matrix representations, it is easy to check that I(ST )3◦T (γ; q) =
IT (γ; q), and IS2◦T (γ; q) = IT (−γ; q), as expected from the group relations
(ST )3 = id. and S2 = C, where C acts as charge conjugation.

The T and S transformations (2.8) to (2.10) could also be written in a
“fugacity” basis for the index (2.3). We find

IT◦T (m; q, ζ) = ζm IT (m; q, ζ), (2.12)

IS◦T (m′; q, ζ ′) =
∑
m∈Z

∮
dζ

2πiζ
ζ ′mζm′ IT (m; q, ζ), (2.13)

with the integration done, as usual, on the unit circle. In this form, it is
easier to see that the transformations agree with the general rules of [15,17]
for gauging flavor symmetries and adding Chern–Simons terms to the index.

2.2 Affine shifts

As mentioned above, the R-charge used in the index does not need to coin-
cide with the R-charge that appears in the superconformal algebra. We can
take R to be any R-symmetry charge. If we redefine the R-charge by a fla-
vor symmetry, then different choices are related by R → R− αe · e for some
vector αe. Under such a shift, the index varies accordingly as

IT (m, e; q) → q−
1
2αe·eIT (m, e; q). (2.14)

There is also a certain degree of latitude in choosing the R-charge of the
vacuum in a non-trivial flux sector of the theory. It is thus natural to also
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consider redefinitions R → R + αm ·m, under which

IT (m, e; q) → q
1
2αm·mIT (m, e; q). (2.15)

Altogether, we can collect

α =
(

αe

αm

)
, (2.16)

and write

IσR(α)◦T (γ; q) = q
1
2
〈α,γ〉IT (γ; q) , (2.17)

where σR(α) ◦ T denotes the theory with the new R-charge R + 〈α, γ〉. Here
the symplectic product 〈α, γ〉 equals αm ·m− αe · e.

Similar shifts can happen in the definition of the fermion number charge
F . This would not be the case if we had defined (−1)F = (−1)2j3 , as j3 is
a generator in a non-Abelian symmetry group. But the symplectic group
acts on (−1)e·m in a rather interesting way. Indeed, s(γ) = (−1)e·m is a
“quadratic refinement of the charge lattice”, i.e., a Z2-valued function of
charges with the property

s(γ)s(γ′) = s(γ + γ′)(−1)〈γ,γ′〉. (2.18)

Any two such refinements differ by a factor of the form (−1)〈α,γ〉 for some
α. Thus, we will just introduce a fermion-number shift operation

IσF(α)◦T (γ; q) = (−1)〈α,γ〉IT (γ; q) , (2.19)

that modifies the choice of quadratic refinement used in F . Note that
[σF(α)]2 = 1 for any α. Such shifts in the definition of R and F are often
important when comparing mirror descriptions of the same theory. In partic-
ular, a symplectic transformation will change the choice of quadratic refine-
ment from s(γ) to s(gγ), which will have to be brought back to s(γ) by a
fermion number shift.

In the following, we will often find that R and F shifts happen simulta-
neously, with the same parameter α. This is ultimately due to the fact that
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the UV description of the theories often have a natural R-charge assign-
ment such that (−1)F = (−1)R, i.e., (−1)R+2j3+e·m = 1 when acting on all
the chiral fields in the Lagrangian.7

Mathematically, the shifts in R and F generate an abelian group of trans-
lations Z

2N × (Z2)2N that acts on the index. This abelian group can nat-
urally be combined with the symplectic group Sp(2N, Z) to generate an
affine symplectic group Sp(2N, Z) � (Z× Z2)2N . One can check that the
expected group relations are satisfied. For example, taking N = 1, if we
denote the generators of unit electric and magnetic shifts by σR

e , σF
e and

σR
m, σF

m, respectively, then

SσR
e = σR

mS, SσR
m = (σR

e )−1S, (2.20a)

T−1(σR
e )−1TσR

e = σR
m, TσR

m = σR
mT, (2.20b)

and similarly for σF
e,m. The abelian (Z× Z2)2N subgroup of the affine sym-

plectic group does act in the obvious way by translations on the vector
(m, e). However, we will see momentarily that there exists another object, a
certain algebra of operators associated with the index, on which this abelian
subgroup is represented by translations.

2.3 Adding a superpotential

In the framework of [19], another important operation on a 3d N = 2 SCFT
T was the addition of a superpotential. The index is affected by superpo-
tential terms in a simple fashion; one just has to drop, in an appropriate
way, any flavor symmetry broken by the superpotential.

This has three basic consequences. To illustrate them, suppose that we
add a superpotential W charged only under the first U(1) of the flavor sym-
metry group U(1)N ; in other words,W has electric charge cW = (1, 0, . . . , 0).
Suppose that W also has R-charge RW . Then:

(1) In order for W not to break R-symmetry, its R-charge must equal 2.
This requires an electric R-charge shift by αe = (RW − 2, 0, . . . , 0), so
that RW − αe · cW = 2, thereby multiplying the index by q(1−RW/2)e1 ,
where e = (e1, . . . , eN ).

(2) The theory cannot be coupled to flux for a broken flavor symmetry.
Therefore, we must restrict m = (0, m′), where m′ = (m2, . . . , mN ).

7It is interesting to remark that in the context of four-dimensional N = 2 gauge theory,
wall-crossing considerations lead to the conjecture that (−1)R+2j3 should always be equal
to a quadratic refinement of the charge lattice when acting on BPS states [20].
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(3) The Hilbert space cannot be graded by the broken flavor charge, and
states whose difference in charge is a multiple of cW will now live in the
same charge sector. This means that we must sum over e1.

Altogether, we find that the addition of W amounts to

IT (γ; q) +W−→ IT ′(γ′; q) =
∑
e1∈Z

q

(
1−RW

2

)
e1IT (γ; q)

∣∣
m1=0

, (2.21)

with a new reduced charge vector γ′ = (m′, e′) = (m2, . . . , mN , e2, . . . , eN ).

In general, a superpotential might contain a sum of several operators
Oi, with general electric charges ci and R-charges Ri. We can add these
operators one at a time, in any order. Each of them transforms the index as

IT (γ; q) +Oi−→ IT ′(γ′; q) =
∑
n∈Z

q

(
1−Ri

2

)
nIT (e + nci, m; q)

∣∣
m·ci=0

. (2.22)

This can be thought of as a discrete version of a “symplectic quotient,”
with respect to a moment map 〈ci, m〉. After adding all the operators Oi,
we will be left with a charge vector γ′ = (m′, e′) that obeys m′ · ci = 0 and
e′ ≡ e′ + nici (ni ∈ Z), for all i.

2.4 A discrete symmetry ρ

We could define standard discrete symmetries C, P , and T acting on theories
T and their indices, though in general the 3d SCFT’s in class R will not
be invariant under any of these “symmetries” alone. To see which discrete
symmetries stand a chance at preserving a theory T and its index, it is
useful to consider more closely the Hilbert space Hm of T on S2 in the
presence of magnetic flux m. Suppose further that T is in class R, and has
a UV Lagrangian description as an abelian Chern–Simons-matter theory
with superpotential.

The Hilbert space Hm is graded by charges (E, R, j3, e). Since states
come in complete multiplets of the SU(2) Lorentz group, changing the sign
of j3 should preserve Hm. We could also try to flip the sign of the U(1) R-
charge R. In a Lagrangian, this is accomplished by Hermitian conjugation,
switching chiral multiplets and antichirals, which has the additional effect of
flipping the flavor charge e→ −e. However, this overall charge conjugation
still does not preserve the theory in a magnetic flux background. In order
for antiparticles to behave the same way as the original particles, it is also
necessary to replace m → −m.
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It appears that the simultaneous reversal of charges

ρ : (E, R, j3, e, m) → (E,−R,−j3,−e,−m) (2.23)

is a true symmetry of the graded Hilbert spaces Hm. In fact, there exists a
simple geometric operation that also realizes ρ in the context of the index.
If we put the Euclidean version of T on S2 × S1, with appropriate magnetic
flux and global Wilson lines so as to calculate the index, then ρ corresponds
to reflecting S2 through its equator (along the j3 axis) and reversing time.
The spatial reflection flips m, while the time reversal flips j3 and effectively
R and e. The effective negation of R and e happens because the fugacities
in R-charge and flavor Wilson lines change sign. Altogether, this reversal of
time and space is just the Euclidean analogue of CPT symmetry.

The outcome is that we would expect the index to be invariant under ρ.
Naively, from (2.3), this means

IT (m; q, ζ)
ρ
= IT (−m; q−1; ζ−1), (2.24a)

or in a charge basis,

IT (m, e; q)
ρ
= IT (−m,−e; q−1). (2.24b)

However, (2.24) are only true in a formal sense. In order to account for the
infinite cancelations between bosons and fermions in Hm, the index should
really be defined with a regulator as in (2.1). Upon applying ρ, the “Hamil-
tonian” appearing in the regulator changes, H = E −R− j3 → E + R + j3,
so that the boson-fermion cancelations in H−m should be counted differently
than would be implied by the right-hand sides of (2.24). Therefore, as writ-
ten, the equalities (2.24) are not actually correct. This fact is most striking if
(say) we choose a superconformal R-charge assignment; then the indices on
the left-hand side are series in positive powers of q while the indices on the
right-hand side are series in q−1. Typically there is no analytic continuation
from one to the other.8

Making sense of ρ symmetry for indices requires a reorganization of the
cancelations in the spaces Hm, effectively turning the series in q−1 on the
right-hand sides of (2.24) into series in q. One way to implement this reor-
ganization is to separate Hm into Fock spaces that can be “inverted.” For

8For example, we will see later that the index of the tetrahedron theory, as a function
of q, has a natural boundary at |q| = 1. We expect this to hold true for more general
theories in class R.



3-MANIFOLDS AND 3D INDICES 991

example, the reorganization in the Fock space of a free boson would corre-
spond to rewriting the generating function of single-particle states as

1
1− q−1

→ −q

1− q
. (2.25)

This reorganization will be realized in Section 3.1 for the simple tetrahedron
theory TΔ. For more complicated theories in class R, the mathematics of
plethystic logarithms and exponentials (cf. [48]) may help to convert indices
IT (−m,−e; q−1) to series in q.

Although ρ symmetry only holds formally for the index, it is still powerful
enough to relate algebras of operators on the index (which do not feel the
re-organization of Hilbert spaces). We will see this beginning in Section 2.5
below, and find a geometric meaning for ρ acting in operator algebras in
Section 5. In Section 6, we will show that when T is a 3-manifold theory
TM , ρ coincides with complex conjugation in SL(2, C) Chern–Simons theory
on M .

2.5 An operator algebra

In [8] (see also [9,19]), we encountered a certain universal structure common
to 3dN = 2 theories with U(1)N flavor symmetry. Upon compactification on
R

2 × S1, the moduli space of SUSY vacua maps to a Lagrangian submanifold
L of (C∗)2N , parameterized by the choices of complexified twisted masses X
and effective complexified FI parameters P . Both parameters have periodic
imaginary parts (flavor Wilson lines and effective theta angles, respectively),
so the true (C∗)2N parameters are

x = eX , p = eP . (2.26)

The effective FI parameters are derived from the low energy effective twisted
superpotential W̃ as

p = exp
(
∂XW̃

)
. (2.27)

The symplectic group Sp(2N, Z) simply acts by left multiplication on the
symplectic vector (X, P )T . Moreover, the shifts in fermion number act as
translations. The compactification on R

2 × S1 is done with supersymmetry-
preserving boundary conditions. Hence, an electric shift in the definition of
F by αe is equivalent to a shift of the flavor Wilson lines by iπαe. More
generally, a shift α in the definition of F turns into a shift of (X, P ) by
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i πα. Shifts in the definition of R are not visible. The operation of adding
an operator of charge c to the superpotential is equivalent to a symplectic
quotient of both the ambient space and of L with moment map 〈c, P 〉.

The classical structure of the R
2 × S1 moduli space has a quantum coun-

terpart in the S3
b partition function. The S3

b partition function is a function
of the complexified twisted masses mX , whose imaginary parts are now
proportional to the contribution of the flavor symmetries to the choice of
R-charge. We can define operators X̂ that act on the S3

b partition function
as multiplication by 2πbmX , and P̂ acting as i b∂mX . These operators satisfy
commutation relations

[P̂j X̂j′ ] = �δjj′ , � ≡ 2πib2. (2.28)

Then the S3
b partition function behaves as a wavefunction, killed by a quan-

tum version L̂(X̂, P̂ , �) of the equations that define L.

The group Sp(2N, Z) again simply acts by left multiplication on (X̂, P̂ )T .
Moreover, shifts in the definition of R used in the partition function give
rise to shifts of (X̂, P̂ ) by (iπ + �/2)α. In the limit � → 0, the ellipsoid is
degenerates into R

2 × S1, with a choice of fermion number that appears to
depend on the choice of R in S3

b . Finally, operation of adding an operator
of charge c to the superpotential is equivalent to a “quantum symplectic
quotient” with moment map 〈c, P̂ 〉.

We would like to carry this algebraic machinery over to index calculations.
We can actually define two commuting sets of interesting operators. The
first set is

X̂+ = �

2m− ∂e

P̂+ = �

2e + ∂m

, [P̂+, X̂+] = �, (2.29a)

and the second set is

X̂− = �

2m + ∂e

P̂− = �

2e− ∂m

, [P̂−, X̂−] = −�, (2.29b)

with each X̂± and P̂± denoting a vector of N operators, and

� = log q . (2.30)

Although we write the operators in logarithmic form, as partial derivatives,
the actual algebra that acts on the index is generated by the well-defined
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multiplication and shift operators (x̂±, p̂±) = (eX̂± , eP̂±). The exponentiated
operators satisfy q-commutation relations

p̂j+x̂j′+ = qδjj′ x̂j′+p̂j+, p̂j−x̂j′− = q−δjj′ x̂j′−p̂j−, (2.31)

with all other pairs of operators commuting.

We could also consider the action of these operators on the standard index
IT (m; q, ζ) in a fugacity basis. If we set ζ ≡ eiθ, we find that ∂e → i θ and
e→ −i∂θ, so that

X̂± =
�

2
m± i θ, P̂± = ±∂m −

i �
2

∂θ. (2.32)

Therefore, in a fugacity basis, the index is simply an eigenfunction of the X̂±
operators. In either basis, the ρ transformation of Section 2.4 conjugates
one set of operators to the other:

ρ−1(X̂±, P̂±) ρ = (X̂∓, P̂∓). (2.33)

Just as in the cases of S3
b partition functions and R

2 × S1 moduli spaces,
reviewed above, there is a natural action of the affine symplectic group on
the operator algebra generated by (2.29). This action intertwines the affine
symplectic action on the index. In particular, g ∈ Sp(2N, Z) acts as matrix
multiplication on (X̂±, P̂±), so that(

X̂ ′
±

P̂ ′±

)
· Ig◦T (γ′) =

[
g

(
X̂±
P̂±

)
· IT (γ)

]
γ→ g−1γ′

. (2.34)

(It may help to recall from (2.7) that Ig◦T (γ′) = I(g−1γ′).) For example, if
N = 1 and g = T is the T element of SL(2, Z), this intertwining property
would imply that

P̂ ′ · IT (m′, e′ −m′) =
[
(X̂ + P̂ ) · IT (m, e)

]
(m,e)→(m′,e′−m′)

. (2.35)

In a similar way, the translations

σR(α) : (X̂±, P̂±) �→ (X̂ ′
±, P̂ ′±) = (X̂±, P̂±)± �

2
α, (2.36)

σF(α) : (X̂±, P̂±) �→ (X̂ ′
±, P̂ ′±) = (X̂±, P̂±)± i πα, (2.37)

intertwine the action of R-charge and fermion-number shifts in the index.
If we always combine an R-symmetry shift with an equal F -symmetry shift,
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we recover the familiar shifts by multiples of iπ + �

2 that were encountered
in the S3

b partition functions of TM theories [19]. Finally, the operation of
adding an operator of charge c to the superpotential is again equivalent to
a “quantum symplectic quotient” with moment map 〈c, P̂±〉.

As we take the radius of the circle used in the definition of index to zero,
i.e., q → 1, or equivalently the radius of the S2 to infinity, we expect to be
able to connect back to the problem on R

2 × S1. One may hope that in
the q → 1 limit both sets of operators defined above may go to the clas-
sical (X, P ) coordinates. In concrete examples, we find a striking result:
the index of the 3d SCFTs is annihilated by the same set of equations as
the S3

b partition function is, written in terms of either set of operators:
L̂(X̂±, P̂±, �±) · IT = 0. The fact that both ‘±’ sets of equations annihi-
late the index is consistent with the claim of Section 2.4 that the index
of TM theories enjoys a formal ρ symmetry. We expect this statement to
have a universal validity, beyond the examples considered in this paper. In
Section 5, we will sketch a proof of this statement.

3 The tetrahedron index

The basic building block used to construct the theory TM for any 3-manifold
M is the theory TΔ associated to a single ideal tetrahedron. More precisely,
we should call the theory

TΔ,ΠZ
, (3.1)

since it depends on a polarization for the boundary of the tetrahedron. As
discussed in Sections 2 and 4 of [19], we make a specific choice of polarization
ΠZ (see also Section 3.3 below). Then TΔ consists of a single free N = 2
chiral multiplet φ, coupled to a background U(1) gauge multiplet with a
level −1

2 Chern–Simons interaction.

In order to calculate the index of TΔ, we must specify the R-charge and
fermion number assignments for the theory on S2 × S1. We take Rφ = Fφ =
0, and also require that the vacuum in a flux sector of any negative charge
m has Rvac = Fvac = 0. Then, by following the rules for constructing indices
in [15,17], we find

IΔ(m; q, ζ) ≡ ITΔ,ΠZ
(m; q, ζ)

= (−q
1
2 )

1
2
(m+|m|)ζ−

1
2
(m+|m|)

∞∏
r=0

1− qr+ 1
2
|m|+1ζ−1

1− qr+ 1
2
|m|ζ

. (3.2)
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It turns out that this expression simplifies nicely to

IΔ(m; q, ζ) =
∞∏

r=0

1− qr− 1
2
m+1ζ−1

1− qr− 1
2
mζ

. (3.3)

The various ingredients in (3.2) can be given an intuitive explanation. The
denominator in the product arises from bosonic creation operators of flavor
charge 1 and spin r + |m|

2 acting on the vacuum. The spin starts from |m|
2

due to the non-trivial magnetic flux on S2. The numerator arises similarly
from fermionic creation operators of flavor charge −1 and spin r + |m|

2 + 1.

In addition to the product, the prefactor (−q
1
2 )

1
2
(|m|+m)ζ−

1
2
(m+|m|) in (3.2)

turns out to be both subtle and important. It depends on the energy, R-
charge, and flavor charge of the ground state in a non-trivial flux sector,
which have been calculated carefully in, e.g., [49]. First, the flavor charge of
the flux vacuum is affected by the quantization of (anti)fermions in the chiral
multiplet, and receives from that a contribution −1

2 |m|. This is corrected by
the Chern–Simons coupling k = −1

2 to −1
2(m + |m|). In order to determine

the R-charge Rvac and fermion number Fvac, we can shift conventions so that
Rφ = Fφ = 1 for the free chiral boson. Then R = F = 0 for the fermion zero-
mode whose quantization determines the quantum numbers of the vacuum,
implying Rvac = Fvac = 0. In terms of the index (3.2), we can easily perform
the shift to Rφ = Fφ = 1 by setting ζ → (−q

1
2 )ζ. Then it is easy to see that

the vacuum acquires Rvac = Fvac = 0 as expected.

It is important to remark a subtle sign difference between our prescription
for the index of a chiral multiplet and the prescription that can be found
in the literature [15, 17]. After aligning the choices of R-charge and CS
terms, the difference boils down to the prefactor (−1)

1
2
(|m|+m). This prefac-

tor affects in a minimal way the checks of mirror symmetry that have already
been done in the literature, as it only affects the overall sign of the index in
a given charge sector. However, only with our definition of the chiral index
can such signs be matched universally via an appropriate shift of F . This
deeply affects the calculation of the index in theories whose superpotentials
have monopole operators — which is standard in class R.

Let us also write the index in an electric-magnetic charge basis, as in
Section 2. By using several standard identities for q-series, we find

IΔ(m; q, ζ) =
∑
e∈Z

IΔ(m, e; q)ζe, (3.4)
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with

IΔ(m, e; q) =
∞∑

n=�e�

(−1)nq
1
2
n(n+1)−

(
n+ 1

2
e
)
m

(q)n (q)n+e
, (3.5)

where �e� ≡ 1
2(|e| − e) and (q)n ≡ (1− q)(1− q2) · · · (1− qn). The sum in

(3.5) can be thought of as defining a formal power series in q; for fixed
charge γ = (m, e), only finitely many terms in the sum are necessary for
calculating IΔ(m, e; q) to a desired order in q. The series (3.5) also appears
to converge to a well-defined analytic function of q for |q| < 1.

In anticipation of the interpretation of the tetrahedron index as a geomet-
ric invariant of an ideal tetrahedron Δ itself (and connections to the classical
Bloch group), we can take the “classical limit” q = e� → 1 and m →∞ with
qm fixed. Let us set q

m
2 ζ = z, remembering that ζ is a pure phase, so that

z becomes a complex number. Then

IΔ(m; q, ζ) =
∞∏

r=0

1− qr+1z−1

1− qr z−1

�→0∼ exp
(

2VΔ(z)
i �

+ · · ·
)

, (3.6)

where the function

VΔ(z) ≡ −ImLi2(z−1) (3.7)

is closely related to the hyperbolic volume of a tetrahedron with shape
parameter z. In fact, the actual volume can be written as VolΔ(z) = VΔ(z) +
arg(1− z−1) log |z|, cf. [50].

3.1 Parity and ρ symmetry

Several identities satisfied by the tetrahedron index can be understood via
discrete symmetries acting on TΔ. Let us first consider the action of parity P
on TΔ. In is not an exact symmetry because it inverts the sign of the Chern–
Simons level, from k = −1

2 to k = 1
2 . However, this can be compensated for

by subtracting a Chern–Simons term, i.e., applying T−1 ∈ Sp(2, Z). In the
S2 × S1 background, it actually turns out that the R-charge and fermion
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number of the vacuum must also be shifted, so that altogether we get

TΔ � σR
mσF

mT−1 ◦PTΔ. (3.8)

Acting on the index, P simply sends m → −m, so (3.8) implies

IΔ(m, e; q) =
(
− q

1
2
)mIΔ(−m, e + m; q). (3.9)

This identity can be checked explicitly (see Appendix A), most easily after
converting to the fugacity basis.

The ρ symmetry of Section 2.4 is more universal than parity, but also more
subtle to implement. Naively, it sends IΔ(m; q, ζ) to IΔ(−m; q−1, ζ−1); but
the latter does not make sense for |q| < 1. In order to properly apply the
symmetry, we need to reorganize the Hilbert space H−m, and to reinterpret
IΔ(−m; q−1, ζ−1) as a series in q. For the tetrahedron, this is actually
straightforward.

Let us set z = q
m
2 ζ, z = q

m
2 ζ−1, noting that ρ acts on z by complex con-

jugation. Then

IΔ(−m; q−1, ζ−1)

=
∞∏

r=0

1− q−r−1 z−1

1− q−rz−1
= exp

( ∞∑
n=1

−q−nz−n + z−n

n(1− q−n)

)

� exp

( ∞∑
n=1

−qnz−n + z−n

n(1− qn)

)

=
∞∏

r=0

1− qr+1z−1

1− qr z−1 = IΔ(m; q, ζ).

(3.10)

The necessary reorganization of cancelations happened in the middle step
(3.10), and established the ρ symmetry. Note that this is not analytic con-
tinuation, since neither of the exponentials here make sense on the unit circle
|q| = 1 — the expressions diverge at every root of unity.
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Figure 1: Leading powers of q in the index. The graph interpolates smoothly
between integer points.

3.2 Triality

Experimentally, we observe that the tetrahedron index enjoys yet another
more interesting discrete symmetry of order three:

IΔ(m, e; q) =
(
− q

1
2
)−eIΔ(e,−e−m; q)

=
(
− q

1
2
)mIΔ(−e−m, m; q). (3.11)

For a visual demonstration of this symmetry, let us define lead(m, e) to be
the leading power of q that appears in IΔ(m, e; q) when written as a series
in q. For example,

IΔ(0, 0; q) = 1− q − 2q2 − 2q3 − 2q4 + q6 + 5q7 + · · ·
⇒ lead(0, 0) = 0,

IΔ(1, 0; q) = −q − q2 + q4 + 3q5 + 4q6 + 6q7 + 6q8 + · · ·
⇒ lead(1, 0) = 1,

IΔ(1, 2; q) = −q2 − q3 − q4 − q5 + q7 + 3q8 + 5q9 + · · ·
⇒ lead(1, 2) = 2,

(3.12)

etc. It can be shown from (3.5) that lead(m, e) ≥ 0 for all m, e. A graph
of lead(m, e) appears in figure 1, which clearly hints at a Z3 “rotation”
symmetry in the index as in (3.11). We will describe a method of proving
(3.11) in Section 3.3, using difference equations for the index.
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In order to acquire further intuition for the triality symmetry of IΔ, it is
instructive to observe that (3.11) can be written as

IΔ(m, e; q) = IσeST◦Δ(m, e; q) = I(σeST)2◦Δ(m, e; q), (3.13)

where ST ∈ Sp(2, Z) and σe ≡ σR
e σF

e are affine symplectic transformations
of the tetrahedron theory, as described in Section 2. The transformation
σeST has order three. Then we recall from [19] that the tetrahedron SCFT
TΔ is invariant9 under the cyclic action of σeST, due to 3d N = 2 mirror
symmetry [3–6]. In other words, the following UV theories flow to the same
IR fixed point:

TΔ : free chiral with global U(1) symmetry at CS level −1
2 ,

σeST ◦ TΔ : gauged U(1) theory at CS level +1
2 ,

coupled to a single chiral.
(3.14)

Since these theories are mirror symmetric their indices must be the same,
and that is precisely what we see in (3.11) and (3.13).

3.3 Difference equations

A final interesting property of the tetrahedron index is the fact that it obeys
two difference equations. In terms of operators x̂± = exp(X̂±) and p̂± =
exp(P̂±) as defined in Section 2.5, these are(

p̂+ + x̂−1
+ − 1

)
IΔ = 0,

(
p̂− + x̂−1

− − 1
)
IΔ = 0. (3.15)

For example, writing these out in the charge basis we find

q
e
2IΔ(m + 1, e) + q−

m
2 IΔ(m, e + 1)− IΔ(m, e) = 0, (3.16a)

q
e
2IΔ(m− 1, e) + q−

m
2 IΔ(m, e− 1)− IΔ(m, e) = 0, (3.16b)

for all m, e. These equations are compatible with the ρ symmetry of the
index, which interchanges the two (±) sets of operators. The validity of
(3.15) can be checked easily by writing the index in a fugacity basis, and
using the product formula (3.3). Also, in the semi-classical regime (3.6)

9The decoration of the symplectic transformation ST by an R-charge and fermion
number shift σe = σR

e σF
e is correlated with the precise definition of the tetrahedron theory

in the twisted S2 × S1 geometry, as discussed above (3.2). Had we chosen different R and
F assignments for TΔ, the affine shift would look slightly different.
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each of the difference equations (3.15) turns into a differential equation,
equivalent to the standard property of the dilogarithm function, z d

dzLi2(z) =
log(1− z−1).

Equation (3.15) may look familiar from the study of “quantum
Lagrangians” and S3

b partition functions in [9, 19]. As anticipated in Sec-
tion 2.5, these are the same difference equations obeyed by the S3

b partition
function of TΔ, with an appropriate identification of the operators x̂±, p̂±.
We will try to explain the reason behind this in Section 5. In essence,
the same universal algebra of line operators is acting on both the index
and the S3

b partition functions; Ward identities for the line operators then
lead to (3.15).

In terms of the tetrahedron Δ itself, equation (3.15) are two copies of the
quantized Lagrangian L̂Δ that describes which flat SL(2, C) connections on
the boundary ∂Δ can be extended as flat connections in the interior of Δ.
To see this, recall10 from [19, 31] that the set of flat connections on ∂Δ,
a.k.a. the phase space P∂Δ, is described by three C

∗-valued edge coordinates
z, z′, z′′, subject to the condition that zz′z′′ = −1. Upon quantization, these
coordinates form an algebra of operators with q-commutation relations

ẑẑ′ = qẑ′ẑ, ẑ′ẑ′′ = qẑ′′ẑ′, ẑ′′ẑ = qẑẑ′′, (3.17)

and a central constraint

ẑ′′ẑ′ẑ = −1. (3.18)

(For logarithms of the ẑ’s, written in uppercase letters, the constraint reads
Ẑ + Ẑ ′ + Ẑ ′′ = i π + �/2.) Similarly, the classical Lagrangian LΔ = {z′′ +
z−1 − 1 = 0}, describing flat connections in the interior of Δ, becomes pro-
moted to a quantum operator (cf. [28])

L̂Δ = ẑ′′ − ẑ−1 − 1, (3.19)

which must annihilate any putative wavefunction of the tetrahedron, in any
representation. It should then be clear that equation (3.15) are just two
copies of (3.19), with opposite quantization parameters � and −�. Indeed,
using the classical complex variables z = q

m
2 ζ, z = q

m
2 ζ−1, or logarithmi-

cally Z = m
2 � + i θ, Z = m

2 �− i θ (cf.(2.32)), we find that we can identify
(P̂+, X̂+) = (�∂Z , Z) and (P̂−, X̂−) = (−�∂Z , Z).

10Throughout this paper, we will be quite brief with details of flat connections and 3d
geometry. We direct the reader to the summary of triangulations in Section 2 of [19] and
references therein (especially the classic [23,50]) for some potentially useful background.
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The Lagrangian (3.19) is invariant under cyclic permutations ẑ → ẑ′ →
ẑ′′ → ẑ in the operator algebra for the tetrahedron. That is, the equation
L̂Δ ψ = 0 for any putative wavefunction ψ can be written using any pair
of consecutive variables (ẑ′′, ẑ), (ẑ, ẑ′), or (ẑ′, ẑ′′), thanks to the constraint
(3.18). Moreover, the generator of the Z3 cyclic symmetry is none other than
our familiar affine Sp(2, Z) element σeST, cf. (3.13), acting on logarithms
of the ẑ operators. For example, if we identify (P̂+, X̂+) = (Ẑ ′′, Ẑ) and
(P̂ ′+, X̂ ′

+) = (Ẑ, Ẑ ′), then

(
X̂ ′

+

P̂ ′+

)
= σeST

(
X̂+

P̂+

)
=
(
−1 −1
1 0

)(
X̂+

P̂+

)
+
(

i π + �

2
0

)
. (3.20)

Together with the intertwining property (2.34) for the index, the cyclic
symmetry of the quantized Lagrangian guarantees that IΔ, IσeST◦Δ, and
I(σeST)2◦Δ all satisfy the same equation (3.15). This constitutes the basis for
a proof that IΔ = IσeST◦Δ = I(σeST)2◦Δ, as in (3.13), since the solutions to
the difference equations are unique given appropriate boundary conditions.
Details appear in Appendix A.

4 The index of TM

Several copies of the tetrahedron theory TΔ can be appropriately combined
to construct an N = 2 SCFT associated to any oriented 3-manifold M that
admits an ideal triangulation. The gluing rules for TΔ theories, described
in [19], immediately translate to a simple, combinatorial prescription for
calculating the supersymmetric index IM ≡ ITM

of TM on S2 × S1. Here, we
proceed to write down these rules explicitly, and to give several examples of
the resulting 3-manifold indices IM . Similar rules could be used to construct
indices for more general theories in class R.

Just as the SCFT TM is independent of any chosen triangulation of M
by virtue of 3d mirror symmetry — with different triangulations leading
to equivalent UV Lagrangian descriptions — the index IM must also be
a topological invariant of M . We will check this explicitly in Section 4.2,
by calculating the index of a bipyramid and demonstrating its invariance
under a “2 to 3 move.” This is sufficient (with a few technical caveats) to
guarantee triangulation invariance for a general 3-manifold.

Having obtained a new topological invariant, it is natural to ask how
strong it is. We conjecture that the index IM is exactly as strong as the
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compact SU(2) Chern–Simons partition function of M (a.k.a. the set of col-
ored Jones polynomials, when M is a knot complement). Equivalently, the
index is just as strong as the ellipsoid partition function Zb[M ] of TM , which
is a holomorphic SL(2, C) Chern–Simons invariant [8, 19]. The best way to
see this is by identifying the index IM with a full, non-holomorphic SL(2, C)
Chern–Simons partition function, as in Section 6. For now, an excellent hint
comes from the fact (demonstrated in Section 4.5) that the same “quan-
tum Lagrangian” operators that annihilate compact [51, 52] and holomor-
phic [28, 29, 31] SL(2, C) Chern–Simons partition functions also annihilate
the index. Then it is clear that (say) the compact SU(2) CS partition func-
tion determines the difference operators, and these in turn determine the
index, up to a finite number of q-dependent normalizations.

To test the conjectured strength (or weakness) of the index as a topolog-
ical invariant, one could consider topologically distinct knot complements
with the same colored Jones polynomials. A famous infinite family of such
pairs is generated by the so-called “mutation” operation on knots [53, 54].
In Section 4.7, we will calculate the indices for the simplest pair of mutant
knot complements, at charges (m, e) = (0, 0) and the first few orders in q,
and show that they are identical. We then provide a new gauge-theoretic
argument for mutation-invariance of the index (as well as Zb[M ]) using prop-
erties of 4d N = 2 theories.

4.1 Gluing rules

Let us begin by recalling the gluing rules of [19] for theories TM . To construct
TM , we must choose an oriented 3-manifold M , an ideal triangulation M =⋃N

i=1 Δi of M (which does not matter in the end), and a polarization Π for
the symplectic space P∂M of flat connections on the boundary ∂M (which
does matter).

The choice of polarization was described carefully in Section 2 of [19], and
we recall a few facts about it here. Physically, if we think of TM as a 3d
boundary condition for a 4d N = 2 SCFT T [∂M ], the polarization specifies
how to couple TM to bulk 4d degrees of freedom. In practice, for components
of ∂M that are triangulated by faces of tetrahedra Δi, the polarization
Π involves a choice of independent external edges to which are associated
canonically conjugate “position” and “momentum” coordinates on P∂M .
For components of ∂M that are torus cusps, coming from vertices of ideal
tetrahedra, a polarization corresponds to a basis of canonically conjugate
“A and B cycles” on the torus. We will see both of these cases appearing in
examples later on.
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Figure 2: An ideal tetrahedron, with edge parameters.

Suppose then that we are given M , {Δi}N
i=1, and Π. To find TM :

(1) The semi-classical phase space P∂Δi of each tetrahedron Δi is described
by three logarithmic edge parameters Zi, Z

′
i, Z

′′
i as in figure 2, with a

(quantum-corrected) constraint

Zi + Z ′i + Z ′′i = i π + �/2, (4.1)

and a symplectic structure Ωi = 1
�
dZi ∧ dZ ′i. To each tetrahedron Δi,

in its “canonical” polarization Πi ≡ ΠZi with position and momentum
(Xi; Pi) = (Zi; Z ′′i ), associate the tetrahedron theory TΔi,Πi as in (3.1).
It has a U(1) flavor symmetry, whose twisted mass parameter should be
thought of as the position Zi.

(2) Form a product theory T{Δi},{Πi} = TΔ1,Π1 ⊗ · · · ⊗ TΔN ,ΠN
. This cor-

responds to the collection of tetrahedra {Δi} with the natural product
polarization Π1 × · · · ×ΠN on the product phase space P∂Δ1 × · · · ×
P∂ΔN

. The theory has U(1)N flavor symmetry, with each independent
twisted mass corresponding to a position coordinate Zi.

(3) Choose a new polarization Π̃ on the product phase space P∂Δ1 × · · · ×
P∂ΔN

such that
• it is compatible with the final desired polarization Π for ∂M (i.e.,

the positions and momenta in Π are also positions and momenta in
Π̃); and

• the edge coordinates CI for all internal edges in the triangulation of
M are positions in Π̃.11

This is possible by a classic result of [23].
(4) Write Π̃ = g · {Πi}, where g is an affine symplectic transformation,

g ∈ Sp(2N, Z) �
[
(i πZ)2N × (�

2Z)2N
]
, (4.2)

11It may be useful to recall here that these internal edge coordinates are sums of edge
coordinates Zi, Z

′
i, Z

′′
i of individual tetrahedra that come together to form an internal

edge (the same holds for external edges); and all internal edge coordinates commute with
all external coordinates on P∂M .
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and act on the product theory TΔi,{Πi} with g as in Sections 2.1 and 2.2
to obtain

T{Δi},Π̃ = g ◦ T{Δi},{Πi}. (4.3)

This theory still has a U(1)N flavor symmetry, but the twisted mass
parameters now correspond to position coordinates on P∂M and to inter-
nal edge coordinates CI.

(5) Add a superpotential W =
∑

IOI to T{Δi},Π̃ that breaks the U(1) sym-
metries associated to the internal edges I. This operation is the gauge-
theory equivalent of symplectic reduction. We obtain a UV Lagrangian
description of the theory TM , which has a global symmetry group
U(1)

1
2

dimP∂M left over. The twisted mass of each U(1) is a position
coordinate in the polarization Π for P∂M .

Two points here deserve further clarification. First, for defining a theory
TM on R

3, the affine shifts in (4.2) were irrelevant. In the context of the
index, however, the theory is put on an S2 × S1 geometry, in the presence
of magnetic flux. Then the affine shifts by iπ and �/2 are related to F
and R assignments, respectively, as discussed in Section 2.2. In order to
see both shifts by iπ and �/2 in the geometric description of phase spaces
such as P∂Δi and P∂M , one must include a few � corrections in the relations
among classical coordinates, as in (4.1). In the closely related context of
analytically continued Chern–Simons theory, these semi-classical corrections
were studied systematically in [31]. The basic rule–of–thumb is that every
i π must be accompanied by an �/2. Hence for gauge theory on S2 × S1

this means that every shift of R-charge σR is coupled to a shift of fermion
number σF.

Second, one might recall from [19] that it was sometimes necessary to
refine a given triangulation of M in order to properly define the theory TM .
This is because the operators OI that one adds to the superpotential may
not exist when triangulations are too coarse. (For example, the theory of
the figure-eight knot complement built from two tetrahedra suffered from
this problem.) For purposes of calculating the index IM , such refinements of
triangulation are not necessary. The index is insensitive to superpotential
terms, aside from the simple fact that they break some flavor symmetry.
Thus, when computing an index, we can often use unrefined, “hard” trian-
gulations and just break flavor symmetries by hand, following the rules of
Section 2.3.

Now, translating the gluing rules for TM to gluing rules for the index,
and taking into account the preceding remarks, we arrive at the following
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combinatorial construction of IM . Let us again suppose that we have a
manifold M , a triangulation {Δi}, and a polarization Π for P∂M . Then:

(1) To each tetrahedron Δi with polarization Πi, associate a tetrahedron
index IΔi(mi, ei) defined by (3.5). (We work in a charge basis, and also
suppress the dependence on q.)

(2) Form the product

I{Δi},{Πi}(m, e) = IΔ1(m1, e1)× · · · × IΔN
(mN , eN ). (4.4)

Now m and e are charge vectors of length N , and we can set γ =
(
m
e

)
.

(3) Choose a polarization Π̃ for the product phase space P∂Δ1 × · · · × P∂ΔN

as in Step (3) above. It is related to the obvious product polarization
via an affine symplectic transformation g. Decompose g as a product
g = σ(α) gSp, where gSp ∈ Sp(2N, Z) and σ(α) = σR(α)σF(α), α ∈ Z

2N ,
is an affine shift of position and momentum coordinates by (iπ + �

2 )α.
(As noted above, shifts by iπ will always be coupled with shifts by �/2.)

(4) Apply the above affine symplectic transformation to the product index,
following Sections 2.1 and 2.2. Using the notation γ =

(
m
e

)
, we obtain

IΔi,Π̃
(m, e) =

[
σR(α)σF(α) gSp

]
◦ I{Δi},{Πi}(m, e)

=
(
− q

1
2
)〈α,γ〉I{Δi},{Πi}

(
g−1
Sp γ

)
. (4.5)

(5) Finally, break the flavor symmetries corresponding to internal edges
of the triangulation. In the polarization Π̃, each independent internal
edge coordinate CI corresponds to a distinct electric charge eI. Then,
according to Section 2.3, we find

IM,Π(m′, e′) =
∑
eI∈Z

qΣIeIIΔi,Π̃
(m, e)

∣∣∣
mI=0

, (4.6)

where the sum is over all internal-edge charges eI, and we set all conju-
gate magnetic charges mI to zero. The extra factor of qΣIeI comes from
the R-charge correction discussed in Section 2.3, using the fact that our
R-charge assignment for tetrahedron theories was Rφ = Rvac = 0.

In the end, we obtain an index IM that depends on 1
2 dimP∂M electric

charges e′ and 1
2 dimP∂M magnetic charges m′. They correspond directly

to the 1
2 dimP∂M U(1) flavor symmetries of the theory TM .

The sum (4.6) typically converges, in the sense that only finitely many
terms are necessary for calculating IM,Π(m′, e′) to any desired order in q.
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Figure 3: The bipyramid, in its two triangulations. The equatorial polar-
ization Π = (X1, X2; P1, P2) has positions X1 and X2 corresponding to the
two equatorial edges in the front.

Physically, the convergence of the sum is directly related to the existence of
unconstrained chiral operators OI that can be added to the superpotential
of T{Δi},Π̃ to obtain TM . (This statement will become clearer in Section 4.6.)
In particular, when using a refined, “easy” triangulation so that all oper-
ators OI exist, the sum should always converge. In practice, for an index
computation, it actually appears that the only triangulations to be avoided
are those with univalent internal edges — e.g., edges resulting from gluing
two adjacent sides of a single tetrahedron together. Such triangulations are
automatically “hard”; but more seriously, they fail to describe the moduli
space of flat connections on M (cf. [55], Section 10.3, and [56, 57]), and
should never be expected to produce the correct theory TM or its index.

4.2 The bipyramid

As a simple but crucial example of a non-trivial 3-manifold, let us take M
to be the bipyramid, shown in the center of figure 3. The bipyramid can
be decomposed into either 2 or 3 tetrahedra, leading to two different UV
descriptions of the theory TM . It was shown in [19] that, with an appropriate
polarization, the gluing of two tetrahedra produces Nf = 1 super-quantum-
electrodynamics (SQED), while the gluing of three tetrahedra produces the
so-called XYZ model, a theory of three chiral multiplets coupled by a cubic
superpotential. The fact that these theories are mirror symmetric [5] formed
the basis of the argument that the construction of TM for general 3-manifolds
is triangulation independent (see also [34]).

Here we calculate the index IM for the bipyramid. The boundary phase
space P∂M is four-dimensional, with two position coordinates corresponding
to the U(1)2 flavor symmetry of either Nf = 1 SQED or the XYZ model.
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Let us choose an equatorial polarization for P∂M , with position coordinates
x1,2 = exp(X1,2) and momentum coordinates p1,2 = exp(P1,2) associated to
the external edges shown in figure 3.

For the decomposition into two tetrahedra ΔR and ΔS , we first form the
product index I{ΔR,ΔS},{ΠR,ΠS}(mR, mS , eR, eS) = IΔ(mR, eR) IΔ(mS , eS).
(We continue to suppress the dependence of indices on the parameter q.)
Then observe that⎛⎜⎜⎝

X1

X2

P1

P2

⎞⎟⎟⎠ =

⎛⎜⎜⎝
R + S′′

R′′ + S
R′′

S′′

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1 0 0 1
0 1 1 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

R
S
R′′

S′′

⎞⎟⎟⎠ . (4.7)

Therefore, Π = Π̃ = gSp · (ΠR ×ΠS), where gSp is the symplectic matrix on
the right side of (4.7). There is no affine shift. Correspondingly, the index
transforms as

IM,Π(m1, m2, e1, e2) =
(
− q

1
2
)〈0,(m,e)〉I{ΔR,ΔS},{ΠR,ΠS}

(
g−1
Sp (m1, m2, e1, e2)

)
= IΔ(m1 − e2, e1) IΔ(m2 − e1, e2). (4.8)

Since there are no internal edges, this is automatically the index of the
bipyramid theory.

Physically, (4.8) counts states in Nf = 1 SQED on S2 × S1. To be very
explicit, this theory starts out with a flat-space Lagrangian12

LM,Π =
1
4π

∫
d4θ
(
Σ1 V2 + (Σ1 + 2V2)V

)
+
∫

d4θ
(
φ†ReV + 1

2
V1φR + φ†S′′e

−V + 1
2
V1φS′′

)
, (4.9)

where V is dynamical, V1 is a background vector multiplet for the axial
U(1) symmetry, and V2 is a background vector multiplet for a slightly modi-
fied topological U(1) symmetry. Some additional background Chern–Simons
couplings are turned on, and one can also work out the appropriate R-
charges and fermions numbers chosen for putting the theory on S2 × S1

12This particular Lagrangian is found after doing an σeST rotation (a mirror symmetry)
of the ΔS tetrahedron; see Section 4.2 of [19].
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(corresponding to our equatorial polarization Π). Then,

IM,Π(m1, m2; q, ζ1, ζ2) = TrHm1,m2
(−1)F q

R
2

+j3ζe1
1 ζe2

2

=
∑

e1,e2∈Z

IM,Π(m1, m2, e1, e2; q)ζe1
1 ζe2

2 , (4.10)

where e1 and e2 count axial and topological charges, and m1 and m2 specify
the amount of axial and topological flux, respectively, through S2.

For the triangulation into three tetrahedra ΔZ , ΔW , ΔY , we again start
with a product index I{Δi},{Πi}(m, e) = IΔ(mZ , eZ) IΔ(mW , eW )IΔ(mY ,
eY ). Now, however, the product phase space P∂ΔZ

× P∂ΔW
× PΔY

is six-
dimensional, and there is an internal edge. We choose an intermediate
polarization Π̃ = (X1, X2, C; P1, P2, Γ) on the product phase space that is
compatible with Π and also includes C = Z + W + Y , the internal edge
parameter, as a position coordinate. Here Γ = −Y ′ (say) is a conjugate
momentum to C that commutes with the external edges. Then

⎛⎜⎜⎜⎜⎜⎜⎝
X1

X2

C
P1

P2

Γ

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
Z
W

Z + W + Y
Z ′′ + Y ′

W ′′ + Y ′

−Y ′

⎞⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0
0 1 0 0 0 0
1 1 1 0 0 0
0 0 −1 1 0 −1
0 0 −1 0 1 −1
0 0 1 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
Z
W
Y
Z ′′

W ′′

Y ′′

⎞⎟⎟⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

i π + �

2

i π + �

2

−i π − �

2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (4.11)

so the affine symplectic transformation from {Πi} to Π̃ is σ(α) gSp with
gSp the matrix appearing in (4.11) and a shift vector α = (0, 0, 0, 1, 1,−1).
Correspondingly,

I{Δi},Π̃(m, e) =
(
− q

1
2
)〈α,(m,e)〉I{Δi},{Πi}

(
g−1
Sp (m, e)

)
=
(
− q

1
2
)m1+m2−m3IΔ(m1, e1 + e3)IΔ(m2, e2 + e3)

× IΔ(m3 −m1 −m2, e3 + m1 + m2 −m3).
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Finally, to obtain the index of the bipyramid theory, we sum over the electric
charge e3 corresponding to the internal edge, and set m3 = 0:

IM,Π(m, e) =
∑
e3∈Z

(
− q

1
2
)2e3+m1+m2IΔ(m1, e1 + e3) IΔ(m2, e2 + e3)

× IΔ(−m1 −m2, e3 + m1 + m2)

=
∑
e3∈Z

qe3 IΔ(m1, e1 + e3) IΔ(m2, e2 + e3) IΔ(m1 + m2, e3)

(4.12)

(the last simplification follows by parity symmetry (3.9)). It is not too hard
to see that (4.12) is a reasonable index for the XYZ model, with the cubic
superpotential breaking a diagonal U(1) flavor symmetry and leading to a
sum over its charge sectors.

The equivalence of (4.8) and (4.12) can be proven using difference equa-
tions, much in the same way that we demonstrate σeST-invariance of the
tetrahedron index in Appendix A. Of course, these two expressions must
be equal on physical grounds, because they are indices for mirror symmetric
theories. Computationally, it is very easy to check equivalence at any fixed
charge γ = (m, e), order by order in q. For example, both expressions give

IM,Π(0, 0, 0, 0) = 1− 2q − 3q2 + 4q4 + 12q5 + 14q6 + 6q8 + · · · ,
IM,Π(1, 3, 2, 4) = −q6 − 2q7 − 4q8 − 6q9 − 8q10 − 9q11 − 8q12 + · · · ,

etc. Only a finite number of terms in the sum (4.12) is needed at any
given order. In [16, 17], the match was also proven at special values of
m = (m1, m2) using different methods.

The equivalence of (4.8) and (4.12) and the σeST-invariance of IΔ are
the basic non-trivial ingredients in a combinatorial argument that IM,Π is
a topological invariant of (M, Π) — independent of triangulation or any
other choices. Again, this must be the case physically as long as TM is well
defined, but it us useful to have a more bottom-up understanding. The
σeST-invariance shows that it does not matter how one labels edge parame-
ters of individual tetrahedra in a triangulation, as long as their cyclic order-
ing (induced by the orientation of M) is preserved. The 2 to 3 invariance
of the bipyramid index is then enough to show that the index of any trian-
gulated 3-manifold is independent of triangulation. In particular, the 2 to 3
invariance must work for any boundary polarization of the bipyramid (it is
trivial to show this), and seems to commute with the operation of gluing the
bipyramid into a larger 3-manifold — as long as the larger triangulation has
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no univalent edges.13 Then, conjecturally, the set of triangulations of M
with no univalent edges is fully connected by 2 to 3 moves, and triangulation
invariance follows.

It would be useful to have a more rigorous understanding of convergence,
its relation to combinatorics of triangulations, and how 2 to 3 moves act to
connect restricted sets of triangulations — such as those without univalent
edges. Mathematically, this is still uncharted territory.

4.3 Some knot complements

A well-studied class of 3-manifolds are the complements of knots in the 3-
sphere. One forms a knot complement MK by slightly thickening a knot
K ∈ S3 into a solid torus NK , and then cutting it out,

MK = S3\NK . (4.13)

With the single exception of the unknot complement, all knot complements
seem to admit14 ideal triangulations that can be used to define the index
IMK

, a topological invariant of MK .

The boundary of a knot complement is a torus T 2, and its phase space PT 2

has a canonical polarization Π. To define it, one first identifies the so-called
meridian and longitude cycles on the boundary: the meridian μ is a small
loop linking the knot K, which would be contractible in the thickened knot
neighborhood NK ; and the longitude λ is a loop running parallel to K that
has zero linking number with K and is null-homologous in MK (figure 4).
The orientation of MK induces a relative orientation on these cycles. The
eigenvalues of the SL(2, C) holonomies along λ and μ, typically denoted
� and m, then provide C

∗ coordinates for the boundary phase space (see,

13Cf. the end of Section 4.1. The potential issue here is that the sums (4.6) in the
definition of the index may not converge uniformly — so that order of summations can
be interchanged. From all tested examples, it appears that avoiding univalent edges is
sufficient for convergence. Otherwise, we should only use refined, “easy” triangulations.
It is highly plausible that the set of “easy” triangulations is fully connected by 2 to 3
moves, but it is not yet known rigorously.

14All ideal triangulations of the unknot have a univalent (“peripherally homotopic”)
edge. Otherwise, it has been proven that all hyperbolic knot complements have non-
univalent triangulations [58], and the same seems to hold even for non-hyperbolic
knots [56].
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K

Figure 4: Meridian and longitude cycles on the boundary of a knot comple-
ment.

e.g., [28]):

P∂M =
(
C
∗ × C

∗)/
Z2 = {(�, m)}

/
(�, m) ∼ (�−1, m−1). (4.14)

Finally, we take the canonical position coordinate15 to be U ≡ 2 log(m) and
its conjugate momentum to be v ≡ log(−�). These logarithmic coordinates
are periodic, and have an identification (U, v) ∼ (−U,−v).

The coordinates U and v are easily expressed as sums and differences of
edge parameters of tetrahedra in a triangulation of MK [23, 50], and thus
fit nicely into the general combinatorial framework of Section 4.1 for con-
structing theories TMK

and indices IMK
. In particular, any knot complement

theory TMK
has a single U(1) flavor symmetry, with twisted mass parameter

U . Therefore, the index IMK
(m, e) depends on a single electric charge e and

magnetic flux m. We expect that the manifest U(1) symmetry is actually
enhanced to SU(2), allowing knot complement theories to couple to the 4d
theory T [∂MK ] = T [T 2], which is N = 4 SU(2) super-Yang–Mills. A clas-
sical indication of this enhancement appears in the Z2 Weyl symmetry of
the phase space (4.14). The enhancement would also imply that the index
satisfies

IMK
(m, e; q) = IMK

(−m,−e; q), (4.15)

which can be considered a quantum version of symmetry in the phase space.

We now give a few examples.

4.3.1 Figure-eight from two tetrahedra

The standard triangulation of the figure-eight (41) knot complement has
two ideal tetrahedra, say ΔZ and ΔW . All tetrahedron faces are glued
together pairwise, and the T 2 boundary is made up from small, truncated

15The factor of 2 in the definition of U ensures that U and v are canonically conjugate.
The minus sign in v = log(−�) is merely convenient when dealing with combinatorics of
triangulations, to avoid unwanted factors of i π. Geometrically, this sign is correlated with
the lift from PSL(2) to SL(2) holonomy on a knot complement.
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Figure 5: The standard triangulation of the figure-eight knot complement.

ideal vertices of the tetrahedra (figure 5). We find a meridian U = Z −W ′′

and a longitude v = Z ′′ − Z. There are two internal edge coordinates, but
only one of them is independent, and we can take it to be C = 2Z ′′ + Z ′ +
2W ′′ + W ′. Finally, the conjugate momentum to C can be defined as (say)
Γ = −W ′′. The change of polarization from ΠZ ×ΠW to Π̃ then becomes⎛⎜⎜⎝

U
C
v
Γ

⎞⎟⎟⎠ =

⎛⎜⎜⎝
Z −W ′′

2Z ′′ + Z ′ + 2W ′′ + W ′

Z ′′ − Z
−W ′′

⎞⎟⎟⎠

=

⎛⎜⎜⎝
1 0 0 −1
−1 −1 1 1
−1 0 1 0
0 0 0 −1

⎞⎟⎟⎠
⎛⎜⎜⎝

Z
W
Z ′′

W ′′

⎞⎟⎟⎠+

⎛⎜⎜⎝
0

2πi + �

0
0

⎞⎟⎟⎠ . (4.16)

Correspondingly, the product index IΔZ
(m1, e1)IΔW

(m2, e2) gets trans-
formed by the affine Sp(4, Z) action above to

I{Δi},Π̃(m1, m2, e1, e2) =
(
− q

1
2
)−2e2IΔ(m1 − e2, m1 + e1 − e2)

× IΔ(−m2 + e1 − e2,−e2), (4.17)

and then after breaking the U(1) symmetry associated to the internal edge
C we obtain

I41(m, e) =
∑
e2∈Z

IΔ(m− e2, m + e− e2) IΔ(e− e2,−e2). (4.18)

It can be checked for any charges (m, e) and to any order in q that

I41(m, e) = I41(−m, e) = I41(m,−e) = I41(−m,−e). (4.19)
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For example,

I41(1, 1) = I41(1,−1) = −q − q2 + 2q3 + 7q4 + 11q5 + 11q6 + 3q7 + · · · ,
(4.20)

etc. Thus, in addition to the Weyl symmetry (4.15), there is a parity-like
symmetry that inverts the sign of a single charge. Geometrically, this is a
result of the fact that the figure-eight knot complement is amphicheiral (i.e.,
is equivalent to its mirror image).

4.3.2 Figure-eight from six tetrahedra

In [19], we noted that the gauge theory arising from the simple, “hard”
triangulation of the figure-eight knot complement above is a bit singular.
Roughly, it is a U(1) gauge theory with two chiral multiplets, both of charge
+1. The U(1) vector flavor symmetry (promoted to SU(2)) corresponds
appropriately to the meridian coordinate U . However, the topological U(1)
symmetry (corresponding to the internal edge C) should be broken, and
there appears to be no operator OI around that can break it.

To remedy this problem, one can use a refined, “easy” triangulation con-
sisting of six tetrahedra, which leads to a perfectly good description of T41

with all desired operators present. We argued above that this refinement of
triangulations should not be necessary in the calculation of the index, and
we can now verify this. In Appendix B, we use the six-tetrahedron decom-
position to find the index. We have checked computationally that the more
complicated expression (B.2) there agrees with (4.18) for 0 ≤ m ≤ 3 and
0 ≤ e ≤ 3, up to 7th order in q. One should be able to prove the complete
equivalence of these expressions using a sequence of 2 to 3 transformations
on the index (or by using difference equations), but we do not do so here.

4.3.3 Trefoil

The trefoil (31) knot complement, like the figure-eight knot, has an ideal
triangulation consisting of two tetrahedra {ΔZ , ΔW }. The triangulation is
a bit asymmetric. The two internal edges have “valency” 2 and 10, with
coordinates16

C2 = Z + W (2 dihedral angles),

C10 = Z + 2Z ′ + 2Z ′′ + W + 2W ′ + 2W ′′ (10 dihedral angles). (4.21)

16The gluing data of this triangulation, and triangulations of any other knot or link com-
plement, can be easily obtained from computer packages such as snap [59] or SnapPy [60].
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Note that C2 + C10 = 4π i + 2� = (2πi + �)×(# tetrahedra). The merid-
ian and longitude holonomies can be described as U = W ′′ − Z ′′ and v =
−2Z ′′ + 2W ′′ −W + i π + �

2 . Then, using C ≡ C2 as the independent inter-
nal gluing constraint, and taking Γ = Z as its canonical conjugate, the
change of polarization Π̃ = g ◦ (ΠZ ×ΠW ) becomes

⎛⎜⎜⎝
U
C
v
Γ

⎞⎟⎟⎠ =

⎛⎜⎜⎝
−Z ′′ + W ′′

Z + W

−2Z ′′ + 2W ′′ −W + i π + �

2
Z

⎞⎟⎟⎠

=

⎛⎜⎜⎝
0 0 −1 1
1 1 0 0
0 −1 −2 2
0 0 1 0

⎞⎟⎟⎠
⎛⎜⎜⎝

Z
W
Z ′′

W ′′

⎞⎟⎟⎠+

⎛⎜⎜⎝
0
0

i π + �

2
0

⎞⎟⎟⎠ . (4.22)

From this, we compute the index and find a small surprise:

I31(m, e) =
∑
e2∈Z

(
− q

1
2
)2e2+m IΔ(e− 2m, e2) IΔ(2m− e, e2 + m).

= δe,3m. (4.23)

Alternatively, in a fugacity basis, we could write I31(m; q, ζ) = ζ3m.

Such a simple index indicates that T31 could, for example, be a pure
N = 2 Chern–Simons theory in the IR. Properly verifying this guess would
require refining the above triangulation of the knot complement, because
it contains a “hard” internal edge C10, and thus cannot be used to define
T31 . Nevertheless, the triangulation is perfectly reasonable for calculating
the index. Due to the anticipated relation between the index and SL(2, C)
Chern–Simons theory (Section 6), we actually expect that any torus knot
complement has a delta-function index. For example, an (a, b) torus knot
with ab even should have I(m, e) = δe, ab

2
m.

4.4 Mapping tori and T [SU(2)]

One could also try constructing indices for some 3-manifolds without explicit
reference to ideal triangulations. Another popular construction of 3-manifolds
starts with a Riemann surface C and builds a 3-manifold by identifying the
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“top” and “bottom” boundaries of a mapping cylinder Mϕ = C ×ϕ I,

M = C ×ϕ S1 ≡ C ×ϕ I
/
(x, 0) ∼ (ϕ(x), 1), (4.24)

with an element of the mapping class group ϕ : C → C. For example, if
C = T 2 \ {pt} is a punctured torus, the mapping class group is PSL(2, Z)
generated by the S and T elements. Many interesting 3-manifolds can be
represented as punctured torus bundles over S1, e.g., the figure-eight knot
complement is a punctured torus bundle over S1 with monodromy

ϕ = TST−1S−1. (4.25)

This construction of 3-manifolds has a natural interpretation in combined
3d/4d system as a periodic array of duality walls (determined by ϕ) in the 4d
N = 2 gauge theory T [C] [9,27,38]. For instance, if C is a punctured torus,
then T [C] is the so-called N = 2∗ theory in four dimensions. Moreover,
every element ϕ ∈ PSL(2, Z) in this example can be represented as a word
(a sequence) of S and T generators, each associated to a basic duality wall
in the four-dimensional gauge theory.

Relegating further details of the combined 3d/4d system to Section 5, we
can briefly summarize here the rules for calculating the index of 3d theories
TM , at least in the large class of examples (4.24) where C is a punctured
torus. Roughly speaking, for every word ϕ = γ1 · γ2 · · · · in the basic duality
generators γi one can associate a periodic array of 3d theories Tγi on the
corresponding duality walls, such that

IMϕ = “Tr” (Iγ1Iγ2 . . .) , (4.26)

reflecting the geometry (4.24) of the mapping torus Mϕ. For punctured
torus bundles, one needs to describe only two duality walls that correspond
to the S and T generators of the mapping class group SL(2, Z).

The theory on the duality wall associated with T k transformation is very
simple: it simply carries a Chern–Simons action for the flavor symmetry at
level k. Hence, it contributes to the integrand of (4.26) a factor

IT k = ζkm, (4.27)

written in terms of the fugacity ζ and magnetic flux m.

Similarly, the S transformation corresponds to a duality wall described
by a three-dimensional N = 2 SQED with Nf = 2 flavors, also known as the
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Figure 6: A mapping cylinder for an element ϕ acting on the punctured
torus C = T 2\{p}.

mass-deformed theory T [SU(2)]:

Theory T [SU(2)]
q1 q2 q3 q4 φ0 fugacity flux

U(1)gauge 1 1 −1 −1 0 z s
U(1)bottom 1 −1 1 −1 0 u v
U(1)puncture 1 1 1 1 −2 α m
U(1)top 0 0 0 0 0 w n

(4.28)

Here, the global symmetry U(1)bottom associated to the “bottom” bound-
ary of the mapping cylinder is actually a Cartan subgroup of the SU(2)
flavor symmetry group, as suggested by the charge assignments (4.28). This
symmetry is gauged when one glues the bottom boundary to something
else. Similarly, the top boundary of the mapping cylinder shown on figure 6
corresponds to the topological symmetry U(1)top. Furthermore, we denote
the axial symmetry by U(1)puncture since it corresponds to the puncture of
C = T 2\{p}.

The index of this theory is

IT [SU(2)] = χ(qα−2,−2m)
∑
s∈Z

∫
dz

2π iz
znwsχ(zαu, m + s + v)

× χ(z−1αu−1, m− s− v)χ(zαu−1, m + s− v)

× χ(z−1αu, m− s + v) (4.29)

where (w, n) are the parameters (fugacity and flux) for the topological sym-
metry U(1)top, and

χ(ζ, m) = (q1/2ζ−1)−m/2IΔ(ζ, m)

= (−1)
m+|m|

2 (q1/2ζ−1)|m|/2
∞∏

r=0

1− qr+ 1
2
|m|+1ζ−1

1− qr+ 1
2
|m|ζ

(4.30)

is the contribution of a single chiral multiplet of R-charge 0, which agrees
up to a sign with cf. [17].
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The index of this theory is written in the charge basis as

IT [SU(2)] =
∑
e1,e2

qe1+e2χ(e1 + e2,−2m)χ

(
eα − n + eu

4
+ e1, m + s + v

)
× χ

(
eα + n− eu

4
+ e1, m− s− v

)
× χ

(
eα − n− eu

4
+ e2, m + s− v

)
× χ

(
eα + n + eu

4
+ e2, m− s + v

)
(4.31)

where

χ(e, m) = q−m/4IΔ(e−m/2, m) (4.32)

is the index of a free chiral of R-charge 0 in the charge basis.

Alternatively, adopting the results of [17] one can be easily evaluate the
integral in (4.29). There are four sets of poles at

z−1 =

⎧⎨⎩αuq
|s+m+v|

2 +j+
1
4

αu−1q
|s+m−v|

2 +j+
1
4

and z =

⎧⎨⎩αu−1q
|s−m+v|

2 +j+
1
4

αuq
|s−m−v|

2 +j+
1
4

(4.33)

with j ∈ Z≥0. Moreover, we can assume17 that these two groups correspond
to poles outside and inside of the unit circle, respectively. Therefore, taking
the residues of the first group of poles for n < 0 and the residues of the second
group of poles for n > 0, one easily finds a closed form of expression (4.29)
that depends on three sets of parameters (fugacities and fluxes), namely
(α, m), (u, v), and (w, n).

We might emphasize that although the index of T [SU(2)] here was not
defined with respect to a triangulation, there does exist a triangulation of
the appropriate mapping cylinder M that can be used to construct both
T [SU(2)] = TM and its index (4.31). Describing the triangulation is a focus
of [61].

17Besides |q| < 1, which is required for q-expansions to make sense, this assumption

also involves |αuq1/4| < 1 and |αu−1q1/4| < 1. The answer with parameters outside of
this range can be obtained by analytic continuation.



1018 TUDOR DIMOFTE, DAVIDE GAIOTTO AND SERGEI GUKOV

4.5 Quantum Lagrangian operators

Just as the index of the tetrahedron theory TΔ is annihilated by two differ-
ence operators (3.15)

(
p̂± + x̂±

−1 − 1
)
IΔ(m, e; q) = 0, (4.34)

we find that the index of any 3-manifold theory TM satisfies pairs of differ-
ence equations

L̂(i)
M (p̂±, x̂±; q±1) · IM (m, e; q) = 0, (4.35)

with x̂, p̂ as in Section 2.5. Generally, there are just as many pairs of equa-
tions as pairs of electric and magnetic flavor charges (mi, ei) for TM . Thus,
once one knows IM (m, e; q) at finitely many values of (m, e), (4.35) com-
pletely determine the index everywhere. Moreover, the difference equations
(4.35) govern the asymptotics of the index in a fairly simple way — for
example, the behavior of IM (m, e) at large charges (m, e), or as q → 1. The
equations always come in mutually commuting ± pairs due to the ρ sym-
metry of the index.

Physically, difference equations for the index arise from identities in the
algebra of line operators acting on TM ; these line operators will be the
focus of Section 5. For now, we can understand the difference operators
geometrically and combinatorially. The notation L̂M in (4.35) is meant to be
suggestive. Indeed, geometrically, the operators L̂M are just quantizations
of the classical Lagrangians LM that describe the subset of flat SL(2, C)
connections on the boundary ∂M that can be extended as flat connections
in the bulk:

LM = {flat conns on ∂M that extend to M} ⊂ P∂M (4.36)

(cf. (3.19)). Such a Lagrangian is generically cut out by 1
2 dimC P∂M poly-

nomial equations L(i)
M (x, p) = 0 in the complex coordinates (xi, pi) on P∂M ,

and each of these equations leads to a pair of operators L̂(i)
M (p̂±, x̂±; q).

To explicitly construct the operators L̂(i)
M , we can translate the gluing

rules for the index IM (m, e) from Section 4.1 into gluing rules for operators.
We find the following:
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(1) For a triangulation M = {Δi}N
i=1, begin with N pairs of operators

L̂Δi(x̂±, p̂±; q±1) = p̂i± + x̂−1
i± − 1. (4.37)

Each pair annihilates a tetrahedron index IΔi(mi, ei).
(2) The collection of all N pairs (4.37) annihilates the product index

I{Δi},{Πi}(m, e). We can say that the L̂Δi ’s define a left ideal in the
algebra of operators generated by {x̂i±, p̂i±}N

i=1, with non-trivial com-
mutation relations

p̂i +x̂i + = q x̂i +p̂i +, pi−x̂i− = q−1x̂i−p̂i−. (4.38)

All elements of this left ideal annihilate the product index.
(3) Change variables in the algebra of operators according to the change of

polarization Π̃ = g ◦ {Πi}. That is, if g = σR(α)σF(α) gSp, define a new
basis of logarithmic operators via the affine linear transformation(

X̂ ′
i±

P̂ ′i±

)
= gSp

(
X̂i±
P̂i±

)
± α
(
i π + �

2

)
, (4.39)

as in Section 2.5. We can then exponentiate to obtain the new basis of
q-commuting operators x̂′i± = exp X̂ ′

i±, p̂′i± = exp P̂ ′i±.
(4) Rewrite the tetrahedron Lagrangians (4.37) in terms of the new (x̂′±, p̂′±),

obtaining N pairs of operators

L̂(i)(x̂′±, p̂′±; q±1). (4.40)

Due to the crucial intertwining property (2.34) from Section 2.5, these
N pairs all annihilate the transformed product index I{Δi},Π̃(m′, e′) =(
− q

1
2

)〈α,γ′〉I{Δi},{Πi}(g
−1
Sp γ′) of (4.5). Note that the generators (x̂′±, p̂′±)

now act on (m′, e′) as x̂′i± = exp
(

�

2m′
i ∓ ∂e′i

)
and p̂′i± = exp

(
�

2e′i ± ∂m′i

)
.

(5) Finally, suppose that the addition of a superpotential
∑

IOI to TM

breaks the U(1) symmetries with electric charges e′i for i = 1
2 dimP∂M +

1, . . . , N . Then, working in the left ideal defined by the N pairs (4.40),
eliminate the corresponding p̂′i±, and set x̂′i± = q±1. (Working in a left
ideal means that we are allowed to add and subtract operators (4.40),
and to multiply only on the left — since some index should be sitting on
the right.) What remains are 1

2 dimP∂M pairs18 of operators that only

18We slightly oversimplify the counting for purpose of exposition: in general the result
of elimination may be ≥ 1

2
dimP∂M pairs of operators, even in the classical limit (e.g., if

the equations are not a complete intersection).
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involve the fundamental generators (x̂′i±, p̂′i±) for i = 1, . . . , 1
2 dimP∂M ,

corresponding to the charges (e′i, m
′
i), i = 1, . . . , 1

2 dimP∂M for the
unbroken U(1) symmetries of TM . Call these remaining pairs of opera-
tors,

L̂(i)
M (x̂′±, p̂′±; q±1), i = 1, . . . , 1

2 dimP∂M . (4.41)

By construction, they will annihilate the final index IM (m′, e′).

The last step here — elimination in an operator algebra — may seem a little
complicated. However, it follows directly from the final sum (4.6) defining
the index IM . For every broken U(1) symmetry, we set some m′

i = 0. Then it
no longer makes sense to shift this charge m′

i, so p̂′i± must be eliminated from
(4.40). Moreover, we multiply the index by qe′i and sum over electric charge
sectors e′i for the broken U(1). Acting on this sum, exp(∂e′i) is equivalent to
multiplication by q−1. Therefore,

x̂′i± → q±1, (4.42)

just as dictated above. From now on, we will remove the “primes” from
(x̂′±, p̂′±) as well as from charges (m′, e′) when discussing the final index IM .

The rules found here for constructing the “quantum Lagrangian oper-
ators” (4.35) are identical to the construction of quantized Lagrangians
discussed in [31]. More precisely, we find here two independent copies of
the quantized Lagrangians of [31]: one involving fundamental generators
(x̂+, p̂+) and a quantization parameter q = e�, and another involving genera-
tors (x̂−, p̂−) and a quantization parameter q−1 = e−�. This correspondence
forms the basis of our argument in Section 6 that the index is an SL(2, C)
Chern–Simons wavefunction.

To get a feeling for how quantized Lagrangians actually look, we can
consider a few examples. First, let us take the bipyramid. By triangulating
it into either 2 or 3 tetrahedra and applying the gluing rules above, we find
two pairs of operators

L̂(1)
bip = p̂1± + x̂−1

1±p̂2± − 1, L̂(2)
bip = p̂2± + x̂−1

2±p̂1± − 1. (4.43)

that both annihilate the index Ibip(m1, m2, e1, e2) = IΔ(m1 − e2, e1)
IΔ(m2 − e1, e2) from (4.8). A complete, detailed derivation of these
Lagrangian operators appears in Appendix C.

In the case of a knot complement MK , we saw that the theory TK has a
single U(1) symmetry. In knot theory, the single equation that cuts out the
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classical Lagrangian LK is usually called the A-polynomial of K [62], and
correspondingly L̂K is the “quantum A-polynomial” [28,52]. Conforming to
the knot theory literature, let us denote the exponentiated operators acting
on the index IK(m, e) as

M̂± = eÛ± ≡ x̂± = exp
(

�

2m∓ ∂e

)
, �̂± = −ev̂± ≡ −p̂± = − exp

(
�

2e± ∂m

)
.

(4.44)

Then, for example, it is easy to see that the index for the trefoil I31(m, e) =
δe,3m, is annihilated by

L̂31 + = �̂+ + q
3
2 M̂3

+, L31− = �̂− + q−
3
2 M̂3

−, (4.45)

which are both quantizations of the classical A-polynomial A = � + M3.

The figure-eight knot is a little less trivial. Following the above gluing
rules (detailed in Appendix C) leads to an operator

L̂41 =
(
q

1
2 M̂ − q−

1
2 M̂−1

)
�−1 −

(
M̂ − M̂−1

)
×
(
M̂−2 − M̂−1 − q − q−1 − M̂ + M̂2

)
+
(
q−

1
2 M̂ − q

1
2 M̂−1

)
�̂ (4.46)

in its ‘+’ version (with ‘+’ subscripts suppressed). This is the well known
quantum A-polynomial of the figure-eight knot [52], in the normalization
of [29, 31]. It can be checked computationally that both (4.46) and its ‘−’
version, obtained by sending M̂ → M̂−, �̂→ �̂−, q → q−1, annihilate the
index I41(m, e) in (4.18). We emphasize that the above gluing rules actually
prove algebraically that this must be the case.

4.6 Tentacles and vacua

Some interesting physical consequences of the difference equations (4.35)
result from the fact that they control the behavior of the index at large
charges (m, e), in a fairly simple manner. There are actually two ways to
send m and/or e to infinity: we can either keep |q| < 1 fixed, or simultane-
ously send m →∞ and q → 1 (� → 0) so that qm stays fixed. In the latter
case, the index IM diverges, with leading asymptotics governed by the vol-
ume of M . Mathematically, this is a familiar phenomenon, closely related to
the “Volume Conjecture” for Chern–Simons partition function. Physically,
it seems closely related to Z-extremization [2], though the precise connection
is still not well understood.
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We will mention some aspects of the q → 1 limit at the end of this section.
For now, let us instead consider the less familiar limit (m, e) →∞ with |q| <
1 fixed. The leading behavior of the index19 in this limit is simply governed
by the classical Lagrangian LM (x, p) (4.36), and turns out to detect the
presence of unconstrained chiral operators in the theory TM . Equivalently,
the leading behavior can detect when TM has a moduli space of vacua.

In order to make a more precise statement, note that superconformal
theories TM (and more generally theories in class R) should have an index
IM (m, e; q) such that the powers of q appearing at fixed (m, e) are bounded
from below (cf. Section 2). Then we can define leadM (m, e) to be the lowest
power of q the appears in IM (m, e; q) — this is the first non-trivial R + j3

2
contribution of an operator with charge e in the presence of flux m. We
claim that leadM (m, e) generically grows quadratically as m, e→∞, but
that restricted to special rays in charge space it may instead grow linearly.
These are exactly the rays along which the “amoeba” of LM has a “ten-
tacle.” Moreover, when we are in an Sp(2N, Z) duality frame such that a
ray/tentacle lies in a purely electric direction, the theory TM should have
an unconstrained chiral operator O that prodces the leading contribution to
the index, and parametrizes a 3d moduli space of vacua.

We will try to motivate these statements physically and mathematically.
To begin, let us recall the formal definition of an amoeba [63]. Given an
algebraic variety in (C∗)2N , say with coordinates (xi, pi), the amoeba is its
projection to the real subspace spanned by the magnitudes

ReXi = log |xi|, RePi = log |pi|. (4.47)

For example, the classical Lagrangians LM for the tetrahedron, trefoil, and
figure-eight knot,20

LΔ = p + x−1 − 1 = 0, (4.48a)

L31 = p− x3 = 0, (4.48b)

L41 = p−1 + (x−2 − x−1 − 2− x + x2) + p = 0, (4.48c)

have the amoebas shown in figure 7. A salient feature of the amoebas is that
they extend asymptotically along a finite collection of semi-infinite rays, or

19The leading behavior is all we will look at here. It would be very interesting to also
consider subleading corrections and their physical implications.

20It is easy to see that these are classical q → 1 limits of the corresponding operators
in Section 4.5, with x = M and p = −� in the case of knot complements. For the figure-
eight knot, one must throw out an extra factor of (x2 − 1) that only arises in (4.46) as
a quantum correction. Evidently, this factor is not relevant for analyzing vacua or flat
directions in the index.
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Figure 7: Amoebas for the tetrahedron, trefoil, and figure-eight knot
Lagrangians.

tentacles. These tentacles occur whenever there is a solution to the defining
equations of LM in the limit (|x|, |p|) = (enr, ens), n →∞, for some non-
trivial integer slope vector (r, s).

The tentacles of amoebas in LM actually arise physically as parameter
spaces of vacua for the 3d theories TM in flat R

3. One indirect but instructive
way to see this is to recall from [9] or [19] that the entire complex Lagrangian
LM is the SUSY parameter space for TM compactified on (untwisted) R

2 ×
S1

R. This effective 2d N = (2, 2) theory has a complex, periodic twisted mass
associated to each U(1) global symmetry, obtained by complexifying the 3d
real mass with the Wilson line of the background U(1) gauge field. We can
multiply this mass by the radius R to make it dimensionless, and express it
as

X = R m3d + i

∮
S1

R

A. (4.49)

The 2d theory also has a complexified, periodic FI parameter (or moment
map), naturally obtained by combining the 3d FI parameter ξ3d and the 2d
background θ-angle:

P = R ξ3d + i θ. (4.50)

The 2d twisted superpotential preserves supersymmetry when

exp

(
∂W̃
∂X

)
= exp(P ) (4.51)

(put differently, the FI parameter P contributes to W as XP ), and it was
argued in [9, 19] that (4.51) are just the defining equations for LM .
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To lift back up to a SUSY parameter space in 3d, we can first restrict
to the real parts of X and P , and then send R →∞. The first operation
projects LM onto its amoeba, and the second scales the amoeba so that only
the tentacles — a collection of semi-infinite rays — are left. Sufficiently
far along these rays, ReX and ReP (or rather m3d and ξ3d) are the 3d
masses and FI parameters consistent with SUSY. Near the origin, quantum
corrections may still play an interesting role, which will not affect the current
story.21 We emphasize that the tentacles map onto a parameter space of
vacua. However, if any of the tentacles happen to align with the P axis
(or plane) at X = 0, an actual SUSY moduli space in TM also opens up.
This is because the effective background FI parameter ReP (ξ3d) is a real
moment map for a U(1) symmetry. Then, for example, SUSY requires that
ξ3d sets the vev for a sum of chiral fields

∑
j Qj |φj |2, where Qj are the U(1)

charges. Preserving SUSY at any value of ReP ∼ ξ3d while simultaneously
having zero mass Re X ∼ m3d means there must be an infinite flat direction
in dynamical field space.

This phenomenon is simple to illustrate in the tetrahedron theory. Its
amoeba does have a tentacle on the negative Re P axis (or |p| → 0). Corre-
spondingly, TΔ has a free chiral operator φZ charged under the single global
U(1), whose vev parametrized a moduli space. We have |φZ |2 + ξ3d = 0, or
|φZ |2 ∼ −ξ3d ∼ −Re P . The other tentacles of the amoeba lie along |x| → ∞
and |p| → ∞, |x| → 0. In either case, we can happily preserve SUSY, though
the field φZ becomes massive. If we apply a T k ∈ Sp(2, Z) transforma-
tion to TΔ to shift the Chern–Simons level by k, the story remains essen-
tially the same; we clearly still get a moduli space, while the amoeba gets
“skewed” horizontally without lifting its tentacle from the P -axis. (Recall
that Sp(2, Z) simply acts by multiplication on the symplectic vector

(
X
P

)
,

so T k :
(
X
P

)
�→
(

X
P+kX

)
.) On the other hand, generic Sp(2, Z) images of TΔ

have no moduli space at all.

Now, let us return to the index. Suppose that TM has a moduli space
corresponding to a tentacle of LM at Re X = 0, along a ray in the ReP
plane pointing in direction s (with s an N -dimensional vector of coprime
integers). The direction s selects a U(1) symmetry inside U(1)N whose
moment map can be non-zero. We would then expect that the moduli space
is parametrized by the vev of a chiral operatorO with electric charge e = −s.
This operator and its powers On can potentially contribute to the index. It
is not completely clear that the contribution will be the dominant one (at

21In 2d, quantum corrections are responsible for smoothing the asymptotic regions of
the parameter LM into a connected algebraic variety. Otherwise, LM would be a collection
of “cigars” centered around each tentacle.
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Figure 8: Graph of the leading exponent lead(m, e) for the figure-eight
index.

leading order in q), but if it is, then

lead(0,−ns) =
RO
2

n, n � 0, (4.52)

where RO is the R-charge of O. This behavior should at east hold true for
sufficiently large n. Thus the index (potentially) develops an asymptotically
“flat” direction along the tentacles of the amoeba.

Here we used the presence of a moduli space to argue for linear growth of
lead(m, e) in a distinguished electric direction — corresponding to a tenta-
cle in the P plane. However, an Sp(2N, Z) transformation could be used to
align any tentacle with the P plane. Since Sp(2N, Z) acts covariantly on the
index, preserving the growth of lead(m, e), this implies that we could actu-
ally expect linear growth along every tentacle, in any direction. Explicitly,
if a tentacle extends in direction (r, s), so that (|x|, |p|) ∼ (enr, ens), n →∞,
lies in LM , then

lead(−rn,−sn) ∼ n, n →∞. (4.53)

It is easy to see from figure 1 that this holds for TΔ: flat directions (anti)align
with tentacles. In figure 8, we similarly plot lead41(m, e) for the figure-eight
knot.22 For the trefoil, (4.53) holds in a trivial way: the index I31 = δe,3m

vanishes except right on the tentacles, where it is constant.

22The tentacles and flat directions of knot complements always occur back-to-back, due
to the Z2 Weyl symmetry (4.15). This is nicely illustrated in figures 7 and 8.
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The behavior (4.53) is (roughly) predicted mathematically by the gen-
eral structure of the difference equations L̂M , and the fact that they are
quantizations of the classical Lagrangian LM . The simple property that
the operators L̂M are polynomials in x̂±, p̂±, and q, along with the assump-
tion that indices IM (m, e; q) are q-series bounded from below, implies that
the generic growth of lead(m, e) is quadratic (cf. [64]). This is essentially
because the operators x̂±, p̂± only involve linear factors q

m
2 and q

e
2 , and can

also only generate other linear factors when shifting m and e in quadratic
parts of the index. For example, x̂+ · qe2

= (q
m
2
−2e−1)qe2

. All these linear
factors then enable cancelations between different terms in the equations
L̂MIM = 0.

Nevertheless, linear growth of the index is permitted along directions
(anti)parallel to tentacles of the amoeba of LM . The tentacles are nor-
mal vectors to boundary surfaces of the Newton polygon of LM , and also
(roughly) the Newton polygon of L̂M . This allows extra cancelations to
happen in the difference equations, along these distinguished directions. A
more detailed, albeit heuristic, explanation is given in Appendix D.

One potential application of the observed growth rates of the index is to
shed some light on the convergence of sums (4.6) that define IM . Specif-
ically, suppose that we start with a triangulation of M and first construct
a product index I{Δi},{Πi} = IΔ1 × · · · × IΔN

. We then transform this to
a polarization Π̃, in which all internal edges of M are electric. If we chose
a refined, “easy” triangulation — so that it properly defines a theory TM

— there must be a chiral operator OI associated to every internal edge,
and charged under the edge coordinate’s U(1) symmetry. Moreover, before
doing the final index sum (4.6), we shift R-charge so that every OI has
ROI

= 2. In this affine Sp(2N, Z) frame, we know that the leading exponent
function lead{Δi},Π̃(m, e) of the product index I{Δi},Π̃(m, e) should grow
linearly in any electric direction eI corresponding to the charge of OI, with
slope ROI

/2. In the negative direction −eI, we generically expect quadratic
growth instead. To compute the final index IM , we set magnetic charges
mI → 0 (just like in the analysis above), and sum along both positive and
negative eI directions. We would then expect the sum not only to converge,
but to do so “uniformly”: in order to compute IM (m, e) at fixed external
charges (m, e) to nth order in q, we should need to sum only from about
−neI to neI in each direction. This has certainly been observed in examples.

To close this discussion, let us also return to the other, ’tHooft-like,
asymptotic limit of the index. Rather than taking (m, e) →∞ along a
ray, with |q| < 1, we send both m →∞ and q → 1 (� → 0) with qm held
fixed. Working in an electric fugacity basis, we can use ζ to complexify the
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naturally real number qm, and set

x = qmζ (4.54)

as in (3.6). Then, just as we found in Section 3 that the tetrahedron index
is dominated approximately by the hyperbolic volume of a tetrahedron,

IΔ(m; q, ζ) ∼ exp
(

2
i �

VΔ(z) + · · ·
)

, VΔ(z) = −ImLi2(z−1), (4.55)

we now find that the index IM is dominated approximately by the hyperbolic
volume23 of M ,

IM (m; q, ζ) ∼ exp
(

2
i �

VM (x) + · · ·
)

. (4.56)

Note that this volume depends on boundary conditions x. For example, the
volume depends on the external dihedral angles of a geodesic boundary, or
on the metric (or SL(2, C)) holonomy around a cusp boundary of M . It
differs very slightly from the actual hyperbolic volume, but the difference is
easy to correct: the actual volume is

VolM (x) = VM (x) + (ImP ) · (Re X), (4.57)

where (x, p) = (eX , eP ) is a point on the Lagrangian LM (a solution to the
defining equations for LM at fixed x). Note that while VM (x) and ImP have
branch cuts, VolM (x) should be well defined.

One way to check (4.56), up to a constant, is to note that the leading
asymptotics of the index must be governed by the classical � → 0 (q → 1)
limit of the difference operators L̂M . In particular, the point (X, P = ∂VM

∂X )
must lie on the classical LM . This property is known to characterize volumes
of 3-manifolds [23]. Physically, the asymptotics (4.56) are extremely familiar
from the study of ellipsoid partition functions Zb[TM ] and twisted R

2 × S1

partition functions of TM , both of which are very closely related to the index.
We will discuss the relations further in Section 6.3.

4.7 Mutation invariance from gauge theory

In this section, we begin to test the strength of the index as a topological
invariant of 3-manifolds — i.e., its ability to distinguish 3-manifolds from

23If M does not admit a deformed hyperbolic structure with specified boundary condi-
tions, the formula still holds, but “volume” means volume of a flat SL(2, C) connection.
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Figure 9: The Kinoshita–Terasaka (left) and Conway (right) knots, related
by a non-trivial mutation operation.

one another. We will specialize to the case of knot complements M , either
in S3 or in some closed 3-manifold M , and consider the operation of muta-
tion [53]. To perform a mutation, the knot complement M is cut along
an S2 that is punctured exactly four times by the knot, separating M into
two halves24 M1 and M2; then the halves are glued back together with a
“180◦ rotation” along some axis of S2, forming a new manifold Mμ. More
precisely, the rotation of S2 interchanges two pairs of punctures. This is
illustrated in figure 9 for the simplest topologically distinct mutant pair of
knot complements.

It is famously known that mutation acts trivially on colored Jones polyno-
mials, the SU(2) Chern–Simons wavefunctions of knot complements [54] (see
also [65]). We have also mentioned several times that the index should cor-
respond to a complex SL(2, C) Chern–Simons wavefunction. Thus a natural
expectation might be that the index is mutation invariant. We will prove
this physically below, by using the 6d realization of theories TM , and also by
arguing that mutation is implemented by a 3d superpotential deformation
that leaves the index untouched. First, however, we can do a simple check.
The triangulations of the KT and Conway knot complements in figure 9 are
easily found with the program SnapPy [60]. In their simplest (non-univalent)
form, they have 12 tetrahedra each, leading to an expression for the cor-
responding indices as 11-dimensional sums. Then we find, for example,

24It is perfectly possible that S2 does not split M in two, but rather into a manifold
M̃ with two S2 boundaries. Everything we say in this section will go through with very
minor modifications in that case.
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Figure 10: Stretching M along C. Compactification on C gives a 4d theory
T [C] on R

3 × I.

that25

IKT(0, 0; q) = ICon(0, 0; q) = 1 + 6q − 32q2 + O(q3). (4.58)

If the indices IKT and ICon were to differ, they could only do so by a finite
number of q-dependent normalizations — since the colored Jones polynomial
determines operators L̂M , and these in turn fix the index up to q-dependent
boundary conditions. Thus, evaluating the index even at (m, e) = (0, 0) as
in (4.58) is quite a non-trivial check of mutation invariance.

Now, let us proceed to the six-dimensional argument. Consider the six-
dimensional A1 theory on a 3-manifold M , and identify a two-sphere C = S2

in M that intersects exactly four strands of codimension 2 regular defects.
We will denote as M1 and M2 the two halves of M joined along C. We can
put a metric on M that elongates a neighborhood of C into a long cylinder of
cross-section C (figure 10). At low energy, the six-dimensional setup admits
a simple four-dimensional description, as a four-dimensional N = 2 gauge
theory on a segment, with boundary conditions B1 and B2 at the endpoints
that are determined by the geometry of M1 and M2. The four-dimensional
theory is SU(2) gauge theory with Nf = 4 fundamental hypermultiplets. In
the far IR, the four-dimensional setup will flow back to TM .

25As per the linear/quadratic behavior of the index explained in Section 4.6, evaluat-
ing these indices to order qn requires summing over an 11-dimensional cube with sides
approximately of length 2n. This is feasible for low order. The computation in (4.58),
done naively, required 117 terms and took 28 hours per knot.
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This cutting construction, of course, can be done for any surface C,
but the four-punctured sphere is special. While for generic C the four-
dimensional theory has an SU(2) flavor symmetry for each puncture, inher-
ited from the flavor symmetry of codimension-2 defects in the six-dimensional
theory, the SU(2) Nf = 4 theory has an SO(8) flavor symmetry. The fla-
vor symmetries with a six-dimensional origin compose an SO(4)× SO(4)
block-diagonal subgroup of SO(8). The remaining 16 generators of SO(8)
are accidental IR symmetries that appear in the four-dimensional limit. As
TM can be defined by the four-dimensional setup, the enhanced SO(8) flavor
symmetry has important consequences for TM .

One important consequence is that any boundary condition B for SU(2)
Nf = 4 theory sits in an SO(8) orbit of boundary conditions g ◦ B, g ∈
SO(8). In principle it is possible to imagine an SO(8)-invariant bound-
ary condition. For example, set Dirichlet boundary conditions for the gauge
fields, split the 16 chiral fields in the hypermultiplets into sets Xi, Y i, each
in a vector representation of SO(8) (Xi and Y i are the top and bottom
components respectively of the 8 SU(2) doublets), and then give Dirichlet
b.c. to Xi and Neumann b.c. to Y i. However, we are not aware of a geo-
metric realization for such a boundary condition. Boundary conditions B
obtained from a generic six-dimensional configuration will typically break
SO(8) down to SU(2)4, or even a smaller subgroup HB, and hence will sit
in a non-trivial continuous family SO(8)/HB of boundary conditions.

Although it will not be too important for us, it is simple to show that these
exactly marginal deformations of an N = 2 supersymmetric boundary con-
dition B are actually superpotential deformations. Indeed, they correspond
to deformations of the boundary conditions for the hypermultiplets only,
and can be implemented by adding superpotential terms at the boundary.
The true space of exactly marginal deformations of B will be some complex
manifold that locally is the complexification of SO(8)/HB. We do not have
a good handle over the full space of exactly marginal deformations, but for
our purpose SO(8)/HB is sufficient.

Notice that even if B has a six-dimensional realization as some cobordism
with a single non-empty boundary C (×R

3), generically the boundary con-
dition g ◦ B may not have such a realization. There is an exception, though:
if g is an SO(8) rotation that permutes the four SU(2)’s among themselves,
then g ◦ B can be also realized by the same cobordism as B, with the four
punctures suitably permuted. There is an obvious example: the diagonal
matrix (1, 1, 1,−1, 1, 1, 1,−1) acts as a reflection in each SO(4), and there-
fore permutes the two SU(2)’s in each SO(4). Thus we can find an SO(8)
rotation μ that simultaneously permutes any two distinct pairs of punctures.
Then B and μ ◦ B are defined by two possibly inequivalent six-dimensional
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cobordisms, but are related by a continuous family of deformations that do
not admit a simple six-dimensional definition.

Now, we can define a deformation Tμ
M of the 3d theory TM by taking

four-dimensional SU(2) Nf = 4 gauge theory on the segment, with modified
boundary conditions B1 and μ ◦ B2 at the endpoints. Clearly Tμ

M is the
theory associated to a new 3-manifold Mμ, obtained by permuting the two
pairs of strands across C. This is the definition of a mutation of M . But the
theories TM and Tμ

M are related by a continuous family of exactly marginal
deformations, hence must have the same index!

This is the main conclusion of this section. Next, we would like to recast it
in a language that makes use only of the definition of TM through the gluing
of tetrahedra, with no reference to the six-dimensional setup. We are after a
continuous family of exactly marginal deformations of TM , possibly including
a subset HB1\SO(8)/HB2 and modeled locally on the complexification of
that locus. If HB1 and HB2 are SU(2)4, the exactly marginal locus should be
four-dimensional. Notice that in concrete examples, such exactly marginal
deformations may be directly visible in the index, as chiral operators of R-
charge 2 and specific flavor charges under the flavor symmetries associated
to the codimension two defects.

In order to proceed, we will assume that M admits a triangulation that
can be split along C without cutting any tetrahedra. If we split along C,
we will get triangulated versions of M1 and M2, each with a triangulated
C boundary component, C1 and C2; see figure 11.26 Clearly, C1 and C2

are triangulated in the same way, and gluing M1 and M2 back along C
can be done by imposing a standard gluing constraint for each edge in the
triangulation of C. So we can start from the theories TM1 and TM2 and
implement the gluing constraints by adding superpotential terms OE , one
for each edge E of C. In a polarization where the images E1 and E2 of E
in C1 and C2 carry position edge variables, we can write

OE = OE1OE2 (4.59)

for operators OE1 and OE2 in the theories TM1 and TM2 , respectively.

Again, this is true for a generic C, but if C is a four-punctured sphere
something special happens. Consider any of the many triangulations with
the topology of a tetrahedron (not to be confused with the tetrahedra we
use for gluing!). Then any pair of opposite edges E, Ẽ have the same gauge
charges, and only differ by the flavor charges associates with the punctures.

26The triangulations of M1 and M2 contain annular cusps, and are of the “hybrid”
type discussed in Section 2 of [19]. Such triangulations will be a major focus of [61].
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Figure 11: Splitting M = M1 ∪C M2 along a 2-sphere C to form two new
geodesic boundaries, triangulated by faces of tetrahedra.

This means that in any polarization where the E edge coordinate and the
meridians of defects are positions, the edge coordinate of Ẽ is also a position.

Thus we can simultaneously decompose

OE = OE1OE2 , OẼ = OẼ1
OẼ2

. (4.60)

Now, OE1 andOẼ1
have the same gauge charges, and different flavor charges.

The same is true for OE2 and OẼ2
. Thus we can also build two new gauge-

invariant operators

O12 = OE1OẼ2
, O21 = OẼ1

OE2 . (4.61)

We can repeat the analysis for all the pairs of edges in the triangulation
of C. This gives us a total of six new gauge-invariant marginal operators
of “mixed” type (4.61) in addition to the six operators of type (4.60). It
should be clear that a mutation M → Mμ simply modifies the geometric
gluing by permuting two opposite pairs of edges in, say, C2. In field theory,
this corresponds to a different choice of gluing superpotential, replacing four
of the standard operators with four of the new operators. This has no effect
on the index. In particular, either configuration breaks exactly the same set
of global U(1) symmetries.

We can even try to see part of the space of exactly marginal deformations
of TM : consider the most general superpotential, a linear combination of
the six standard operators and the six new operators. There is a choice of
R-charges that makes all the twelve operators marginal. The general super-
potential breaks many flavor symmetries of the product theory TM1 × TM2 .
The standard superpotential forces the meridians (puncture eigenvalues) of
C1 to be equal to the meridians of C2. The general superpotential forces
all meridians to be equal. The number of flavor symmetries broken by the
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general superpotential is strictly smaller than 12, but there are 12 mar-
ginal operators. By the results of [66], this indicates that at least one linear
combination of the 12 operators is exactly marginal.

We can try to be more precise. Assume that TM1 × TM2 has SU(2)8 flavor
symmetry associated to the defects, broken to SU(2)4 by the standard gluing
superpotential. Then the 6 new operators have charges ±(1

2 , 1
2 ,−1

2 ,−1
2),

±(1
2 , 1

2 ,−1
2 ,−1

2), ±(1
2 ,−1

2 ,−1
2 , 1

2), ±(1
2 ,−1

2 , 1
2 ,−1

2), respectively. Because of
the SU(2)4 flavor symmetry, the operators must really be part of a set of 16
marginal operators in the tensor product of the four doublet representations
of the four SU(2) flavor groups. By the results of [66], the space of exactly
marginal deformations is locally the Kähler quotient of C

16 by SU(2)4, which
is indeed a local complexification of the expected SU(2)4\SO(8)/SU(2)4.
Thus we recovered the full space of exactly marginal deformations predicted
in the UV.

5 The index from four dimensions and line operators

Our discussion until now has been purely three-dimensional. When the
3-manifold M has boundary components, the three-dimensional theory TM,Π

we defined by the gluing construction depends on a choice of polarization,
and different polarizations are related by the action of Sp(2N, Z). However,
there is a simple way to erase the polarization dependence: consider a com-
bined 3d/4d system, where TM,Π lives at the boundary of a half-space, and a
free U(1)N gauge theory lives in the half space, with Neumann-type bound-
ary conditions that gauge the U(1)N flavor symmetry of TM,Π.27 Then
Sp(2N, Z) is identified with the group of electric-magnetic dualities of the
four-dimensional theory.

In the previous work concerning the moduli space of TM,Π on S1 × R
2 [8,

19], this 3d/4d setup is rather useful. Upon compactification on a circle, the
four-dimensional gauge theory reduces to a sigma-model on (C∗)2N param-
eterized by the vevs of ’tHooft–Wilson supersymmetric line operators wrap-
ping the circle. The coordinates x = eX and p = eP are literally the vevs of
the basic Wilson loop and the basic ’tHooft loop supported on the S1. The
Lagrangian submanifold L ∈ (C∗)2N that represents the parameter space of
TM,Π on S1 × R

2 defines a boundary condition for the bulk sigma model.

27In this section, we assume that the boundary of M is a triangulated, geodesic bound-
ary, in the language of Section 2 of [19]. Then the theory TM naturally couples to the
IR degrees of freedom of a 4d N = 2 theory on its Coulomb branch, with abelian gauge
group U(1)N . Here N = 3g − 3 + s, where g is the genus of ∂M and s is the number of
punctures (codimension-two defects) on ∂M .
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It is natural to wonder if the 3d index of TM,Π can be also given a 3d/4d
interpretation. At least for a conformal field theory, the index at zero mag-
netic flux counts some protected operators in the 3d theory in flat space.
If we couple the 3d theory to 4d degrees of freedom, operators in TM that
carry a flavor charge will not be gauge-invariant anymore. Rather, they give
bulk Wilson loops a way to end. By electric-magnetic duality, the ’tHooft–
Wilson loops of the bulk theory should also be able to end on the boundary.
Because of how the 3d index transforms under Sp(2N, Z), it is fairly clear
that the index at magnetic charge m and electric charge e must “count”
the possible ways a bulk ’tHooft–Wilson loop of the same charge can end
(supersymmetrically) at the boundary.

In order to make this notion more precise, we should identify a setup
involving the half-BPS bundary condition and half-BPS straight line defects
ending at a point (the origin) at the boundary, which preserves at least one
supercharge Q, and one superconformal charge S. Actually, as long as the
setup has inversion symmetry, the superconformal generator S will come for
free as long as we identify Q. Then we can organize the operators at the
origin in representations of the SU(1|1) algebra generated by Q and S, and
count the short representations graded by other conserved charges that com-
mute with Q and S (besides {Q, S}, which is zero on short representations).
We can also use the standard state-operator map at the origin, to map the
counting to an index of the Hilbert space of the theory on the “half 3-sphere”
(= a three-dimensional ball B3) with the half-BPS boundary condition at
the equator S2 = ∂B3, and in the presence of half-BPS line defects.

A flat half-BPS boundary in an N = 2 superconformal four-dimensional
gauge theory preserves a copy of the 3d N = 2 superconformal group,
OSp(2|4), embedded the four-dimensional superconformal group, SU(2, 2|2).
In particular, it breaks the U(1)r R-symmetry, and breaks the SU(2)R R-
symmetry down to the three-dimensional R-symmetry group SO(2)R. For
a fixed geometry of the boundary, there is a whole one-parameter family
of choices of embedding, rotated among each other by the broken U(1)r

symmetry. The choice of embedding controls which linear combination of
the two real scalars in the vector multiplet is a superpartner of the gauge
field parallel to the boundary under the preserved SUSY, and which is a
superpartner of the gauge field perpendicular to the boundary.

In contrast, a half-BPS line operator in the 4d theory preserves an appro-
priate real form of OSp(4|2), including the full SU(2)R symmetry of the
bulk, and SO(3) rotations around the line operator. Again, each line oper-
ator comes labeled by a U(1)r phase ϑ. Among other things, this choice
determines which linear combination of the two real scalars in the vector
multiplet goes into the definition of the Maldacena–Wilson loop, and which
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in the definition of the ’tHooft loop [20, 67]. Several line operators lying
in a common plane can preserve two out of eight supercharges (a SU(2)R

doublet), as long as the respective phases ϑi are aligned with the slope in
the common plane.

It is easy to see that a half-BPS line operator and a half-BPS boundary
can form a common 1/4-BPS configuration in two natural ways: the line
operator can lie in the boundary, or can be orthogonal to the boundary.
We can use the supersymmetric Wilson lines as an example. A Wilson line
parallel to the boundary only involves the component of the gauge field
parallel to the boundary. Thus we can define the Maldacena–Wilson loop
using the real scalar which is in the same supermultiplet as the gauge field
parallel to the boundary. A line operator that lies in the boundary will sim-
ply preserve the same supersymmetries as a half-BPS line defect in a N = 2
three-dimensional theory. On the other hand, a supersymmetric Maldacena–
Wilson loop perpendicular to the boundary can be defined using the real
scalar field in the same supermultiplet as the perpendicular component of
the gauge field. From the point of view of the N = 2 three-dimensional
superconformal algebra, this Wilson loop behaves as a chiral operator, and
can be used to dress non-gauge-invariant boundary chiral operators to give
gauge-invariant chiral operators in the 3d–4d setup.

Notice that the U(1)r phase ϑ of the parallel line defect and of the ortho-
gonal line defect differ by π/2 as they use orthogonal real components of the
vectormultiplet scalar field. The two operators are also orthogonal in space-
time, and thus they preserve a common set of supercharges, which is also
preserved by the boundary condition. More precisely, the two line operators
preserve 1/4 of the original SUSY, an SU(2)R doublet. Then, the boundary
condition will select a single supercharge Q in the doublet. It should be
clear that the same supersymmetry is also preserved by all line defects that
lie in the common plane of the parallel and orthogonal line defects, which is
a generic plane orthogonal to the boundary, as long as the ϑi parameters are
properly chosen. This single supercharge (together with the corresponding
S) is exactly what we need in order to define an index.

After the state-operator map, we get a simple setup (see figure 12):
the four-dimensional theory on S1 ×B3, with the boundary condition at
the “equator” S1 × S2 = ∂(S1 ×B3), and with line operators supported on
S1 × p∗, where the point p∗ ∈ G is located on the “Greenwich meridian” (=
the semi-circle in B3 fixed by a rotation symmetry U(1)E associated with
angular momentum j3).

A closely related setup — that one can consider in parallel — comprises
the four-dimensional theory on S1 × S3, with a duality wall at the “equator”
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Figure 12: 3d theory TM can be put on the equator S2 of a three-dimensional
(hemi)sphere. Line operators can be placed at any point on the (semi)circle
G, shown in green.

S1 × S2, and with line operators supported on S1 × p∗, where p∗ ∈ G is
a point on the circle G ∼= S1 that is fixed by U(1)E . In figure 12, this
corresponds to considering the full figure, not just the upper half of it.

To make this a little bit more explicit, in either case, we can realize S3

as a unit sphere in a four-dimensional Euclidean space R
4 parametrized by

the coordinates xi, i = 1, . . . , 4,

S3 : x2
1 + x2

2 + x2
3 + x2

4 = 1. (5.1)

The rotation symmetry SO(4) ∼= SU(2)1 × SU(2)2 has various subgroups
that leave invariant different submanifolds in S3. For example, the diagonal
subgroup SU(2)E ⊂ SU(1)1 × SU(2)2 acts as a rotation symmetry of the
plane R

3 ⊂ R
4 parametrized by (x1, x2, x3) or, equivalently, as a rotation

symmetry of the “equator” S2 ⊂ S3. Therefore, this symmetry is relevant
for describing the angular momentum in the 3d theory on S1 × S2. Note that
the only fixed points of the rotation symmetry SU(2)E are the North pole
(x1 = x2 = x3 = 0, x4 = 1) and the South pole (x1 = x2 = x3 = 0, x4 = −1)
of the S3.

Furthermore, the subgroup U(1)E ⊂ SU(2)E corresponds to rotations of
the (x1, x2) plane R

2 ⊂ R
3 around the x3-axis. The corresponding quantum

number is what we call j3 throughout this paper. The fixed points of this
rotation symmetry have x1 = x2 = 0 and, therefore, form a semi-circle (resp.
a circle) in half 3-sphere B3 (resp. in S3):

G : x1 = x2 = 0, x2
3 + x2

4 = 1. (5.2)
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Since the rotation symmetry U(1)E suffices for defining the index, in this
setup we can consider line operators supported on S1 × p∗, for any p∗ ∈ G,
without breaking this symmetry. Note that the curve G meets the equator
S2 = {x2

1 + x2
2 + x2

3 = 1} at two points,

G ∩ S2 : x1 = x2 = x4 = 0, x3 = ±1. (5.3)

To summarize, this setup preserves three isometries: scale invariance,
rotations U(1)E around a chosen plane, and the SO(2)R symmetry with the
generator R. The anticommutator {Q, S} is a combination of the dilatation
and two other charges, commuting with Q and S. Then, a second combina-
tion, say R/2 + j3, will commute with Q and S, and can be used to grade
the short representations. Thus we recover the index

TrH3d/4d
(−1)F q

R
2 +j3 . (5.4)

From the point of view of the 4d theory, this is a specialization of the
standard superconformal index [43], which is called the “Schur index” in [68].
The most general index for an N = 2 four-dimensional theory has three
fugacities (p, q, u) coupled to the corresponding combinations of R-
symmetries and SO(4) ∼= SU(2)1 × SU(2)2 rotations:

I4d = TrH4d
(−1)F pj2+j1+

R−r
2 qj2−j1+

R−r
2 u−(r+R). (5.5)

This index has a curious property: upon specialization to p = qu2 naively
one would expect that the result should depend on two variables q and u.
However, after this specialization u becomes a fugacity for the quantum
number j1 + j2 − r that commutes not only with Q but also with another
supercharge Q′. As a result, the u-dependence disappears and the index
becomes a function of q only.

Moreover, after the specialization to p = qu2 the variable q in the 4d index
(5.5) becomes a fugacity for the combination of the SU(2)E angular momen-
tum and the R-charge, precisely as in (5.4). Therefore, this specialization
of the 4d index can be used for the combined 4d/3d system, where j3 is
the angular momentum for the SU(2)E rotation symmetry and R is the R-
charge for the unbroken SO(2)R symmetry in the presence of a boundary or
a duality wall. When line operators are included at the generic points on G
the SU(2)E rotation symmetry is broken further to U(1)E which, however,
suffices for defining the index (5.4).

We can readily compute the index for our setup in the S1 ×B3 geometry,
simply by making the gauge coupling very weak. For the moment, let us
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assume that the 4d theory is a pure U(1)N gauge theory — i.e., with N U(1)
vector multiplets but no hypermultiplets. The index does not depend on
the continuous parameter that labels the position of the line operator along
G. For simplicity, we can place the line operator at the North pole. The 3d
theory lives in the background of the line operator’s ’tHooft charge m, under
the U(1)N flavor symmetry. Moreover, the restriction to gauge-invariant
states forces us to look at states of the 3d theory that have charge equal to
the Wilson loop charge. The 4d gauge fields contribute in a simple way: the
usual Schur index receives contributions only from modes of two gauginos
with various angular momenta. The boundary condition at the equator sets
half of the gauginos to zero. Hence, in the presence of a ’tHooft–Wilson loop
of charge (m, e), the index of the 3d/4d system becomes

IT (m, e; q)
∏
n>0

(1− qn)N . (5.6)

Of course, this answer is consistent with the interpretation of Sp(2N, Z) as
the electric-magnetic duality group of the bulk theory.

5.1 Line operator algebra

One real payoff of the 3d/4d construction is an explanation of why the index
of the 3d theory satisfies the difference equations built from the operators
(x̂±, p̂±), which we are about to identify with line operators. First, we need
a simple observation about the OPE of line operators. Consider a setup
with two line operators, wrapping S1 and lying at different points p1 and p2

in G, as defined above. Although the positions p1, p2 locally do not matter,
the relative order along G is a topological invariant, as we cannot bring one
operator around the other without breaking the supersymmetry preserved
by the index. On the other hand, we can consider the OPE of two line
operators. It is known that the OPE of two supersymmetric line operators
in an abelian N = 2 gauge theory is rather simple [20]28 :

LγLγ′ = V〈γ,γ′〉 ⊗ Lγ+γ′ . (5.7)

28More generally, one can consider line operators localized on the two-dimensional
world-sheet D × p× {0} of a surface operator (= codimension-4 defect) in the six-
dimensional (2, 0) theory on D × C ×R2

� . It was argued in [21] that such line operators
generate an affine Hecke algebra with parameter q = e� . Note that this affine Hecke alge-
bra is “local on C.” In other words, it does not depend on the details of the Riemann
surface C away from the point p. For application to the problem in hand, one needs to
consider a trivial surface operator and take D = S1 × G.
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Here γ, γ′ are the charges of the line operators and 〈γ, γ′〉 is the usual
symplectic pairing. The “coefficient” V〈γ,γ′〉 of the OPE is a one-dimensional
vector space, whose only role is to carry a charge 〈γ, γ′〉/2 under the action of
SO(2) rotations around the axis that goes through the pair of line operators
(and the appropriate fermion number).

In the present context, the curve G plays the role of such axis and the
SO(2) rotation is generated by j3. Therefore, we find that the OPE of line
operators inside the index becomes

LγLγ′ = (q1/2)〈γ,γ′〉Lγ+γ′ . (5.8)

Now, consider the setup with a line operator Lγ of charge γ = (e, m) at
the North pole and then introduce another Wilson loop of charge 1 at some
point on the curve G away from the North pole. We can compute the index
by using the OPE of line operators, under which the electric charge e of
the original line operator is shifted by one unit and, according to (5.8), the
result is multiplied by (q1/2)±m, depending on which side of the North pole
of B3 (resp. S3) the extra Wilson operator was added. Similarly, if we add
a ’tHooft operator of charge 1, we will shift m by one unit, and multiply
everything by (q1/2)∓e. This is exactly how our operators (x̂±, p̂±) act on
the index!

Therefore, we can identify Wilson and ’tHooft operators with the following
operators acting on the 3d index (cf. an analogous identification [19] with
operators acting on the S3

b partition function):

Wilson± ←→ (x̂±)∓1 = e∂e∓�

2m, (5.9)

’tHooft± ←→ (p̂±)±1 = e∂m±�

2 e. (5.10)

Now we see why the index satisfies recursion relations modeled on L: line
operators Lγi supported on S1 × pi can be brought all the way to the bound-
ary, where they satisfy Ward identities dictated by the boundary condition,
as in [19].

5.2 Boundary conditions for hypermultiplets

So far, we have considered U(1)N vector multiplets coupled to a boundary
theory TM . Generically, the 4d theories T [∂M ] arising from a geodesic
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boundary M will also involve hypermultiplet matter, which leads to further
interesting observations in our 3d/4d setup.

A theory of a single hypermultiplet has two natural classes of boundary
conditions. In one class, one of the chiral fields Y in the hypermultiplet has
Dirichlet-type boundary conditions,

Y = O, (5.11)

for some chiral operator O in the boundary theory, and the other chiral field
Ỹ has Neumann-type boundary conditions. In the other class, the roles of
Y and Ỹ are exchanged. These boundary conditions were defined, e.g., in
Section 3 of [19]. It turns out that each boundary condition in one class
is mirror to a boundary condition in the other class. The corresponding
boundary theories are related by an “F” transformation, which maps the
theory with chiral operator O to a new theory with a new 3d chiral field φ
coupled by the superpotential φO. In the new theory, φ plays the role of
the special chiral operator Õ.

This mirror symmetry is manifest in the 3d/4d index calculations. The
contribution of one hypermultiplet to the Schur index looks like

Ihyper =
1∏

n>0(1− ζqn+1/2)(1− ζ−1qn+1/2)
. (5.12)

This simply counts angular momentum modes of the two chiral fields Y and
Ỹ , of charge ±1 under the flavor symmetry with fugacity ζ.

If we impose Dirichlet boundary conditions on Ỹ , we are left with the
contribution from Y only,

IY =
1∏

n>0(1− ζqn+1/2)
. (5.13)

Similarly, in the case of Dirichlet boundary conditions for Y we get

IỸ =
1∏

n>0(1− ζ−1qn+1/2)
. (5.14)



3-MANIFOLDS AND 3D INDICES 1041

And, of course, the product of IỸ with the 3d index of a free 3d chiral field
of charge 1, in the absence of magnetic flux, gives IY , as expected from the
discussion of the F move.29

Crucially, we expect the mirror relation to hold even in the presence of
’tHooft operators at the North pole. Thus we can predict, up to a prefactor,
how the Schur index for a hypermultiplet should look in the presence of such
a magnetic charge:

Ihyper(m; q, ζ) =
1∏

n>0(1− ζqn+1/2+|m|/2)(1− ζ−1qn+1/2+|m|/2)
. (5.15)

5.3 Non-abelian line defects

There are natural ways to use the three-dimensional theories TM to define
domain walls in the UV for four-dimensional N = 2 SU(2) gauge theories.
A full account of that construction will be the subject of a future publica-
tion [61]. For now, we will content ourselves with sketching some interesting
directions of inquiry. For simplicity, we will focus on the example of SU(2)
N = 2∗ SYM.

We would like to establish a very concrete parallel between the general
structure of Pestun’s S4 partition function and the refined index. In the
presence of line defects or domain walls at the equator, localization reduces
Pestun’s partition function to a matrix element of a self-adjoint opera-
tor [36–38]

〈ZS |Ô|ZN 〉 ≡
∫

dν(a′)dν(a)Z̄inst(a′)O(a′, a)Zinst(a). (5.16)

Here Zinst(a) is the instanton partition function (together with the tree-
level contribution) for the gauge theory, which is naturally thought of as
a wavefunction, |ZN 〉 = Zinst(a), and 〈ZS | is the complex conjugate; dν(a)
is the one-loop integration measure, and O(a′, a) is an integration kernel
that encodes the effect of the domain wall or line defect. For domain walls,
O(a′, a) is basically the S3 partition function of the domain wall 3d degrees

29Furthermore, Ihyper = IY IỸ , while obvious, can be given a neat interpretation: in
order to describe a hypermultiplet on the whole space, one can start with Dirichlet bound-
ary conditions on Ỹ for a half-space, and Dirichlet boundary conditions on Y for the
second half-space, and “glue” them together by a Y−Ỹ+ 3d superpotential integrated over
the equator. Here Y− and Ỹ+ denote the boundary values of Y and Ỹ from the two
sides. This “gluing” prescription is akin to the idea that a gauge theory on the full space
can be reconstructed from the gauge theory on two half-spaces with Dirichler boundary
conditions by gauging the diagonal flavor symmetry at the boundary.
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of freedom. For ’tHooft–Wilson line defects L, O(a, a′) is a sum over delta
functions, so that Ô takes the form of a sum over shift operators

ÔL =
∑

n

Rn(a)e2πn∂a . (5.17)

The functions Rn(a) can in principle be computed from the geometry of
monopole moduli spaces, as they account for “bubbling monopole” configu-
rations near the line defect [69] that interpolate between the “bare” ’tHooft
monopole magnetic flux and an Abelian magnetic flux n/2.

A simple way to understand the physical meaning of the matrix element
is to realize the configuration starting from two hemispheres with Dirichlet
boundary conditions for the gauge fields, and then glue together the hemi-
spheres, along with any extra degrees of freedom at the equator, by gauging
appropriate 3d flavor symmetries. In particular, it is natural to see the
wavefunction |ZN 〉 as the partition function on a hemisphere with Dirichlet
boundary conditions. Notice that the notion of Dirichlet boundary condi-
tion is not S-duality invariant, but depends on a choice of weakly coupled
duality frame. Hence |ZN 〉 transforms in interesting ways under S-duality,
while the S4 partition function 〈ZS |ZN 〉 is S-duality invariant. Incidentally,
in the gluing procedure one also has to pick adequate boundary conditions
for the hypers, as discussed before. Different choices split the one-loop mea-
sure in different way among North and South hemisphere, and change the
normalization of the wavefunctions.

In the context of Alday-Gaiotto-Tachikawa (AGT) [35], the wavefunc-
tions are identified with Belavin-Polyakov-Zamolodchikov (BPZ) conformal
blocks, and the matrix elements with 2d conformal field theory (CFT) cor-
relation functions. The operators OL coincide with the so-called Verlinde
line operators, or with topological defects in the 2d CFT. Crucially, they can
be computed explicitly through a laborious algorithm [36, 37], sidestepping
the difficult localization calculations of gauge theory. The whole structure
described above can be deformed to generic b, though the corresponding
deformation S4

b of the S4 geometry has not been described yet. We will need
the generalized formulae in the following. The simplest ’tHooft–Wilson loop
for N = 2∗ super-Yang-Mills (SYM) is the operator of magnetic charge 1
and electric charge s,

Ô1,s =
sin πb(2a−Q− μ)

sin πb(2a−Q)
eiπb(2a−Q)s− b

2
∂a

+
sin πb(2a−Q + μ)

sin πb(2a−Q)
e−iπb(2a−Q)s+ b

2
∂a . (5.18)
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It is self-adjoint against the standard Liouville measure dν(a) = sinπb(2a−
Q) sin π/b(2a−Q)da, as long as the mass parameter μ lies in the physical
line Q/2 + i R. Notice that the first factor in the measure cancels against the
denominators in Ô1,s and the second factor in the measure commutes with
the shift operators. The opposite is true for a second family of operators,
obtained from Ô1,s by b → b−1. The operator is explicitly symmetric under
a → Q− a but not under μ→ Q− μ, due to an asymmetric split of the
one-loop factors between North and South hemispheres. The symmetry
μ→ Q− μ can be implemented by conjugation by an appropriate rescaling
factor.

In order to set up our analogy, we can break down the calculation of the
index of a 4d theory, possibly in the presence of a domain wall on the equator
of the S3 or of line defects, by first defining a “half-index” IIm(q, ζ,Γ) as
the index of the 4d gauge theory on half of S3 with Dirichlet boundary
conditions. This will be a function of the fugacities and magnetic fluxes ζ, m
associated to the 3d flavor symmetries and of the choice of S-duality frame
Γ. The full index of the 4d theory can be recovered by combining the half-
indices for the two hemispheres with the measure for a three-dimensional
non-abelian gauge theory:

(IIS |IIN ) ≡
∑
m

∮
dζ

2πiζ
Δm(ζ)IIm(q, ζ, N)IIm(q, ζ, S). (5.19)

In the absence of ’tHooft operators in the bulk, we expect IIm(q, ζ,Γ) to
be non-zero only at m = 0. The measure Δ0(ζ) is the usual Vandermonde
measure. In the presence of ’tHooft loops, we will have contributions at
non-zero (possibly half-integral) m and we will find a natural generalization
of the measure,

Δm(ζ) =
1
2
(qm/2ζ − q−m/2ζ−1)(q−m/2ζ − qm/2ζ−1). (5.20)

How can we add ’tHooft operators to the half-index? The hard way would
be to do a careful localization computation, taking into account bubbling
monopole contributions that screen the magnetic charge at the pole, giving
a variety of possible Abelian fluxes m at the equator. But there is a short-
cut. We can try to borrow the calculation of Rn(a) from the Verlinde loop
operators. Notice that if we assume the existence of a dictionary, these are
very constrained. Namely, the OPE of line defects and the Ward identities
satisfied when they are brought to collide with domain walls must take the
same form for the S4

b partition function and for the index, upon the dictio-
nary established in the rest of this paper between vector-multiplet vevs and
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fugacities, and 2π ib2 → �. In particular, we will map

eiπb(2a−Q) → x̂+ = qm/2ζ eb∂a → p̂+ = e∂m+ �

2
∂log ζ eiπb(2m−Q) → η.

(5.21)

We can replace (x̂+, p̂+) with (x̂−, p̂−) for operators acting from the opposite
side of the equator.

We are led to conjecture that the half-index in the presence of a ’tHooft–
Wilson loop L can be computed by acting on the half-index in the absence
of the loop with the image of ÔL under the above dictionary. Let us consider
a concrete example. The 4d index of SU(2) N = 2∗ is

I(η, q) =
∮

dζ

4π iζ
(1− ζ2)(1− ζ−2)

×
∞∏

n=0

(
1− qn+1

)2 (1− qn+1

ζ2

)2 (
1− ζ2qn+1

)2(
1− η−1qn+ 1

2

)(
1− ηqn+ 1

2

)(
1− qn+1

2

ηζ2

)
(

1− ηqn+1
2

ζ2

)(
1− ζ2qn+1

2

η

)(
1− ηζ2qn+ 1

2

)
, (5.22)

and the half-index is

IIm(ζ, η, q) = δm,0

∞∏
n=0

(
1− qn+1

) (
1− qn+1

ζ2

) (
1− ζ2qn+1

)
(
1− η−1qn+ 1

2

)(
1− η−1qn+1

2

ζ2

)(
1− η−1ζ2qn+ 1

2

) ,

(5.23)

so that

I(η, q) =
∑
m

∮
dζ

2πiζ
Δm(ζ)IIm(q, ζ, η)IIm(q, ζ, η−1). (5.24)

Now we can act with a Wilson loop operator, 2 cosπb(2a−Q) → qm/2ζ +
q−m/2ζ−1, following (5.21). We get that the half-index in the presence of
a Wilson loop is simply multiplied by the appropriate character, thanks to
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the δm,0 constraint:

Ô0,1IIm(ζ, η, q) =
(
ζ + ζ−1

)
IIm(ζ, η, q). (5.25)

On the other hand, if we act with the translated ’tHooft–Wilson operator

Ô1,s =
qm/2−1/4ζη−1/2 − q−m/2+1/4ζ−1η1/2

qm/2ζ − q−m/2ζ−1
q−s/4qsm/2ζsp

−1/2
+

+
qm/2+1/4ζη1/2 − q−m/2−1/4ζ−1η−1/2

qm/2ζ − q−m/2ζ−1
q−s/4q−sm/2ζ−sp

1/2
+ , (5.26)

we get

Ô1,sIIm(ζ, η, q) = q1/4η1/2
(
ζsδm,1/2 + ζ−sδm,−1/2

)
×

∞∏
n=0

(
1− qn+1

) (
1− qn+3/2

ζ2

) (
1− ζ2qn+3/2

)(
1− η−1qn+ 1

2

)(
1− η−1qn+1

ζ2

)
(1− η−1ζ2qn+1)

.

(5.27)

Several useful cancelations led to a simple result. We would have derived
the same result if we had used (x̂−, p̂−) in the dictionary, as it should
be: the half-index for a bare hemisphere should intertwine the line defects
acting on opposite sides of the equator. Notice that we chose a measure
Δm(ζ) = 1

2(x+ − x−1
+ )(x− − x−1

− ), which mimics the properties of the Liou-
ville measure.

We can now compare the index in the presence of two basic Wilson loops,
one for each hemisphere,

Iel(η, q) =
∮

dζ

4π iζ
(1− ζ2)(1− ζ−2)

×
∞∏

n=0

(ζ + ζ−1)2
(
1− qn+1

)2 (1− qn+1

ζ2

)2 (
1− ζ2qn+1

)2(
1− η−1qn+ 1

2

)(
1− ηqn+ 1

2

)(
1− qn+1

2

ηζ2

)
(

1− ηqn+1
2

ζ2

)(
1− ζ2qn+1

2

η

)(
1− ηζ2qn+ 1

2

)
, (5.28)
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with the index in the presence of two ’tHooft loops (of zero electric charge),

I(η, q) = 2
∮

dζ

4π iζ
(1− q1/2ζ2)(1− q1/2ζ−2) (5.29)

×
∞∏

n=0

(
1− qn+1

)2 (1− qn+3/2

ζ2

)2 (
1− ζ2qn+3/2

)2(
1− η−1qn+ 1

2

)(
1− ηqn+ 1

2

)(
1− qn+1

ηζ2

)
(
1− ηqn+1

ζ2

)(
1− ζ2qn+1

η

) (
1− ηζ2qn+1

)
.

The factor of 2 arises from the sum of the abelian contributions of magnetic
charge ±1/2. We absorbed the factors q1/4η1/2q1/4η−1/2 in the measure.
Amazingly, the two results agree, computationally, to as high an order as
we could check in the q expansion. This is a striking verification that our
prescription of the line defects is compatible with S-duality.

6 The index as SL(2, C) Chern–Simons theory

Throughout the preceding sections, there have been various hints that the
index IM (m, e; q) of a theory TM may have some relation to complex Chern–
Simons theory on M itself, i.e., Chern–Simons theory with complex gauge
group SL(2, C). For example, the constructions of TM and IM involve choos-
ing a polarization on the phase space P∂M , and this is precisely the phase
space of complex Chern–Simons theory on a 3-manifold M with bound-
ary [70, 71]. In addition, the flat SL(2, C) connections in the bulk of M ,
which project to the Lagrangian submanifold LM ,

LM = {flat SL(2, C) connections on ∂M that extend to M}
∩

P∂M = {flat SL(2, C) connections on ∂M},

correspond to spaces of SUSY vacua for TM [8, 19]; and these flat connec-
tions on M are the classical solutions to Chern–Simons theory. Moreover,
we saw in Sections 4 and 5 that a quantization of the Lagrangian’s defin-
ing equations, L̂M , provides difference operators that annihilate the index.
This again is an expected property of Chern–Simons wavefunctions: the con-
straints describing classical solutions (LM ) become promoted to quantum
operators (L̂M ) that annihilate the quantum wavefunctions [28].

To be even more suggestive, consider the tetrahedron index in the elec-
tric fugacity basis (3.3). Note that in the definition of the index as a par-
tition function on S2 × S1, the parameter q = e� is real, while ζ = eiθ is a
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pure phase. We can then recombine m and θ into complex variables, as in
Section 3:

Z =
m

2
� + i θ, Z =

m

2
�− i θ, (6.1)

or

z = eZ = q
m
2 ζ, z = eZ = q

m
2 ζ−1; (6.2)

so that the tetrahedron index takes the form

IΔ(m; q, ζ) = IΔ(z, z; q) =
∞∏

r=0

1− qr+1z−1

1− qr z−1 . (6.3)

If we define ZΔ(z; q) ≡∏r≥1(1− qrz−1) for |q| < 1, and allow ourselves the
“Fock space reorganization”

∏
r≥1(1− q−rz) =

∏
r≥0(1− qrz)−1, we would

then have an index

IΔ(z, z; q) “=” ZΔ(z; q)ZΔ(z; q−1), (6.4)

factorized into identical holomorphic and antiholomorphic pieces.

Such a factorization is familiar from the studies of SL(2, C) Chern–Simons
partition functions in [28–30]. More generally, the physical Chern–Simons
partition function on a 3-manifold M would be a sum over classical flat
connections α with fixed boundary conditions x,

ZCS
M (x, x; q) =

∑
α

nαᾱZα
M (x; q)Z ᾱ

M (x; q−1), (6.5)

and with nαᾱ real and diagonal.30 In the case of the tetrahedron, there is
a unique flat connection at fixed boundary condition x = z, and so a single
term in (6.5). Note that (6.5) has a symmetry under complex conjugation
and exchange of q and q−1, which looks like ρ symmetry (2.24) for the index.

Our goal in this section is to make the relation between SL(2, C) Chern–
Simons theory and the index as precise as possible. There actually exist
several inequivalent quantizations of complex Chern–Simons theory — cor-
responding to different real symplectic structures on the complex phase space
P∂M — and we will see that one special choice is related to the generalized
index IM (m; q, ζ). An interesting open question is to understand what the

30Explicit expansions of this type, not for indices but for the closely related ellipsoid
partition functions of some theories in class R, have recently appeared in [72].
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other quantizations might mean. In Section 6.3, we will give a “top-down,”
qualitative view of the equivalence between Chern–Simons theory and the
index by considering the theory of M5-branes in the geometry S1 × S2 ×M
and applying various known dualities.

6.1 Quantization at k = 0

Let us begin by reviewing a few facts about Chern–Simons theory with gauge
group GC = SL(2, C) [28,71,73]. The most general complex bulk action on
a 3-manifold M is

SCS(M) =
t

8π

∫
M

Tr
(
A dA+

2
3
A3
)

+
t̃

8π

∫
M

Tr
(
A dA+

2
3
A3
)
, (6.6)

where A is a local gC = sl(2, C)-valued one-form, defined modulo the stan-
dard gauge transformations A → g−1A g + g−1dg. Unlike the case of real
Chern–Simons theory, the complex action here contains both holomorphic
and antiholomorphic terms, and each comes with its own coupling constant,
here t and t̃. Let us write

t = k + is, t̃ = k − is. (6.7)

A priori, k and s are the independent complex parameters. However, inde-
pendence of the path integral measure exp

[
iSCS(M)

]
under large gauge

transformations forces k to be an integer. Moreover, unitarity — the state-
ment that the path integral be conjugated under a change of orientation on
M — requires s ∈ R.31

If the boundary of M is non-empty, then the Chern–Simons path integral
on M is a wavefunction in a boundary Hilbert space H∂M . This space is the
quantization of the classical phase space associated to the boundary,

P∂M �
{
flat connections A on ∂M

}
. (6.8)

This space is endowed with a real symplectic structure induced from the
Chern–Simons action:

ωk,s =
t

8π
Ω +

t̃

8π
Ω, (6.9)

31An alternative unitarity structure with s ∈ i R was also discussed in [71]. However,
it does not appear to have direct relevance for 3d indices.
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where Ω =
∫
∂M Tr

(
δA ∧ δA) is a holomorphic symplectic form. By setting

Ω = ωI − i ωK , we could also write this as

ωk,s =
k

4π
ωI +

s

4π
ωK . (6.10)

Here ωI and ωK coincide with two of the standard real symplectic forms on
P∂M , viewed as a hyperkahler manifold [74], hence the notation. It turns out
that, as cohomology classes, [ωK ] = 0 while [ωI/(4π)] ∈ H2(P∂M ; Z) for any
2d boundary ∂M . Thus, as long as k ∈ Z, we have [ωk,s/(2π)] ∈ H2(∂M ; Z),
and the pair (P∂M , ωk,s) is quantizable (cf. [75]).

The Hilbert space H∂M is the quantization of (P∂M , ωk,s). However, this
quantization depends critically on the relative values of k and s. To illustrate
this dependence more concretely, let us consider a “model” phase space
P � C

∗ × C
∗, with coordinates x and p, and a holomorphic symplectic form

Ω = 2
dp

p
∧ dx

x
. (6.11)

It is also convenient to take logarithms

X = log x, P = log p, (6.12)

defined modulo 2πi Z. P is the actual phase space for the boundary ∂Δ
of a tetrahedron — thinking of ∂Δ as a four-punctured sphere, with unit
SL(2, C) holonomy eigenvalues at each puncture [19] — and it can be used
as a building block to approximate the phase space of any more complicated
boundary [61]. For example, the phase space of a torus is PT 2 � P/Z2, while
for a genus g ≥ 2 surface with s punctures an open patch of the phase space
looks like a quotient of P3g−3+s. The coordinates z and p can be thought
of as models for eigenvalues of general SL(2, C) holonomies.

Now, to demonstrate the sensitivity of quantization to the values of k, s,
suppose first that we quantize (P, ωk,s) for a choice of coupling constants
s = 0 and k �= 0. In other words, we choose the real symplectic form

ωk,0 =
k

4π
ωI =

k

2π

[
d Re(P ) ∧ d Re(X)− d Im(P ) ∧ d Im(X)

]
. (6.13)

Thus, writing P = C
∗
1 × C

∗
2 � (R1 × R2)× (S1

1 × S1
2), (6.13) indicates that

the two non-compact real directions are canonically conjugate to each other,
as are the two S1 directions. Moreover, it is easy to see that [ωk,0/(2π)] ∈
H2(P; Z), since

∫
S1

1×S1
2
ωk,0 = −2πk. If we choose a polarization such that
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(say) Re(Z) and Im(Z) are both “positions” while Re(P ) and Im(P ) serve
as “momenta,” the Hilbert space becomes

Hk,0 � L2(R)⊗ L2(Zk), (6.14)

with an infinite-dimensional factor coming from quantization of R1 × R2,
and a |k|-dimensional factor coming from quantization of the compact S1

1 ×
S1

2 . The latter factor is much like the Hilbert space of Chern–Simons theory
with compact gauge group SU(2).

The choice s = 0 and k �= 0 turns out not to be the relevant one for the
3d index. Rather, we conjecture that the index is related to Chern–Simons
theory quantized in the opposite limit k = 0 and s �= 0. The Hilbert space
in this case looks very different, and we will proceed to analyze it for the
remainder of this section. The general situation k, s �= 0 is a slightly twisted
variation of k = 0, s �= 0; it would be interesting to see if it were related to
a generalization of the index.

The real symplectic structure at k = 0 is

ω0,s =
s

4π
ωK =

i
�
dP ∧ dX − i

�
dP ∧ dX (6.15)

= −2
�

[
d ReP ∧ d ImX + d ImP ∧ d ReX

]
, (6.16)

with

� ≡ 4π

s
. (6.17)

Then, we see that the coordinate on each non-compact R factor in P is
canonically conjugate to the coordinate on a compact S1. In fact, we could
more naturally write the phase space (P, ω0,s) as T ∗(S1

1 × S1
2), with the stan-

dard symplectic form of a cotangent bundle. In order to quantize (P, ω0,s)
we must choose a polarization, and there are several nice choices, summa-
rized in Table 1. The polarizations differ in the combinations of compact and
non-compact coordinates that are designated as positions and momenta.32

This choice is somewhat distinct from the coarser distinction of Z vs. P
as position and momentum, and the related Sp(2, Z) action that featured
prominently in the construction of theories TM and indices IM . We will
return to the Sp(2, Z) action in Section 6.2.

32In the terminology of geometric quantization, all the polarizations in Table 1 are real
polarizations. One advantage of this is that quantum wavefunctions can then be expressed
as standard functions, rather than sections of a line bundle, cf. [71].
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Table 1: Real polarizations and Hilbert spaces at k = 0. All Hilbert spaces
are isomorphic, and related by compact Fourier transform.

Hilbert space
Positions Momenta H ≡ H0,s

(a) Im X, Im P (S1
1 × S1

2) −2 Re P, 2 Re X (R2 × R1) L2(S1)× L2(S1)
(b) ImX, Re X (S1

1 × R1) −2 Re P, −2 Im P (R2 × S1
2) L2(S1)× L2(Z)

(c) Re P, Im P (R2 × S1
2) 2 Im X, 2 Re X (S1

1 × R1) L2(Z)× L2(S1)
(d) Re X, Re P (R1 × R2) −2 Im P, 2 Im X (S1

2 × S1
1) L2(Z)× L2(Z)

Two of the polarizations in Table 1 may begin to look familiar from our
discussion of indices. In particular, in polarization (d), the compactness of
the momenta quantizes the position coordinates Re X and ReP . Specifically,
we find

Re X = m�

2 , Re P = e�

2 , m, e ∈ Z , (6.18)

so that wavefunctions in H are just complex-valued functions of the two
integers (m, e) and the real parameter �. This appears identical to the form
of the index in a “charge basis” (2.5). Alternatively, if we treat both real and
imaginary parts of Z as positions, as in (b), the wavefunctions become non-
holomorphic functions of x = exp(Re X + i Im X). The compact momentum
Im P still quantizes Re Z ∈ �

2Z, so

x = q
m
2 ζ , with q ≡ e�, m ∈ Z ζ = eiθ ≡ ei Im X . (6.19)

Therefore, wavefunctions in polarization (b) look like indices in an electric
fugacity basis (2.3). To go from one polarization to another, one should use
Fourier transform, f (b)(x, x̄; �) = f (b)(m, ζ; �) =

∑
e∈Z

f (d)(m, e; �) ζe, just
as described below (2.5).

Further confirmation of the relation between Chern–Simons wavefunc-
tions and indices comes from analyzing the algebra of operators acting on
the Hilbert spaces in Table 1. In any polarization, the coordinates X, X, P, P
become promoted to operators with commutation relations

[
P̂ , X̂

]
= �,

[
P̂ , X̂

]
= −�,

[
P̂ , X̂

]
=
[
P̂ , X̂

]
= 0. (6.20)

These relations can be read off directly from the form (6.15) of ω0,s. One
can then work out the action of the operators on wavefunctions, in various
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polarizations. In particular, acting on f (d)(m, e; �) we find

X̂ = m�

2 − ∂e, P̂ = e�

2 + ∂m, X̂ = m�

2 + ∂e, P̂ = e�

2 − ∂m (6.21)

whereas acting on f (b)(m, ζ; �) we have

X̂ = X, P̂ = � ∂X , X̂ = X, P̂ = −� ∂X . (6.22)

Even in the (b) polarization, it is nice to note that the compactness of the
position ImZ necessarily quantizes the spectrum of the conjugate momen-
tum operator R̂eP = 1

2

(
P̂ + P̂

)
= e�

2 , e ∈ Z.

It should be evident that the operator algebra just described is identical
to the algebra of index operators from Sections 2.5 and 3.3, with the identifi-
cation (X̂, X̂, P̂ , P̂ ) = (X̂+, X̂−, P̂+, P̂−). With this information in hand, we
can move beyond Hilbert spaces and compare the actual wavefunctions of
non-trivial 3-manifolds. As reviewed at the beginning of this section (and in
many other places), the classical solutions to complex Chern–Simons theory
on M cut out a Lagrangian submanifold LM in the boundary phase space
P∂M ; and the quantum wavefunction of M is annihilated by a quantization
of the defining equations for the Lagrangian, L̂M · ZM = 0. The quantiza-
tion LM → L̂M is universal in Chern–Simons theory, in the sense that it
does not depend on a certain real or complex form of the gauge group, or on
choices of polarization, cf. [28,76]. Therefore, we can borrow results of [31],
where Lagrangians were quantized in analytically continued Chern–Simons
theory, and simply apply them to find quantized Lagrangians in the present
case of physical SL(2, C) Chern–Simons at k = 0.

The simplest example of such quantization is for a tetrahedron itself.
The phase space is just our model phase space, P∂Δ = P with standard
coordinates x = z, p = z′′, and the classical Lagrangian LΔ is cut out by the
equation z′′ + z−1 − 1 = 0. Since the real symplectic form ω0,s manifestly
breaks the holomorphic structure of P, it is perhaps better to write the
Lagrangian as

LΔ : z′′ + z−1 − 1 = 0, z′′ + z−1 − 1 = 0. (6.23)

Then quantization with respect to ω0,s produces operators L̂Δ+ = ẑ′′ +
ẑ−1 − 1, L̂Δ− = ẑ

′′ + ẑ
−1 − 1 that must annihilate the tetrahedron wave-

function. (As usual, we define ẑ = exp Ẑ, etc.) In polarization (b), the
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equations determine

ZCS
Δ (z, z; �) =

∞∏
r=0

1− qr+1z−1

1− qr z−1 (6.24)

up to an overall function of q. Given the dictionary z = q
m
2 ζ of (6.19),

this establishes the equivalence of the Chern–Simons wavefunction with the
index in an electric fugacity basis, up to normalization.

In order to understand SL(2, C) Chern–Simons theory on a more general
3-manifold M with boundary, we can decompose M into ideal tetrahedra,
and then try to apply the symplectic gluing framework of [31]. This requires
defining an affine symplectic Sp(∗, Z) action on the tetrahedron Hilbert
spaces H = H0,s of Table 1 and their products. It also requires an appropri-
ate quantum version of symplectic reduction, in order to implement gluing.
We will describe these operations in Section 6.2. Of course, we will find that
they coincide with the operations on the index IM found in Section 2, so
that Chern–Simons wavefunctions can be constructed using the index-gluing
rules of Section 4.1. Moreover, asking for SL(2, C) Chern–Simons wavefunc-
tions at k = 0 to be independent of a triangulation (invariant under 2 to 3
moves) even fixes the normalization of the single-tetrahedron wavefunction
(6.24) to agree with that of the tetrahedron index. Taken together, these
facts constitute an axiomatic proof33 that the index of TM is equivalent to
an SL(2, C) Chern–Simons wavefunction, IM = ZCS

M .

We may finally note that SL(2, C) Chern–Simons theory has an obvious
conjugation symmetry, stemming from the symmetry of the action (6.6). It
acts on a semi-classical phase space (P, ωk,s) as complex conjugation and
simultaneous exchange of t and t̃, to preserve the symplectic form (6.9). In
the case k = 0, this means � → −�, or q → q−1. Following the dictionary
(6.19) or (6.1), we see that complex conjugation is precisely ρ symmetry
for the index, from Section 2.4. Interestingly, the action of conjugation on
wavefunctions suffers from the same “Fock space reorganization” subtleties
as the index — discussed briefly, for example, in Section 6.5 of [42].

6.2 Symplectic action

We would like to define an affine symplectic action on the Hilbert space
H ≡ H0,s (or products thereof) that intertwines an obvious symplectic action

33The same technicalities involving convergence and univalent edges from Section 4
appear in Chern–Simons theory too. We mean a non-rigorous, physical “proof.”



1054 TUDOR DIMOFTE, DAVIDE GAIOTTO AND SERGEI GUKOV

in the algebra of operators (6.20). This was already done in Section 2 for the
index, but we want to rediscover it here from the point of view of Chern–
Simons theory and geometric quantization.

Fortunately, a holomorphic version of the desired symplectic action was
defined in [31]. There, the relevant tetrahedron (say) phase space was viewed
as a complexification of

(
PR, i

2�
ΩR

)
, where PR is the slice of P with X, P ∈

R, and ΩR is the corresponding real restriction of the holomorphic symplectic
form (6.11). Quantization then produced a Hilbert space HSL(2) � L2(R)
containing functions f(X; �). Actual Chern–Simons wavefunctions had the
additional property that they were locally analytic in X and �. Such analytic
“SL(2)” wavefunctions were identified with ellipsoid partition functions of
theories TM in [9, 19, 27]. We recall from [31] that the symplectic group
Sp(2, Z) acted on wavefunctions f(Z; �) in the Weil representation [77, 78].
In particular, the generators T and S were implemented as

T : f(X; �) �→ (T ◦ f)(X ′; �) = e
1
2�

X′2f(X; �), (6.25a)

S : f(X; �) �→ (S ◦ f)(X ′; �) =
1√
2πi�

∫
R

dX e
1
�

XX′f(X; �). (6.25b)

These generate a projective representation of Sp(2, Z) on L2(R) — projective
because the group relations (ST )3 = id and S2 = C only hold up to a phase.

In the present case of SL(2, C) Chern–Simons at k = 0, the complex phase
space (P, ω0,s) can roughly34 be considered a product of holomorphic and
antiholomorphic copies of

(
PR,± i

2�
ΩR

)
. This is easy to see from the expres-

sion (6.15) for ω0,s. We can then guess what the appropriate symplectic
action on (P, ω0,s) should be by combining holomorphic and antiholomor-
phic copies of (6.25).

For example, let us work in representation (b) of the Hilbert space H, so
that wavefunctions f (b)(x, x; q) depend non-holomorphically on x = exp(X).
The natural guess for the T action is

T : f(x, x; q) �→ (T ◦ f)(x′, x′; q) = e
1
2�

X′2− 1
2�

X
′2
f(x′, x′; q), (6.26)

with X ′ = log x′. It is important to check that the right-hand side of (6.26)
is still an element ofH, namely that it is periodic as X ′ → X ′ + 2πi, and that
Re X ′ ∈ �

2Z is quantized. The latter condition is automatic, since f(x, x; q)

34A precise statement is that the analytic continuation of (P, ω0,s), with independent

complex coordinates X, P , and X, P , is isomorphic to (P, i
2�

Ω)× (P,− i
2�

Ω). We do not

want to analytically continue anything here, though.
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was only initially defined for ReX = log |x| ∈ �

2Z; so let us set Re X ′ = m′ �
2 .

Then the exponential in (6.26) becomes

e
1
2�

X′2− 1
2�

X
′2

= eim′ Im X′ , (6.27)

enforcing the required periodicity in ImX ′.

Similarly, a first guess for the S transformation would be

S : f(x, x; q) ?�→ (S ◦ f)(x′, x′; q) =
∫

dX dX e
1
�

XX′− 1
�

XX
′
f(x, x; q), (6.28)

with some appropriate normalization. Now, setting Re X = m�

2 and ReX ′ =
m′ �

2 , the exponent becomes 1
�
XX ′ − 1

�
XX

′ = im′ Im Z + im Im X ′. There-
fore, quantization of ReX ensures periodicity in ImX ′, while requiring quan-
tization of ReX ′ makes the entire integrand in (6.28) periodic in ImX.
This is almost as desired, except that the integration measure

∫
dX dX

does not quite make sense. The correct interpretation of
∫

dX dX is as
an integration over a fundamental domain where f(x, x; q) is defined, i.e.,∫

dX dX →∑m∈Z

∫ 2π
0 d ImX. If we use the notation x = q

m
2 ζ, x′ = q

m′
2 ζ ′,

then the proper transformation becomes

S : f(m, ζ; q) �→ (S ◦ f)(m′, ζ ′; q) =
∑
m∈Z

∫
dζ

2πiζ
ζm′ζ ′mf(m, ζ; q), (6.29)

with integration done over the unit circle. The normalizations in (6.26) and
(6.29) are just right to ensure that T and S generate a true representation
of Sp(2, Z) acting on our Hilbert space H.

It should now be clear that the transformations (6.26) to (6.29) coincide
with the Sp(2, Z) action on the index, described in [17] and in Section 2.1
above. To make the correspondence even clearer, we could use a “charge
basis” for wavefunctions in H, option (d) of Table 1. Using Fourier trans-
form to relate polarizations (b) and (d), we then recover the more familiar
symplectic action

T : f(m, e; q) �→ f(m′ − e′, e′; q), S : f(m, e; q) �→ f(e′,−m′; q), (6.30)

or more generally,

g : f(m, e; q) �→ f
(
g−1 ·

(
m
e

)
; q), (6.31)

cf. (2.7). This last expression generalizes nicely to an Sp(2N, Z) action on
products of Hilbert spaces H.
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Note that both the options (a−d) in Table 1 and the present Sp(2, Z)
action can be understood as choices of basis in H, or of polarization for P.
More precisely, it is a choice of element g ∈ Sp(2, Z) together with a choice
(a−d) from Table 1 that fully determines a polarization. The two choices are
largely independent. The element g ∈ Sp(2, Z) acts holomorphically on the
phase space P, viewed as C

∗ × C
∗, and makes a rough selection of “position”

(X ′) and “momentum” (P ′) coordinates, with
(

X′
P ′
)

= g
(

X
P

)
. The choice

(a−d) then splits the real and imaginary parts of X ′ and P ′ to provide
a specific real polarization for (P, ω0,s). In terms of an index, the former
comes from an Sp(2, Z) action on 3d SCFT’s, while the latter is a choice of
fugacity-vs-charge basis for writing the index. The one relation between the
two choices is that switching (b) ↔ (c) is equivalent to applying S ∈ Sp(2, Z).

In addition to a symplectic action, both Chern–Simons theory and the
index require an action of affine shifts. In the holomorphic version of Chern–
Simons theory discussed in [31], such shifts in position or momentum always
came in multiples of iπ + �

2 , with iπ the classical shift and �/2 a quantum
correction. Now, for full SL(2, C) Chern–Simons theory, we would expect a
shift σX in position X to act as

σX : f(x, x; q) �→ f(−q−
1
2 x,−q

1
2 x; q), or

σX : f(m, ζ; q) �→ f(m,−q−
1
2 ζ; q), (6.32)

intertwining the operator algebra transformation
(
X̂, X̂

)
�→
(
X̂ + i π + �

2 ,

X̂ − i π − �

2

)
. Note that the quantum correction has a different sign for

the holomorphic and antiholomorphic coordinates, due to the opposite signs
appearing in the symplectic structure ω0,s (6.15). Similarly, a shift by iπ + �

2
in momentum P acts as

σP : f(x, x; q) �→ e
1
�

X(i π+ �

2
)− 1

�
X(−i π− �

2
)f(x, x; q) =

(
− q

1
2
)m

f(x, x; q).
(6.33)

Again, these transformations are consistent with the combined fermion num-
ber and R-charge shifts of the index defined in Section 2.2.

In contrast to analytically continued Chern–Simons theory, where the
representation of the affine symplectic group on wavefunctions is only projec-
tive, and leads to normalization ambiguities for wavefunctions of 3-manifolds,
the present actions in SL(2, C) Chern–Simons theory at k = 0 define a true,
faithful representation of Sp(2, Z) �

[(
i π + �

2

)
Z
]2 on H. It is straightfor-

ward to check that group relations such as (2.20) hold on the nose. More
generally, we have a true representation of Sp(2N, Z) �

[(
i π + �

2

)
Z
]2N on
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H⊗N . Therefore, wavefunctions obtained via a symplectic gluing proce-
dure — the procedure outlined in Section 4.1 — should be unambiguously
defined. As already mentioned above, invariance of gluing under 2 to 3
moves completely fixes the normalization of the basic building block for any
triangulated 3-manifold, the wavefunction of tetrahedron.

The final step in constructing wavefunctions for a triangulated 3-manifold
is a “symplectic reduction,” the quantum equivalent to setting internal edge
coordinates CI → 2πi. We finish this discussion by commenting briefly on
it. In the analytically continued Chern–Simons theory, the reduction is
implemented by transforming a wavefunction to a (holomorphic) polariza-
tion such that CI is a position coordinate, and simply setting CI → 2πi + �,
where the ‘+�’ is the usual quantum correction. For the non-holomorphic
SL(2, C) wavefunction, this translates to setting CI → 2πi + � � � and CI →
−2πi− � � −�; or, with xI = eCI = q

mI
2 ζI, setting mI → 0 and ζI → q. In a

charge basis, this means

reduction: Z(mI, m, eI, e; q) �→
∑
eI∈Z

qeIZ(0, m, eI, e; q), (6.34)

just as in (4.6), the last step of the index gluing rules. This completes the
argument that the Chern–Simons wavefunction at k = 0 is fully equivalent
to the index.

6.3 Chern–Simons theory from 6d

As we argued in [19], a three-dimensional N = 2 theory TM labeled by a
3-manifold M can be thought of as the result of compactification of the
six-dimensional (2, 0) theory of type A1 on a 3-manifold M . Therefore,
a 3d N = 2 theory TM in the space-time S1 × S2 relevant to the index
computation can be equivalently approached by studying the A1 6d theory
that describes two coincident M5-branes on S1 × S2 ×M .

This configuration of two five-branes on S1 × S2 ×M fits in a large web
of dualities that connects a number of closely related systems studied in
the literature. Here, we briefly discuss some of these dualities, provid-
ing a further piece of evidence for the interpretation of 3d index in terms
of the full SL(2, C) Chern–Simons theory (not just a holomorphic half
of it).

In general, putting a 3d N = 2 theory T in different space-times with an
Ω-background allows one to associate different quantities (partition
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functions) to T . Below we list several examples of such partition functions
and the corresponding 3d space-times, illustrating their concrete form in a
basic example of the tetrahedron theory T = TΔ, which basically consists of
a single chiral multiplet:

S1 × S2 : I[TΔ] =
∞∏

r=0

1− qr+1z−1

1− qrz̄−1
,

“solid torus” S1 × R
2
� : Zvortex[TΔ] =

∞∏
r=0

(1− qr+1z−1),

“ellipsoid” S3
b : Zb[TΔ] =

∞∏
r=0

1− qr+1 z−1

1− (Lq)r(Lz)−1
,

(6.35)

where, as usual, the Ω-deformation parameter is proportional to �, and in
the case of S3

b there are dual deformations proportional to � = 2πib and
L
� = 2πib−1. In all cases, z is related to a fugacity for the flavor U(1)

symmetry (and Lz = z
2πi
� ).

By comparing the expressions of these partition functions for T = TΔ, the
reader will immediately notice that both the index I[T ] and the ellipsoid
partition function Zb[T ] roughly contain two copies of the vortex partition
function Zvortex[T ]. This observation has a simple heuristic explanation
based on the geometry of the three-dimensional space-times that lead to
these partition functions. Indeed, both a 3-sphere and S1 × S2 consist of
two copies of the solid torus glued together either “back-to-back” or with
a twist, i.e., in a way where the A-cycle on the boundary torus of one
copy is glued to the A-cycle on the boundary of the second copy, or to the
dual B-cycle. These two ways of gluing solid tori produce S1 × S2 and S3,
respectively, which in turn lead to the partition functions (6.35).

Another intuitive explanation of the relation between different partition
functions (6.35) and Chern–Simons theory with complex gauge group
SL(2, C) can be seen directly in the system of two M5-branes supported on
S3

b ×M or S1 ×D ×M , where D = S2 leads to the superconformal index
and D = R

2
�

leads to the vortex partition function. In each case, it is conve-
nient to use a dual description of this five-brane configuration by reducing it
on a circle down to type IIA string theory. There are several choices on can
consider, which depend on the choice of the “M-theory circle,” and all of
which are supposed to provide equivalent descriptions of the same physical
system. For example, if a 3-manifold M admits a circle action, then one
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can find a dual description of the five-brane system in terms of D4-branes
wrapped on the quotient space M/U(1).

In our discussion, the 3-manifold M is generic35 and since the S1 part of
the 3d space-time is used in the definition of the 3d index, our only choice is
to take the M-theory circle be a part of the D or S3 geometry. Luckily, all
our 3d space-times in (6.35) admit such circle actions (aside from obvious
isometries arising from the S1 factor). In particular, the sphere D = S2

relevant for the 3d index can be represented as a circle fibration,

S1
M → S2

↓
I

(6.36)

with two degenerate fibers at the end-points of the interval I = [0, 1]. There-
fore, if we identify the M-theory circle with S1

M , we can relate the original
five-brane system on S1 × S2 ×M with the system of D4-branes stretched
between two D6-branes, as shown in figure 13. In other words, the 3d index
(= partition function of the five-brane theory on S1 × S2 ×M) can be equiv-
alently computed in a gauge theory that lives on the world-volume of the
D4-branes,

S1 × I ×M, (6.37)

with suitable boundary conditions associated with the D6-branes at the end-
points of the interval I. Note, upon this reduction to type IIA theory the
angular momentum for the U(1) rotation symmetry of D = S2 (similarly
for D = R

2) becomes the instanton charge kinst = 1
16π2

∫
I×M Tr F ∧ F in the

D4-brane gauge theory. One quick way to see this is to note that instantons
in the D4-brane theory can be interpreted as D0-branes which, in turn, are
precisely the Kaluza–Klein modes for the reduction on S1

M .

The resulting configuration of D4-branes ending on the D6-branes essen-
tially comprises two (interacting) copies of the D6-D4 brane system studied
in [42], where it was argued that its partition function equals the partition
function of analytically continued Chern–Simons theory, see also [8]. In the
present case, we have two such systems coupled together. We claim that
these are precisely the two sectors (“holomorphic” and “anti-holomorphic”)
of the full SL(2, C) Chern–Simons theory discussed in Section 6.1.

35I.e., we do not make any special assumptions about isometries of M .
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Figure 13: Upon reduction on a circle fiber of S2, a configuration of M5-
branes wrapped on S2 becomes a system of D4-branes stretched between
two D6-branes in type IIA string theory.

Moreover, the coupling constants in these two sectors are related precisely
as in Section 6.1. Indeed, in a single D6-D4 brane system the coupling con-
stant of the analytically continued SU(2) Chern–Simons theory is identified
with the fugacity for the instanton charge kinst. If we denote this fugacity
by q = e�, then the fugacity of the second D6-D4 brane system is equal to
q̃ = e−� = q−1 due to the opposite orientation. This is exactly the relation
between coupling constants t = −t̃ = i s that we encountered in Section 6.1,
with the identification � = 4π

s . In fact, we can even observe that the ρ sym-
metry of Section 2.4, lifted to the D6-D4 system, simply looks like a reflec-
tion of the geometry that exchanges the holomorphic and anti-holomorphic
sectors, and the two fugacities q and q̃.
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Appendix A Proof of triality for the tetrahedron index

We would like to prove that the index is invariant under the affine σeST
transformation discussed in Section 3.2. We will prove it in the form

IΔ(m, e; q) =
(
− q

1
2
)m IΔ(−e−m, m; q), (A.1)

which immediately implies the middle equality of (3.11) as well.

There are several possible ways to show this, but one of the easiest (and
most instructive) is to invoke the difference equations for the index. Recall
from Section 3.3 that

(p̂+ + x̂−1
+ − 1)IΔ(m, e) = (p̂− + x̂−1

− − 1)IΔ(m, e) = 0, (A.2)

where p̂±, x̂± are defined by

x̂± = q
m
2 e∓∂e , p̂± = q

e
2 e±∂m . (A.3)

The validity of (A.2) is trivial to show in a fugacity basis, using formula
(3.3), and the fugacity-basis operators (2.32). We claim that equation (A.2)
determine the index completely as long as two of its values are fixed, on
either the m or e axis (and also assuming that IΔ(m, e) is a formal series in
q

1
2 for every (m, e)).

To see this, first suppose that we knew IΔ(m, e) everywhere on (say) the
m-axis, at e = 0. Then equation (A.2) involve a single shift in e, in opposite
directions, so they can be used to solve for IΔ(m, e) everywhere else. To get
IΔ(m, e) on the m-axis, we can rewrite the operators x̂±, p̂± in terms of the
rotated operators

η̂ = e∂e , ε̂ = qe ; η̂m = e∂m , ε̂m = qm. (A.4)

Then, essentially by using elimination in a left ideal, we can eliminate the
electric shift η from (A.2), and find a single equation only involving ε̂, ε̂m, η̂m.
At e = 0 (ε̂ = 1), it reads(

η̂m + η̂−1
m + ε̂−1

m − 2
)
IΔ(m, 0) = 0, (A.5)

or

IΔ(m + 1, 0) + IΔ(m− 1, 0) + (q−m − 2)IΔ(m, 0) = 0. (A.6)
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This is a second-order difference equation in m, whose coefficients are
nowhere vanishing. Therefore, knowing IΔ(m, 0) at two values of m is suffi-
cient for finding a unique solution along the entire m-axis. (A similar story
holds for the e-axis, but we will not need it.)

Now, let us define I ′(m′, e′)≡
(
−q

1
2

)m′IΔ(−e′ −m′, m′; q) = I(σeST)−1◦TΔ

(m′, e′). The difference equations that I ′(m′, e′) obeys are the affine-
symplectic (σeST)−1-images of (A.2). For example, from the inverse of
(3.20), we find that we should send

x̂± → − 1
p̂′±

1
x̂′±

, p̂± → x̂±, (A.7)

so that the operators annihilating I ′(m′, e′) are

p̂± + x̂± − 1 → x̂′± − x̂′±p̂′± − 1 = −x̂′±(p̂′± + x̂′±
−1 − 1). (A.8)

Therefore, since x̂′± is invertible, the transformed index I ′(m′, e′) satisfied
exactly the same difference equations, in the new variables:

(p̂′+ + x̂′+
−1 − 1)I ′(m′, e′) = (p̂′− + x̂′−

−1 − 1)I ′(m′, e′) = 0. (A.9)

Then, to prove (A.1), it suffices to show that I ′(m′, e′) = IΔ(m′, e′) at two
points on the m′-axis.

It is trivial that I ′(0, 0) = IΔ(0, 0). For our second point, we take (m′, e′) =
(−1, 0), and need to show that I ′(−1, 0) ≡ −q−

1
2IΔ(1,−1) = IΔ(−1, 0). But

this follows from parity symmetry (3.9) of the tetrahedron index! So we are
done.

For completeness, since we never proved parity explicitly in the text, let
us do so here. In an electric fugacity basis, parity symmetry takes the form

IΔ(m; ζ, q) =
(
− q

1
2
)m

ζ−mIΔ(−m; ζ, q). (A.10)
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Using formula (3.3) for the tetrahedron index, we then check

IΔ(−m, ζ)
IΔ(m, ζ)

=
∞∏

r=0

1− qr+ m
2

+1ζ−1

1− qr+ m
2 ζ

1− qr−m
2 ζ

1− qr−m
2

+1ζ−1

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

m−1∏
r=0

1− qr−m
2 ζ

1− qr−m
2

+1ζ−1
m ≥ 0

|m|−1∏
r=0

1− qr+ m
2
−1ζ−1

1− qr+ m
2 ζ

m < 0

=
(
− q

1
2
)−m

ζm,

by straightforward algebra, exactly as desired.

Appendix B Figure-eight index from six tetrahedra

The gluing data for the six-tetrahedron triangulation of the figure-eight knot
complement was described in Section 4.6 of [19]. A map of the torus bound-
ary, which encodes all the necessary combinatorial data, is reproduced in
figure 14. The six tetrahedra have edge parameters (Z, W, X, Y, R, S). Here
we start out in a product polarization ΠZ × · · · ×ΠS , and find that we need
to implement a change of polarization

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U
C1

C2

C3

C4

C5

v
Γ1

Γ2

Γ3

Γ4

Γ5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 −1 −1 1 −1 1 −1 −1 −1
−2 −2 0 1 1 0 −2 −2 0 0 0 2
0 1 0 −2 0 1 0 0 2 −2 2 0
1 0 −2 0 1 0 0 2 −2 2 0 0
0 0 1 1 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0
0 0 −1 0 1 1 0 0 0 0 2 0
−1 −1 0 1 1 0 −1 −1 0 0 1 1
0 0 0 1 1 0 0 1 0 0 2 0
−1 0 1 1 1 0 0 0 1 −1 3 0
−1 0 −2 0 3 0 −1 3 0 1 5 1
0 0 0 −1 −1 0 1 −2 1 −1 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Z1

Z2

Z3

Z4

Z5

Z6

Z ′′
1

Z ′′
2

Z ′′
3

Z ′′
4

Z ′′
5

Z ′′
6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
2πi + �

2πi + �

2πi + �

2πi + �

2πi + �

0
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B.1)
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Figure 14: Map of the torus boundary for the refined triangulation of the
figure-eight knot.

By applying the gluing rules of Section 4.1, we then obtain an index

I41(m, e) =
∑
ei∈Z

(
− q

1
2
)m−e2+2e5+2e6 IΔ(2e2 − e,−2e2 + e4 + e6)

× IΔ(e + 2e2 − 2e4, e3 − 2e2)

× IΔ(−e− 2e3 + 2e4, e− 2e4 + e5 + m)

× IΔ(e + 2e3 − 2e4, e2 − 2e3 + e5)

× IΔ(e− 2e3 + 2m,−e + e2 + e4 −m)

× IΔ(e− 2e2,−e + e3 + e6 −m). (B.2)

As discussed in Section 4.3, we have checked computationally that this is
equivalent to the much simpler expression (4.18) for the figure-eight knot
index.

Appendix C Quantum Lagrangian calculations

Here we calculate explicitly the quantum Lagrangian operators L̂M that
annihilate a few indices, as promised in Section 4.5. We follow the compu-
tational framework delineated in Section 4.5, or in [31].

C.1 Bipyramid

Let us begin with the operators for the bipyramid theory. If we build
the bipyramid from two tetrahedra, we can start with two pairs of oper-
ators r̂′′± + r̂−1

± − 1, ŝ′′± + ŝ−1
± − 1 that both annihilate the product index

IΔ(mR, eR) IΔ(mS , eS), as in Section 4.2. We could write this somewhat
more suggestively as

r̂′′± + r̂−1
± − 1 � 0, ŝ′′± + ŝ−1

± − 1 � 0, (C.1)
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where by “�” we mean “annihilates an appropriate index when acting on the
left.” To be completely explicit, the fundamental generators r̂± = exp(R̂±),
ŝ± = exp(Ŝ±), etc. act as

R̂± = �

2mR ∓ ∂eR Ŝ± = �

2mS ∓ ∂eS ,

R̂′′± = �

2eR ± ∂mR Ŝ′′± = �

2eS ± ∂mS ,

cf. (2.29). (These (r̂, r̂′′) and (ŝ, ŝ′′) are taking the place of what was called
(x̂, p̂) in Step 1 above.) Now, in accordance with the change of polarization
(4.7), we change variables to

X̂1± = R̂± + Ŝ′′±, X̂2± = R̂′′± + Ŝ±, P̂1± = R̂′′±, P̂2± = Ŝ′′±. (C.2)

Then the properly polarized index of the bipyramid, Ibip(m1, m2, e1, e2) =
IΔ(m1 − e2, e1) IΔ(m2 − e1, e2) (4.8), is annihilated by

L̂(1)
bip = p̂1± + x̂−1

1±p̂2± − 1 � 0, L̂(2)
bip = p̂2± + x̂−1

2±p̂1± − 1 � 0. (C.3)

This is an obvious quantization of the bipyramid Lagrangian, given for exam-
ple in Section 2 of [19]. There are no internal edges, so we are done.

Alternatively, we can use three tetrahedra. We start with three equa-
tions36

ẑ′′ + ẑ−1 − 1 � 0, ŵ′′ + ŵ−1 − 1 � 0, ŷ + ŷ′−1 − 1 � 0, (C.4)

where for clarity we just use the ‘+’ operators and remove the subscript ±.
In parallel to the change of polarization (4.11), we change variables to

X̂1 = Ẑ, X̂2 = Ŵ , Ĉ = Ẑ + Ŵ + Ŷ ,

P̂1 = Ẑ ′′ + Ŷ ′, P̂2 = Ŵ ′′ + Ŷ ′, Γ̂ = −Ŷ ′.

Note that p̂1x̂1 = qx̂1p̂1, p̂2x̂2 = qx̂2p̂2, and γ̂ĉ = qĉγ̂. In terms of exponen-
tiated operators, equation (C.4) become

γ̂ p̂1 + x̂−1
1 − 1 � 0, γ̂ p̂2 + x̂−1

2 − 1 � 0, ĉ x̂−1
1 x̂−1

2 + γ̂ − 1 � 0. (C.5)

By multiplying on the left and taking differences of these equations, we
can eliminate γ̂ from (C.5), leaving two equations that only involve x̂i, p̂i, ĉ.
Setting ĉ→ q in these equations recovers the Lagrangian operators (C.3).

36Remember from Section 3.2 that the operator for a tetrahedron theory is cyclically
invariant under permutations of the shape parameters. Thus we can freely write the y
equation using (ŷ′, ŷ) instead of (ŷ, ŷ′′), as we did here.
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C.2 Figure-eight knot

In order to build the operator for the figure-eight knot, it suffices to use
the decomposition into two tetrahedra. Let us again just focus on ‘+’ oper-
ators. We start with ẑ′′ + ẑ−1 − 1 � 0 and ŵ′′ + ŵ−1 − 1 � 0, and change
variables to

Û = Ẑ − Ŵ ′′, Ĉ = Ẑ ′′ + Ŵ ′′ − Ẑ − Ŵ + 2πi + �,

v̂ = Ẑ ′′ − Ẑ, Γ̂ = −Ŵ ′′.

According to (semi)standard conventions in the mathematics literature, let
us define M̂ = eÛ and �̂ = −ev̂. The the two tetrahedron Lagrangians can
then be rewritten as37

−q
1
2
M̂ �̂

γ̂
+

γ̂

M̂
− 1 � 0,

1
γ̂
− q−

1
2
ĉ γ̂

�̂
− 1 � 0. (C.6)

Eliminating γ̂ from these equations is not entirely trivial, but can be done
by hand. After doing so and setting ĉ→ 1, what results is a single operator

L̂41 =
(
q

1
2 M̂ − q−

1
2 M̂−1

)
�−1 −

(
M̂ − M̂−1

)
×
(
M̂−2 − M̂−1 − q − q−1 − M̂ + M̂2

)
+
(
q−

1
2 M̂ − q

1
2 M̂−1

)
�̂,
(C.7)

which annihilates the figure-eight knot index I41(m, e) in (4.18). Here M̂

and �̂ act in the ‘+’ representation, so that

M̂ = eÛ = exp
(

�

2m− ∂e

)
, −�̂ = ev̂ = exp

(
�

2e + ∂m

)
. (C.8)

The complementary ‘−’ operator is obtained from (C.7) by sending M̂ →
M̂−, �̂ → �̂−, and q → q−1.

The quantum Lagrangian (C.7) is well known in knot theory and Chern–
Simons theory as the “quantum A-polynomial” of the figure-eight knot [29,
31,52].38

37One must be careful with factors of q in these equations when de-exponentiating. For

example ẑ′′ = exp(Û + v̂ − γ̂) = q
1
2 M̂ �̂γ̂−1 = q−

1
2 �̂M̂ γ̂−1.

38It is easiest to compare (C.7) to the conventions of [29] or [31]. For example, (C.7)

is identical to equation (1.8) of [31] upon setting M̂ → m̂2.
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C.3 Trefoil

The quantum Lagrangian for the trefoil can be similarly obtained using our
gluing rules, but we can also just take the known result from knot theory. In
terms of longitude and meridian holonomy eigenvalues � = −ev and M = eU ,
the classical Lagrangian (i.e., the non-abelian A-polynomial) for the trefoil
is simply � + M3, which becomes quantized as

L̂31 = �̂ + q
3
2 M̂3. (C.9)

It is easy to check that this annihilates the delta-function index for the
trefoil, I31(m, e) = δe,3m, with �̂ and M̂ acting just as in (C.8). The index is
also annihilated by the ‘−’ version of (C.9), namely L̂31− = �̂− + q−

3
2 M̂3

−.

Appendix D Tentacles and difference equations

In this appendix, we seek to motivate the relation between tentacles of a
classical amoeba of LM and “linear growth” in the index, as discussed in
Section 4.6. We show how these two phenomena are connected via quantized
difference equations L̂MIM = 0. Our argument is heuristic, but indicates a
path toward a more rigorous proof, given further information about quanti-
zation and/or indices.

For simplicity, suppose that a theory39 TM has a single U(1) symmetry,
so that the index IM (m, e; q) depends on a single pair of charges (m, e).
Correspondingly, the classical Lagrangian LM (or a component of it) can be
described by a single equation, which we just write as LM (x, p) = 0, with
x, p ∈ C

∗. Let us also suppose, without loss of generality, that the amoeba
of LM has a tentacle in the negative ReP direction, i.e., LM (x, p) = 0 has a
solution with |p| → 0 and x finite. Otherwise, we can use the Sp(2, Z) action
to rotate any other amoeba tentacle to this position.

Let us write

LM = a0(x) + a1(x) p + · · ·+ ad(x)pd. (D.1)

This polynomial is only well-defined up to multiplication by monomials in x
and p. The fact that LM (x, p) = 0 has a solution at |p| → 0 means that the
coefficient a0(x), multiplying the lowest power of p, has a non-trivial root.

39This could actually be a general theory in class R; is still has a classical L and

quantum operators L̂.
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In particular, a0(x) �= 1. If the tentacle is directly on the negative ReP axis
(as we would expect for character varieties of 3-manifolds, cf. [62]), then the
root must actually be on the unit circle; i.e., a0(x) = 0 for some |x| = 1. The
simplest example would be a0(x) = 1− x.

This property of the polynomial (D.1) is also familiar from the rela-
tion between amoebas and Newton polygons. Namely, every tentacle of
the amoeba is perpendicular to an edge of the Newton polygon of LM . A
tentacle in the −Re P direction means that the Newton polygon has a “ver-
tical” (x-direction) edge at the lowest power of p, which is the same thing
as saying that a0(x) is non-trivial.40

Now, the index is annihilated by quantized versions of (D.1),

L̂M (x̂+, p̂+; q) IM = L̂M (x̂−, p̂−; q−1) IM = 0. (D.2)

Sometimes the degree of L̂M in p̂ or x̂ jumps upon quantization, but we will
assume here that it does not (the jumping does not affect the general story).
Then we could write

L̂M (x̂+, p̂+; q) =
d∑

n=0

ân(x̂+; q)p̂n
+, (D.3)

with ân(x̂+; q) → an(x) as q → 1, and similarly for the (−) operators. In
particular, â0(x̂±; q±) is a non-trivial (classical!) polynomial in x̂±, with
q-dependent coefficients.

We want to consider the behavior of the index at m = 0 and large positive
electric charge e. For this, the operators x̂±, p̂± are not convenient, because
they combine shifts in e and m. Recall from Section 2.5, that (x̂±, p̂±) =
(eX̂± , eP̂±) with

X̂+ = �

2m− ∂e, P̂+ = �

2e + ∂m,

X̂− = �

2m + ∂e, P̂− = �

2e− ∂m.
(D.4)

40Meaning not a monomial. All equations and operators are defined up to (left) mul-
tiplication by monomials.
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We can rotate (D.4) to define a more useful set of operators

η̂ =

√
x̂−
x̂+

= e∂e , ε̂ = p̂+p̂− = qe;

η̂m =

√
p̂+

p̂−
= e∂m , ε̂m = x̂+x̂− = qm. (D.5)

Quantum-mechanically, it should then be possible to work in the left ideal
generated by LM (x̂+, p̂+; q) and LM (x̂−, p̂−; q), and eliminate the combina-
tion η̂m, leaving a single operator

ÊM (η̂, ε̂, ε̂m; q) IM = 0 (D.6)

that does not shift m. This operator must still annihilate the index.

In the classical limit q → 1, ÊM reduces to a classical polynomial EM (η, ε,
εm). This polynomial is the result of taking (redundant) complex conjugate
equations

LM (x, p) = 0, LM (x̄, p̄) = 0, (D.7)

setting η =
√

x̄/x = e−i Im X , ε = |p|2, ηm =
√

p/p = ei Im P , εm = |x|2, and
eliminating the phase ηm. Thus, EM (η, ε, εm) is half-way along to defining
the amoeba of LM ! Let us write

EM (η, ε, εm) = EM

(√ x̄

x
, |p|2, |x|2

)
=

d′∑
n=0

bn(η, εm)εn. (D.8)

It is not hard to see, by analyzing the limit |p| → 0, that our ansatz about the
amoeba of LM implies that bn is a non-constant (non-monomial) polynomial.
This is because any solution to LM = 0 must be a solution to EM = 0. In
fact, if we also fix εm = 1 (this is the classical equivalent of setting m = 0 in
the index), then η = x−1, and the same root of a0(x) in (D.1) must be root
of b0(x) ≡ b0(x−1, 1). In particular, if a0(x) has a root on the unit circle,
then b0(x−1, 1) should contain a cyclotomic factor.

What does this finally imply for the index? The operator ÊM defines a
recursion relation for IM that only shifts e. We are therefore free to set
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m = 0, obtaining

ÊM (η̂, ε̂, 1; q) IM (0, e; q) = 0, (D.9)

or

d′∑
n=0

ε̂n b̂n(η̂, 1; q) IM (0, e; q) =
d′∑

n=0

qne b̂n(e∂e , 1; q) IM (0, e; q) = 0, (D.10)

for some q-deformed polynomials b̂n(e∂e , 1; q) that reduce to bn(η, 1) =
bn(x−1, 1) as q → 1. Now, suppose that the powers of q appearing in
IM (m, e; q) at finite (m, e) are bounded from below, as they are for the-
ories TM ; and let us see what happens if the minimum power grows linearly
at m = 0, i.e.,

IM (0, e; q) ∼ qαe
(
1 + O(q)

)
(D.11)

for some α. After plugging (D.11) into (D.10), we can try to take the limit
q → 0. Since the operator e∂e only modifies the ansatz (D.11) by constant
factors of q at leading order, only the n = 0 term of the sum (D.10) will
contribute as q → 0. This term must vanish by itself. That is,

b̂0(e∂e , 1; q) IM (0, e; q) = b̂0(e∂e , 1; q)qαe
(
1 + O(q)

)
= b̂0(qα, 1; q)qαe

(
1 + O(q)

)
= 0 (D.12)

at leading order in q. One way to satisfy (D.12) is to have

b̂0(qα, 1; q) = 0 , (D.13)

which is only possible if b̂0(x−1, 1; q) is a non-trivial polynomial in x. But
we know from our analysis that when the amoeba of LM has a tentacle
along the negative Re P axis, b0(x−1, 1) has a cyclotomic (or non-trivial)
factor. The q-deformed version of this factor could then allow a solution to
(D.13). For the moment, this is the closest we can get to the mathematical
claim/conjecture that tentacles of the amoeba allow linear growth.

We note that (D.12) does not universally imply (D.13). For this, a bit
more must be known about the O(q) corrections to the index — for example,
that they vanish (involve higher and higher powers of q) as e→∞. This
is true in every calculated example of an index IM , and there is likely a
physical argument to justify it. When (D.13) is true, the leading polynomial
b̂0 determines the growth rate α.
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If there is no tentacle of the amoeba lying on the negative ReP axis, then
a0(x) and b0(x, 1) are monomials, which generally implies that b̂0(x−1, 1; q)
is a monomial. Then it is absolutely impossible to solve (D.13), and (again,
with some assumption about O(q) corrections) the linear ansatz (D.11) is
excluded. The generic growth of the index is not linear but quadratic. Hav-
ing IM (0, e; q) ∼ qαe2(

1 + O(q)
)

means that the operator e∂e can produce qe

factors, and then all the terms in the sum (D.10) can mix at leading order.
This allows much more general cancelations to occur.
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