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Abstract

We propose a generalization of the topological vertex, which we call the
“non-commutative topological vertex.” This gives open BPS invariants
for a toric Calabi–Yau manifold without compact 4-cycles, where we have
D0/D2/D6-branes wrapping holomorphic 0/2/6-cycles, as well as D2-
branes wrapping disks whose boundaries are on D4-branes wrapping non-
compact Lagrangian 3-cycles. The vertex is defined combinatorially using
the crystal melting model proposed recently, and depends on the value of
closed string moduli at infinity. The vertex in one special chamber gives
the same answer as that computed by the ordinary topological vertex.
We prove an identify expressing the non-commutative topological vertex
of a toric Calabi–Yau manifold X as a specialization of the closed BPS
partition function of an orbifold of X, thus giving a closed expression
for our vertex. We also clarify the action of the Weyl group of an affine
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AL Lie algebra on chambers, and comment on the generalization of our
results to the case of refined BPS invariants.

1 Introduction and summary

Recently, there has been significant progress in the counting problem of
BPS states in type IIA string theory on a toric Calabi–Yau 3-fold1. In the
literature, the Calabi–Yau manifold (which we denote by X) is assumed to
have no compact 4-cycles, and we consider a BPS configuration of D0/D2-
branes wrapping compact holomorphic 0/2-cycles, as well as a single D6-
brane filling the entire Calabi–Yau manifold. The question is to count the
degeneracy of such BPS bound states of D-branes.

One subtlety in this counting problem is the wall-crossing phenomena,
stating that the degeneracy of BPS bound states depends on the value of
moduli at infinity. Indeed, the closed BPS partition function2

Zc
BPS,(σ′,θ′),

which is defined in [3] as the generation function of the degeneracy of D-brane
BPS bound states3, depends on maps σ′, θ′ specifying a chamber in the
Kähler moduli space4 . What is interesting is that in one special chamber
C̃top of the Kähler moduli space, the BPS partition function is equivalent the
topological string partition function5 (up to the change of variables, which
we do not explicitly show here for simplicity):

Zc
BPS

∣
∣
∣
C̃top

= Zc
top. (1.1)

It is natural to expect that similar story should exist for open BPS invari-
ants as well. Namely, we expect to define open version of the BPS partition
function6

Zo
BPS,(σ,θ)

1See [1–7]. See also [8–14] for mathematical discussions.
2The upper index c stands for ‘closed’.
3The definition of the partition function ZBPS is the same as the partition function

ZBH in [15].
4See Appendix A for details.
5Actually, the topological string partition function depends on the choice of the reso-

lution of the singular Calabi–Yau manifold X. This is related to the choice of the limit,
as will be explained in the main text.

6The upper index o stands for “open”.
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depending on maps σ, θ specifying the chamber in the Kähler moduli
space, such that the partition function reduces to the open topological string
partition function in a special chamber Ctop:

Zo
BPS

∣
∣
∣
Ctop

= Zo
top. (1.2)

The question is how to define open BPS degeneracies such that the gener-
ating function follows the conditions above.

As a guiding principle of our following argument, we use the crystal melt-
ing model developed recently in [3] (see [8,11] for mathematical discussions).
This crystal melting model generalizes the result of [16] for C

3 to an arbitrary
toric Calabi–Yau manifold. In the case of C

3, the crystal melting partition
function with the boundary conditions specified by three Young diagrams
λ1, λ2, λ3 gives the topological vertex [17] Cλ1,λ2,λ3 . Using these vertices as
a basic building block, we can compute open topological string partition
function with non-compact D-branes wrapping Lagrangian 3-cycles of the
topology R

2 × S1 included [18]. In this story, generalization from closed to
open topological string partition function corresponds to the change of the
boundary condition of the crystal melting model for C

3.

Now the recent result [3] shows that the closed BPS partition function
discussed above can be written as a statistical mechanical partition function
of the crystal model. This model applies to any toric Calabi–Yau manifold,
and for C

3 the BPS partition function coincides with the topological string
partition function. Similarly to the case of the topological string story men-
tioned in the previous paragraph, we hope to define the open version of the
BPS invariants by changing the boundary condition of the crystal melting
model. The invariants defined in this way will be defined in any chamber
in the Kähler moduli space, and reduces to the ordinary topological ver-
tex in a special chamber. We call such a generalization of the topological
vertex “the non-commutative topological vertex,”7 following “the orbifold
topological vertex” named in [20].

We will see that this expectation is indeed true. We adopt the definition
proposed by one of the authors in the mathematical literature [14,21]. Our
non-commutative topological vertex is defined for a Calabi–Yau manifold
X without compact 4-cycles, and a set of representations λ assigned to

7The word ‘non-commutative’ stems from the mathematical terminologies such as “non-
commutative crepant resolution” [19] and “non-commutative Donaldson–Thomas invari-
ant” [8]. The non-commutativity here refers to that of the path algebra of the quiver. The
quiver (together with a superpotential) determines a quiver quantum mechanics, which is
the low-energy effective theory on the D-brane worldvolume [3].
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external legs of the toric diagram. As in the case of topological vertex,
λ encodes the boundary condition of the D4-branes wrapping Lagrangian
3-cycles. We propose our vertex as the building block of open BPS invariants.
Here by an open BPS invariant we mean a degeneracy counting the number
of BPS bound states of D0/D2/D6-branes wrapping holomorphic 0/2/6-
cycles, as well as D2-branes wrapping disks whose boundaries are on D4-
branes wrapping non-compact Lagrangian 3-cycles.

We can provide several consistency checks of our proposal (see Section 3.4
for more details). First, our vertex by definition reduces to the closed BPS
invariant when all the representations λ are trivial. Second, our vertex shows
a wall-crossing phenomena as we change the closed string Kähler moduli, and
the vertex coincides with the topological vertex computation in the chamber
where the closed BPS partition function reduces to the closed topological
string partition function. Third, the wall-crossing factor is independent of
the boundary conditions on D-branes, and is therefore the partition function
factorizes into the closed string contribution and the open string contribu-
tion, as expected from [22] and the generalization of [6].

Given a combinatorial definition of the new vertex, the next question is
whether we can compute it, writing it in a closed expression. We show that
the answer is affirmative, by showing the following statement. For a Calabi–
Yau manifold X, the non-commutative topological vertex CBPS,(σ,θ;λ)(X)
is equivalent to the closed BPS partition function Zc

BPS,(σ′,θ′)(X
′) for an

orbifold X ′ of X, under a suitable identification of variables explained in
the main text8:

CBPS,(σ,θ;λ)(X) = Zc
BPS,(σ′,θ′)(X

′). (1.3)

We will give an explicit algorithm to determine X ′ and σ′, θ′, starting
from the data on the open side. Since the infinite-product expression for
Zc

BPS,(σ′,θ′)(X
′) is already known [6, 13], this gives a closed infinite-product

expression for our vertex.

The organization of this paper is as follows. We begin in Section 2 with
a brief summary of the closed BPS invariants and their wall crossings, and
their relation with the topological string theory. In Section 3, we define
our new vertex using the crystal melting model. We also perform several
consistency checks of our proposal. Section 4 contains our main result (1.3),
which shows the equivalence of our new vertex with a closed BPS parti-
tion function under suitable parameter identifications. We give an explicit

8More precisely, we need to specify the resolution of X and X ′. We also need to
impose the condition that two of the representations λ are trivial. See the discussions in
the main text.
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Figure 1: The toric diagram of a generalized conifold, with L+ = 3, L− = 5.

algorithm for constructing closed BPS partition function starting from our
vertex. In Section 5, we treat several examples in order to illustrate our
general results. Section 6 is devoted to discussions. We also include Appen-
dices A–C for mathematical proofs and notations.

2 Closed BPS invariants

Before discussing the open BPS invariants, we summarize in this section the
definition and the properties of the closed BPS invariants.

Throughout this paper, we concentrate on the case of the so-called gen-
eralized conifolds. The reason for this is that wall-crossing phenomena is
understood well only in cases without compact 4-cycles, which means X is
either a generalized conifold or C

3/(Z2 × Z2)9.

By suitable SL(2, Z) transformation, we can assume that the toric dia-
gram of a generalized conifold is a trapezoid with height 1, with length L+

edge at the top and L− at the bottom (see figure 1)10 . If we denote by
L = L+ + L− the sum of the length of the edges on the top and the bottom
of the trapezoid, this geometry has L − 1 independent compact P

1’s. We
label them by αi, borrowing the language of the root lattice of ÂL−1 algebra.

The language of the root lattice will be used extensively throughout this
paper11 . We can also make more P

1’s by combining them. For example,
combining all the P

1’s between ith and jth P
1 (assume i < j), we have

another P
1, which we denote by

αi,j := αi + · · · + αj .

This corresponds to a positive root of ÂL−1.

Suppose that we have a Calabi–Yau manifold X without compact 4-cycles.
We also consider a single D6-brane filling the entire X and D0/D2-branes
wrapping compact holomorphic 0/2-cycles specified by n ∈ H0(X; Z) and

9See [6] for the proof of this statement.
10The Calabi–Yau manifold is determined by L+ and L− as xy = zL+wL− .
11The root lattice of ÂL−1 is exploited in [6, 13,14]. See also Appendix A.
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β ∈ H2(X; Z), respectively. We can then define the BPS degeneracy Ω(n, β)
counting BPS degeneracy of D-branes12. The closed BPS partition function
is then defined by

Zc
BPS(q, Q) =

∑

n,β

Ω(n, β)qnQβ . (2.1)

The closed BPS partition function for generalized conifolds is studied
in [6,13]. To describe the results, let us first specify the resolution (crepant
resolution13) of X14. Each of the L − 1 P

1’s are either O(−1,−1)-curve or
O(−2, 0)-curve. In the language of the toric diagram, this is to specify the
triangulation of the toric diagram. We specify this choice by a map

σ : {1/2, 3/2, . . . , L − 1/2} → {±1}. (2.2)

In the following, we sometimes write ± instead of ±1. When σ(i − 1/2) = 1
(σ(i − 1/2) = −1), the ith triangle from the left has one of its edges on
the top (bottom) edge of the trapezoid. This means that the ith P

1 is
a O(−1,−1)-curve (O(−2, 0)-curve) when σ(i − 1/2) = −σ(i + 1/2) (σ(i −
1/2) = σ(i + 1/2)). By definition, we have

∣
∣σ−1(±1)

∣
∣ = L±.

For example, in the case of Suspended Pinched Point (L+ = 1, L− = 2)
whose toric diagram is shown in figure 2, L = 3 and there are three difference
choice of resolutions. This is represented by

σ1 : {1/2, 3/2, 5/2} → {−,−, +}, (2.3)

σ2 : {1/2, 3/2, 5/2} → {−, +,−}, (2.4)

σ3 : {1/2, 3/2, 5/2} → {+,−,−}. (2.5)

Given σ, the topological string partition function is given by [17,23]

Ztop,σ(q = e−gs , Q = e−t) =
∞∏

n=1

(1 − qnQ)nNg=0
β , (2.6)

12More precisely, this BPS degeneracy is defined by the second helicity supertrace.
13Crepant resolution is a resolution f : Y → X such that ωY = f∗ωX , where ωX and

ωY are canonical bundles of X and Y .
14This is not essential, since by varying the value of the Kähler moduli we can go to the

geometry with other choices of resolutions. We just need to specify an arbitrary resolution
in order to begin the discussion. See Appendix A for more about this.
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Figure 2: The choice of resolutions of a generalized conifold (L+ = 1,
L− = 2).

where Ng=0
β is the genus 0 Gopakumar–Vafa (GV) invariant15. For the

2-cycle β = αi + · · · + αj , the explicit form of N0
β depends on σ and is

given by

Ng=0
β=αi+...αj

= (−1)1+�{k|i≤k≤j, σ(k−1/2) �=σ(k+1/2)}

= (−1)1+�{k|i≤k≤j, αk is a O(−1,−1)−curve}.

By CPT invariance in five dimensions [6], we have Ng=0
β=−(αi+...αj)

=

Ng=0
β=αi+...αj

. We also have N0
β=0 = χ(X)/2, where the Euler character χ(X)

for a toric Calabi–Yau manifold is the same as twice the area of the toric
diagram.

As shown in [6, 13], the closed BPS partition function is given by

ZBPS(q, Q) = Ztop(q, Q)Ztop(q, Q−1)
∣
∣
chamber

=
∏

(β,n):Z(β,n)>0

(1 − qnQβ)nN0
β , (2.7)

where the central charge Z(β, n) is given by

Z(β, n) = (B(β) + n)/R.

Here 1/R denotes (up to proportionality constants) the central charge of the
D0 brane, and following [6] we choose the complexified Kähler moduli to be
real. Also, the notation B(β) means the B-field flux through the cycle β16.

Now suppose that 1/R is positive17 . From (2.7) and (2), it follows that
the wall-crossing occurs when the integer part of the value of the B-field

15Higher genus GV invariants vanish for generalized conifolds.
16This was written βB in [6].
17Under this condition we are discussing only half of chambers of the Kähler mod-

uli space, which lie between the Donaldson–Thomas chamber and the non-commutative
Donaldson–Thomas chamber. The other half arises when 1/R is negative.
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through the cycle change. For the cycle αi + · · · + αj , this is given by

[B(αi) + · · · + B(αj)],

Since there are L − 1 P
1’s in X, there are L(L − 1)/2 such parameters.

We can take a special limit B(αi) → ∞. Let us denote this special cham-
ber by C̃top. As discussed in [6,13], in this limit the BPS partition function
reduces to the closed topological string partition function:

Zc
(σ,θ)

∣
∣
∣
C̃top

= Zc
top,

just as advertised in (1.1).

For concreteness, let us discuss an example. We use the example of the
suspended pinched point (N = 3) using the triangulation σ1 in (2.5). In this
example, the topological string partition function is

Ztop,σ=σ1(q, Q) = M(q)3/2
∞∏

n=1

(1 − qnQ1)−n
∞∏

n=1

(1 − qnQ2)n

×
∞∏

n=1

(1 − qnQ1Q2)n,

where M(q) is the MacMahon function

M(q) =
∞∏

n=1

(1 − qn)−n.

The BPS partition function is given by

ZBPS(q, Q) = M(q)3
∞∏

n=1

(1 − qnQ1)−n
∞∏

n=1

(1 − qnQ2)n
∞∏

n=1

(1 − qnQ1Q2)n

×
∞∏

n>[B(α1)]

(1 − qnQ−1
1 )−n

∞∏

n>[B(α2)]

(1 − qnQ−1
2 )n

×
∞∏

n>[B(α1+α2)]

(1 − qn(Q1Q2)−1)n.

The parameters [B(αi + · · · + αj)] specify the chamber, but as we can see
from the definition they are not completely independent parameters. Since
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we only have L − 1 real parameters Bi, it is likely that this parameterization
is redundant. Indeed, as explained in Appendix A we can specify the cham-
ber by a map θ, which is specified by L half-integers, θ(1/2), θ(3/2), . . . ,
θ(L − 1/2), satisfying one constraint

L∑

i=1

θ

(

i − 1
2

)

=
L∑

i=1

(

i − 1
2

)

.

This means we can indeed parameterize the chamber by L − 1 independent
(half-)integers, which is what we expected. As discussed in Appendix A, θ

is an element of the Weyl group of ÂL−1.

3 The non-commutative topological vertex

In this section, we give a general definition of the non-commutative topolog-
ical vertex using the crystal melting model. This definition is equivalent to
the one given in [14] using the dimer model18. See [21] for more conceptual
definition in terms of Bridgeland’s stability conditions and moduli spaces.

To define our vertex, we need the following set of data:

• A map

σ : {1/2, . . . , L − 1/2} → {±}.
As already explained in Section 2, this gives a triangulation of the toric
diagram, or equivalently the choice of the resolution of the Calabi–Yau
manifold.

• A map θ : Zh → Zh. As explained in Appendix A in the case of closed
BPS invariants, θ and σ specify the chamber structure of the open
BPS invariants.

• A set of Young diagrams λ, assigned to external legs of the (p, q)-
web. This specifies the boundary condition of the non-compact D-
branes ending on the (p, q)-web. We denote by λ1, . . . , λL the Young
diagrams for the top and the bottom edges of the trapezoid, and by
λ+, λ− the remaining two. We sometimes write λ = (μ, ν), where μ =
(μ1, . . . , μL) = (λ1, . . . , λL) and ν = (λ+, λ−). In the example shown
in figure 3, there are five external legs and we have five representations.

18See Appendix A of [3] for the equivalence between crystal melting model and the
dimer model.
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Figure 3: Representations assigned to external legs of the (p, q)-web. The
dotted lines represent the (p, q)-web.

For later purposes, we combine μ1, . . . , μL into a single representa-
tion μ by

μ(i − 1/2 + kL) = μi(k − 1/2). (3.1)

In other words, we choose μ such that L-quotients of μ give μ1, . . . , μL.
By abuse of notation, we use the same symbol μ for a set of represen-
tations μ1, . . . , μL as well as a single representation define above.

Given σ, θ and λ, we define the non-commutative topological vertex

CBPS,(σ,θ;λ)(q, Q).

In the following, we drop the subscript BPS for simplicity.

Before going into the general definition, we first illustrate our idea using
simple example of the resolved conifold.

3.1 Example: resolved conifold

In this example there is only one P
1 and the BPS partition function depends

on a single positive integer N := [B(α1)]. In the language of θ,

θ(1/2) = 1/2 − N, θ(3/2) = 3/2 + N.

We fix σ to be
σ(1/2) = +, σ(3/2) = −.

Without losing generality we concentrate on N ≥ 0, since N < 0 corresponds
to a flopped geometry, where σ is replaced by −σ (see Appendix A).

The ground state crystal for N = 2 is shown in figure 4. This crystal,
sometimes called a pyramid, consists of infinite layers of atoms, the color
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Figure 4: The ground state crystal for the resolved conifold for N = 2. The
crystal consists of an infinite number of layers, and only a finite number
is shown here. The ridges of the pyramid are represented by four lines
extending to infinity.

alternating between black and white [8, 9]. In the Nth chamber there are
N + 1 atoms on the top.

The closed BPS partition function is defined by removing a finite set of
atoms Ω from the crystal. When we do this, we follow the melting rule [3,11]
such that whenever an atom is removed from the crystal, we remove all the
atom above it. In other words, since an atom is in one-to-one correspondence
with an F-term equivalent class of paths starting from a fixed node of the
quiver diagram [3], for an arrow a and and an atom α, we can define aα.
The melting rule then says

If aα ∈ Ω, then α ∈ Ω. (3.2)

We then define the partition function by summing over such Ω:

Z =
∑

Ω

(q(N)
0 )w0(Ω)(q(N)

1 )w1(Ω), (3.3)
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Figure 5: We can slice of the conifold crystal by an infinite number of parallel
planes.

where w0(Ω) and w1(Ω) are the number of white and black atoms in Ω,
respectively.

The weights q
(N)
0 (q(N)

1 ) assigned to white (black) atoms in the Nth cham-
ber are determined as follows. We can slice the crystal by the plane, and
each slice is specified by an integer i (see figure 5). We choose i so that
atoms on the top of the crystal is located at i = 0.

The weight q
(N)
i depends on the chamber and is given by

q
(N)
0 = q−N

0 q−N+1
1 , q

(N)
1 = qN+1

0 qN
1 , (3.4)

when N is odd, and

q
(N)
0 = qN+1

0 qN
1 , q

(N)
1 = q−N

0 q−N+1
1 , (3.5)

when N is even. For example, q
(0)
0 = q0, q

(0)
1 = q1 when N = 0, and q

(1)
0 =

q−1
0 , q

(1)
1 = q2

0q1. The change of variables arises from the Seiberg duality on
the quiver quantum mechanics [2], geometrically mutations in the derived
category of coherent sheaves [2, 12], or in more combinatorial language the
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dimer shuffling [9]. The parameters q0, q1 defined here are related to the
D0/D2 chemical potentials introduced in Section 2 by19

q = q0q1, Q1 = q1. (3.6)

Now let us discuss the open case. When non-trivial representations are
assigned to each of the four external legs of the (p, q)-web, the only thing
we need to do is to change the ground state of the crystal.

The crystal has four ridges, corresponding to four external legs of the (p, q)-
web. When we assign a representation, we remove the atoms with the shape
of the Young diagram. More precisely, we remove the atoms with the shape
of the Young diagram in the asymptotic direction of the (p, q)-web, as well
as all the atoms above them, so that the melting rule is satisfied. See figure
6 for an example.

The partition function is defined in exactly the same way by (3.3), and
the result is denoted by C(σ,θ;λ).

Several comments are now in order.

First, let us explain the origin of the name “the non-commutative topolog-
ical vertex.” Recall that, in commutative case, topological vertex is defined
for C

3. For a general affine toric Calabi–Yau manifold X, we divide the
polygon into triangles and assign a topological vertex to each trivalent ver-
tex of the dual graph. We can get the topological string partition function
for the smooth toric Calabi–Yau manifold Y by gluing them with propaga-
tors. Similarly, assume that a polygon is divided into trapezoids. Then we
can assign a non-commutative topological vertex to each vertex of the dual
graph and glue them by propagators. The BPS partition function defined
in this way is related to the topological string partition function via wall-
crossing20. In [20] they study the case when a polygon is divided into (not
necessary minimal) triangles.

19Equation (3.5) is the same for N odd and even if we suitably exchange the two nodes
of the quiver diagram. The relation (3.6) can also be written as

q = q
(N)
0 q

(N)
1 , Q = (q

(N)
0 )N (q

(N)
1 )N+1,

when N is even, and q
(N)
0 and q

(N)
1 exchanged when N odd. This coincides with the

expression in [2].
20Given a devision of a polygon into trapezoids, we get a partial resolution of X and a

non-commutative algebra A over the partial resolution, which is derived equivalent to Y .
The BPS partition function given by gluing non-commutative topological vertices counts
torus invariants A-modules.
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Figure 6: The pyramid for open BPS invariants. A non-trivial representa-
tion (1, 1) is placed on with one of the four external lines. As compared
with the previous figure, atoms colored gray, corresponding to the Young
diagram, are removed from the crystal. The red atoms have no atoms above
them.

Second, it is possible to give more geometric definition of the vertex (see
[21]). For the closed BPS invariants, the crystal arises as a torus fixed
point of the moduli space of the modules of the path algebra quiver (under
suitable θ-stability conditions). The moduli space is the vacuum moduli
space of the quiver quantum mechanics arising as the low-energy effective
theory of D-branes [3]. The similar story exists in our case. Namely, the
crystal is in one to one correspondence with the fixed point of the moduli

space arising from a quiver diagram. For example, for conifold with λ = ,
the quiver is given in figure 7.

Third, in the case of C
3, our vertex reproduces the topological vertex of

C
3 by definition.

3.2 General definition from crystal melting

We next give a general definition of the vertex. Readers not interested in
the details of the definition of the non-commutative topological vertex can
skip this section on first reading.
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Figure 7: Quiver diagram for the open invariant with λ = (1, 1). This is
the Klebanov–Witten quiver [24] with an extra node and extra three arrows
starting from it. The three arrows correspond to three red atoms in figure 6.

Given a boundary condition specified by σ, θ and λ = (μ, ν), we would
like to construct a ground state of the crystal, and determine the weights
assigned to the atoms of the crystal.

The basic idea is the same as in the conifold example. First, the closed
string BPS partition function is equivalent to the statistical partition func-
tion of crystal melting. The ground state crystal can be sliced by an infi-
nite number of parallel planes parameterized by integers n ∈ Z, just as
in figure 5. On each slice, there are infinitely many atoms, labeled by
integers (x, y) ∈ Z

2
≥0. Therefore, the atoms in the crystal are label by

(n, x, y) ∈ Z × Z
2
≥0.

Let us show this in the example of the suspended pinched point. The
crystal in figure 8 clearly shows this structure.

Another way of explaining this is to construct a crystal starting from a
bipartite graph on R

2, shown in figure 921. In this example, the bipartite
graph consists of hexagons and squares, and periodically changes its shape
along the horizontal directions.

Now the atoms of the crystal are located at the centers of the faces of
the bipartite graph, and it thus follows we can slice the crystal along the
horizontal axis. Each slice consist of an infinite number of atoms labeled by
two integers (x, y) ∈ (Z≥0)2, since there are two directions, the horizontal
direction and the perpendicular direction to the paper22.

21This is a universal cover of the bipartite graph on T
2, which appears in the study

of four-dimensional N = 1 quiver gauge theories. See [25–27] for original references, and
[28,29] for reviews.

22In general the bipartite graph is determined by σ. A hexagon (a square) corre-
sponds to O(−2, 0)-curve (O(−1,−1)-curve). In other words, the ith polygon is a hexagon
(square) if σ(i) = σ(i + 1)(σ(i) �= σ(i + 1)).
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Figure 8: The crystal for the suspended pinched point. We can slice the
crystal along planes represented by lines, which come with three different
colors.

Now consider the open case. In this case, we construct a new ground state
by removing atoms from the closed ground state. By the melting rule, the
atoms removed from the nth plane should be labeled by (x, y) ∈ V(n), where
V(n) is a Young diagram. Depending on the representations on external
legs, V(n) increases or decreases as we change n. Thus, the ground state
crystal for open BPS invariants are determined by such a sequence of Young
diagrams {V(n)}, called transitions below. In the following, we make this
idea more rigorous.

Let us begin with some notations. Let μ and μ′ be two Young diagrams.

We say μ
+� μ′ if the row lengths satisfy

μ1 ≥ μ′
1 ≥ μ2 ≥ μ′

2 ≥ · · · ,

and μ
−� μ′ if the column lengths satisfy

tμ1 ≥ tμ′
1 ≥ tμ2 ≥ tμ′

2 ≥ · · · .
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Figure 9: The bipartite graph for suspended pinched point. We here take
σ = σ1 and θ = id. The red undotted (the blue dotted) lines have half-integer
(integer) values of the coordinate along the horizontal axis.

We define a transition V of Young diagrams of type (σ, θ; μ, ν) as a map
from the set of integers Z to the set of Young diagrams such that

• V(n) = ν− for n � 0 and V(n) = ν+ for n 	 0,

• V(h − μ ◦ θ(h)/2)
σ◦θ(h)� V(h + μ ◦ θ(h)/2).

Then as shown in [14] there is a transition Vmin of Young diagrams of
type (σ, θ; μ, ν) such that for any transition V of Young diagrams of type
(σ, θ; μ, ν) and for any n ∈ Z, we have V(n) ⊇ Vmin(n). The transition
Vmin(n) is the sequence of transitions discussed above.

For a transition V of Young diagram of type (σ, θ; μ, ν), the ground state
crystal can be defined by

A(V) := {a(n, x, y) | n ∈ Z, x, y ∈ Z≥0, (x, y) /∈ V(n)}.

where a(n, x, y) denotes the atom at position (n, x, y).
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Having defined the ground state crystal, the partition functions is defined
again as the sum over a subset Ω of A(Vmin) satisfying the following two
conditions:23

• Ω is finite set and
• Ω satisfies the melting rule (3.2). In other words, if a′ ∈ Ω and a′ = aα

for an arrow α, then a ∈ Ω.24

For a crystal Ω ∈ A(Vmin), we define the weight w(Ω)i by the number of
atoms with the color i contained in Ω:

w(Ω)i := 	{a(n, x, y) ∈ Ω | n ≡ i (modL)}.

Also, for θ, we put

qθ
i :=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

qθ−1(i−1/2)+1/2 · qθ−1(i−1/2)+3/2 · · · · · qθ−1(i+1/2)−1/2

(θ−1(i − 1/2) < θ−1(i + 1/2)),
q−1
θ−1(i−1/2)−1/2

· q−1
θ−1(i−1/2)−3/2

· · · · · q−1
θ−1(i+1/2)+1/2

(θ−1(i − 1/2) > θ−1(i + 1/2)),

where we define qi for i ∈ Z periodically,

qi+L = qi.

We then define the vertex by

Cref
(σ,θ ;μ,ν)(q0, . . . , qL−1) :=

∑

Ω

(qθ
0)

w(Ω)0 · · · · · (qθ
L−1)

w(Ω)L−1 .

23It is straightforward to show that a subset Ω ⊂ A(Vmin) satisfies the two conditions
if and only if P (Vmin)\Ω = A(V) for a transition V of Young diagram of type (σ, θ; μ, ν).

24We can also explicitly write down the melting rule using the coordinates (n, x, y).
Let us write a � a′ when there is a path (a composition of arrows) α such that a′ = aα.
The partial order � is then generated by

a(h − 1/2, x, y) � a(h + 1/2, x, y) λ ◦ θ(h) = +,
a(h + 1/2, x, y) � a(h − 1/2, x, y) λ ◦ θ(h) = −,
a(h + 1/2, x, y) � a(h − 1/2, x + 1, y) λ ◦ θ(h) = +, σ ◦ θ(h) = −,
a(h + 1/2, x, y) � a(h − 1/2, x, y + 1) λ ◦ θ(h) = +, σ ◦ θ(h) = +,
a(h − 1/2, x, y) � a(h + 1/2, x + 1, y) λ ◦ θ(h) = −, σ ◦ θ(h) = −,
a(h − 1/2, x, y) � a(h + 1/2, x, y + 1) λ ◦ θ(h) = −, σ ◦ θ(h) = +,
a(n, x, y) � a(n, x + 1, y) σ ◦ θ(n − 1/2) = σ ◦ θ(n + 1/2) = +,
a(n, x, y) � a(n, x, y + 1) σ ◦ θ(n − 1/2) = σ ◦ θ(n + 1/2) = −.
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The parameters q0, . . . , qL−1 defined here are related to the D0/D2 chemical
potentials introduced in Section 2 by

q = q0 . . . qL−1, Qi = qi (i = 1, . . . , L − 1). (3.7)

3.3 Refinement

We can also generalize the definition to include the open refined BPS invari-
ants25.

Let us recall the meaning of the refined BPS counting, first in the closed
case. When Type IIA brane configuration is lifted to M-theory [32] and
when we use the 4d/5d correspondence [33,34], the D0/D2-branes are lifted
to spinning M2-branes in R

5, which has spin under the little group in 5d,
namely SO(4) = SU(2)L × SU(2)R. The ordinary BPS invariant is defined
as an index; it keeps only the SU(2)L spin, while taking an alternate sum
over the SU(2)R spin. The refined closed BPS invariants is defined by taking
both spins into account.

The situation changes slightly when we consider open refined BPS invari-
ants. The D4-branes wrapping Lagrangians, when included, are mapped to
M5-branes on R

3. This means that SO(4) is broken to SO(2), and we have
only one spin. However, there is an SO(2) R-symmetry for N = 2 supersym-
metry in three dimensions, and in the definition of the ordinary open BPS
invariants we keep only one linear combination of the two, while tracing out
the other combination [35]. The refined open BPS invariants studied here
takes boths of the two charges into account.

In the language of crystal melting used in this paper, the open refined
BPS invariants are defined simply by modifying the definition of the weights.
Here, we explain how to modify the weights in the case of μ = ∅.

For an integer n with

n ≡ π(n) mod L, 0 ≤ π(n) ≤ L − 1,

define

w(Ω)n := 	{a(n, x, y) ∈ Ω}.

25See [5, 30,31] for closed refined BPS invariants.



1166 KENTARO NAGAO AND MASAHITO YAMAZAKI

We also define the weights by

q̃θ
n :=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

q̃θ−1(n−1/2)+1/2 · q̃θ−1(n−1/2)+3/2 · · · · · q̃θ−1(n+1/2)−1/2

(θ−1(n − 1/2) < θ−1(n + 1/2)),
q̃−1
θ−1(n−1/2)−1/2

· q̃−1
θ−1(n−1/2)−3/2

· · · · · q̃−1
θ−1(n+1/2)+1/2

(θ−1(n − 1/2) > θ−1(n + 1/2)),

where
q̃n = qπ(n)

when n �≡ 0 mod L, and

q̃n =

⎧

⎪⎨

⎪⎩

q+, n > 0,

(q+q−)1/2, n = 0,

q−, n < 0,

when n ≡ 0 mod L. We then define the refined vertex by

C(σ,θ ;∅,ν)(q+, q−, q1, . . . , qL−1) :=
∑

Ω

∏

n∈Z

(q̃θ
n)w(Ω)n .

By definition, the refined vertex reduces to the unrefined vertex by setting
q+ = q− = q0. The reader can refer to [14] for the definition of weights in
general cases μ �= ∅.

3.4 Consistency checks of our proposal

In Appendix C, we gave a purely combinatorial definition of the non-
commutative topological vertex. We now claim that is captures open BPS
invariants in the following sense.

Consider a generalized conifold (a toric Calabi–Yau manifold without
compact 4-cycles) with representations assigned to each leg of the (p, q)-
web. Each representation specifies a boundary condition on the non-compact
D4-brane wrapping Lagrangian 3-cycle of topology R

2 × S1 [18].

In the absence of D4-branes, we are counting particles of D0/D2-branes
wrapping 0/2-cycles, which makes a bound state with a single D6-brane
filling the entire Calabi–Yau manifold. When the D4-branes are included,
D2-branes can wrap disks ending on the worldvolume of D4-branes. The
degeneracy of such D-brane configurations is what we mean by the open
BPS degeneracies. Note that supersymmetry is broken by half due to the
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inclusion of D4-branes; our counting of BPS particles makes sense because
we are counting BPS states in lower dimensions, where the minimal amount
of supersymmetry is lower.

We can provide several consistency checks of our proposal. First, our
vertex by definition reduces to the closed BPS invariant when all the repre-
sentations λ are trivial:

CBPS,(σ,θ;λ=∅) = Zc
BPS,(σ,θ).

The second consistency check comes from the wall-crossing phenomena. As
shown in [14], the vertex goes through a series of wall crossings as we
move around the closed string moduli space (Kähler moduli of the Calabi–
Yau manifold), just as in the case of closed invariants. It was also shown
in [14] that in the chamber Ctop where the closed BPS partition function
reduces to the closed topological string partition function, our vertex gives
the same answer as that computed from the topological vertex (in the stan-
dard framing):

CBPS,(σ,θ;λ)

∣
∣
Ctop

= Ctopological vertex,λ.

The third consistency check comes from the fact that the wall-crossing factor
is independent of representations. In other words,

C̄(σ,θ ;μ,ν)(q0, . . . , qL−1) :=
C(σ,θ ;μ,ν)(qθ

0, . . . , q
θ
L−1)

C(σ,θ ;∅,∅)(qθ
0, . . . , q

θ
L−1)

does not depend on θ [14, 21]26 . This means that the open BPS partition
function, which is defined by the sum over representations, takes a factorized
form

Zo
BPS =

Zo
BPS

Zo
top

Zo
top =

Zc
BPS

Zc
top

Zo
top. (3.8)

Since Zc
BPS/Zc

top takes an infinite product form as explained in Section 2
and Zo

top also takes the infinite product form [22], Zo+c
BPS itself should take

an infinite product form, which is consistent with a suitable generalization
of the argument of [6].

Using (3.8), we can compute our vertex using the ordinary topological
vertex formalism. In the next section, we give a yet another way of comput-
ing the non-commutative topological vertex. The advantage of our approach
is that the final expression manifestly takes a simple infinite product form,
and we do not have to worry about the summation of Schur functions.

26To be exact, we have to normalize the generating function by a monomial. See [21,
Corollary 3.21] for the precise statement.
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4 The closed expression for the vertex

In this section, we give a closed expression for our non-commutative topolog-
ical vertex. We do this by proving a curious identity stating the equivalence
of our vertex for a toric Calabi–Yau manifold X with a closed BPS partition
function for an orbifold of X27. For another method using vertex operators;
see [21, 37].

Start from a non-commutative topological vertex for a generalized coni-
fold X, which has L − 1 compact P

1’s. As we discussed above, for the
definition of the vertex we need (1) σ for a choice of the crepant resolution
of X, (2) a map θ specifying the chamber together with σ (3) a set of rep-
resentations λ = (μ, ν), and the resulting vertex is denoted by Cσ,θ;λ(q, Q).
In the following, we consider the special case ν = (λ+, λ−) = (∅, ∅).

Choose an M and consider the ZM orbifold X ′ of X. We choose the
orbifold action such that when the toric diagram of X is a trapezoid with a
top and the bottom edge of length L+ and L−, respectively, X ′ has length
ML+ and ML−. We also choose map

σ′ : {1/2, 3/2, . . . , ML − 1/2} → {±1}.

and
θ′ : Zh → Zh, θ′(h + ML) = θ′(h) + ML,

such that
σ ◦ θ = σ′ ◦ θ′, μ ◦ θ = ∅ ◦ θ′. (4.1)

Then

C(σ,θ ;∅,μ)(q, Q) = C(σ′,θ′ ;∅,∅)(q′, Q′)|
qθ
i =q′θ′i =q′θ′i+L=···q′θ′

i+(M−1)L
, (4.2)

where i = 0, . . . , L − 1. See Appendix C for an explicit method for choosing
such M, σ′, θ′ satisfying (4.1) as well as generalization of (4.2) to the case of
refined BPS invariants.

Since the infinite-product expression for closed BPS partition function
for a generalized conifold is already known (section 2), we have a closed
expression of our vertex when ν = ∅.

27This is reminiscent of story of [36], where the ‘bubbling geometry’ X ′ is constructed
for given a toric Calabi–Yau manifold X such that the open+closed topological string
partition function on X is equivalent to closed topological string partition function on X ′.
However, our story is different in that the vertex computes only a part of the full open
BPS partition function; the partition function itself is given by summation of our vertices
over representations.
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5 Examples

Let us illustrate the above procedure by several examples.

5.1 C
3

First, we begin with the non-commutative topological vertex for C
3. Since

there is no wall-crossing phenomena involved in this case28, the vertex should
coincide with the ordinary topological vertex, thus providing a useful con-
sistency check of our proposal. For C

3, we have L = 1, σ(1/2) = −1, θ = id.

Take C
3 with representation λ = (μ, ν = ∅) with μ = (N, N − 1, . . . , 1)

at one leg. The above-mentioned procedure gives M = 2, and thus X =
C

2/Z2 × C. The method in Appendix C gives

θ′(1/2) = 1/2 − N, θ′(3/2) = 3/2 + N, σ′ = −1,

and thus
[B(α1)] = N.

The weight is given by (3.4) or (3.5). By solving for

q′θ
′

0 = q′θ
′

1 = q,

we have
q′0 = q−2N+1, q′1 = q2N+1

in the case of N odd. Substituting this into the closed BPS partition function

∏

n>0

(1 − q′n0q′n1 )−2n
∏

n>0

(1 − q′n0q′n+1
1 )−n

∏

n>N

(1 − q′n0q′n−1
1 )−n,

we have

M(q)/
N∏

n=1

(1 − q2n−1)(N+1)−n. (5.1)

This coincides with the know expression for the topological vertex [17]29.
The case of N even in similar.

28There is one wall between R > 0 and R < 0; however, we do not discuss such a wall
since we are specializing to the case R > 0.

29In the normalization of [17], (5.1) coincides with M(q) q−‖μ
t‖/2 Cμ,∅,∅.
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5.2 Resolved conifold

Now let us discuss the next simplest example, the resolved conifold.

Consider the representation μ =
(

,

)

, with θ = id, σ(1/2) = +,

σ(3/2) = −. In this case, the method in Appendix C gives

θ′(1/2) = −7/2, θ′(3/2) = −1/2, θ′(5/2) = 11/2, θ′(7/2) = 13/2,

with

σ′(1/2) = +, σ′(3/2) = −, σ′(5/2) = −, σ′(7/2) = +.

Then we have

[B(α1)] = [B(α3)] = 0, [B(α2)] = [B(α2 + α3)] = 1,

[B(α1 + α2)] = [B(α1 + α2 + α3)] = 2, (5.2)

and

q′0 = q−3
0 q−3

1 = q−3, q′1 = q0q
2
1 = qQ, q′2 = q3

0q
3
1 = q3, q′3 = q0 = qQ−1.

(5.3)

The closed BPS partition function corresponding to the B-field (5.2) is the
following:

∏

n>0

(1 − q′n)−4n
∏

n>0

(1 − q′nQ′
1)

n
∏

n>0

(1 − q′nQ′−1
1 )n

∏

n>0

(1 − q′nQ′
2)

−n

×
∏

n>1

(1 − q′nQ′−1
2 )−n

∏

n>0

(1 − q′nQ′
3)

n
∏

n>0

(1 − q′nQ′−1
3 )n

×
∏

n>0

(1 − q′nQ′
1Q

′
2)

n
∏

n>2

(1 − q′nQ′−1
1 Q′−1

2 )n

×
∏

n>0

(1 − q′nQ′
2Q

′
3)

n
∏

n>1

(1 − q′nQ′−1
2 Q′−1

3 )n
∏

n>0

(1 − q′nQ′
1Q

′
2Q

′
3)

−n

×
∏

n>2

(1 − q′nQ′−1
1 Q′−1

2 Q′−1
3 )−n. (5.4)

Substituting (5.3) for (5.4) under the identification (3.7), we obtain the open
BPS partition function:

Zc
NCDT(q, Q) · (1 − q)−3(1 − q3)−1(1 − Q)2(1 − q2Q)(1 − q2Q−1),
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where

Zc
NCDT(q, Q) : =

∏

n>0

(1 − qn)−2n
∏

n>0

(1 − qnQ)n
∏

n>0

(1 − qnQ−1)n

= Zc
top(q, Q)Zc

top(q, Q
−1).

This coincides with the expression computed from the result of [23]

M(q)2
∏

n>0

(1 − qnQ)
1

(1 − q)3(1 − q3)
(1 − Q)2(1 − Qq2)(1 − Qq−2),

up to the wall-crossing factor and the normalization by a monomial as
remarked in footntote 26.

6 Discussions

Let us conclude this paper by pointing out several interesting problems that
require further exploration.

• In this paper, we only discussed wall crossings with respect to the
closed string moduli. However, we expect that there should be wall-
crossing associated with the open string moduli as well. Therefore,
the question arises: At which values of the open string moduli is our
vertex defined? How does the vertex change as we change the open
string moduli? Some of these issues will be discussed in [38].

• It would be interesting to see if there is a generalization of GV large
N duality [39] including the background dependence, and whether
there is a Chern–Simons interpretation of the wall-crossing phenomena
(see [40] for a related idea).

• It would be interesting to extend our definition and computation to a
Calabi–Yau manifold with compact 4-cycles and with multiple
D6-branes. The former should be possible by combining our vertices,
and will be related to the Nekrasov’s partition function [41].

• Derivation of open BPS invariants from supergravity viewpoint [42]
is another interesting problem. See [43] for the related discussion in
the case of orientifolds. Another related question is the connection
of the crystal melting expansion of Zo

BPS with open version of OSV
conjecture [44].
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Appendix A The parameterization of chambers by the Weyl
group

In this section, we explain the parameterization of chambers of closed BPS
invariants by maps σ and θ, as claimed in the main text.

The map θ is defined to be a map from the set of half-integers Zh to itself

θ : Zh → Zh,

satisfying the following two conditions. First,

θ(h + L) = θ(h) + L (A.1)

for any h ∈ Zh. In other words, θ is periodic with period L. Second,

L∑

i=1

θ

(

i − 1
2

)

=
L∑

i=1

(

i − 1
2

)

. (A.2)

Therefore, θ is specified by L − 1 (half-)integers, namely L half-integers
θ(1/2), . . . , θ(L − 1/2), subject to one constraint (A.2). Let us assume for
the moment that θ satisfies the condition

θ

(
1
2

)

< θ

(
3
2

)

< · · · < θ

(

L − 1
2

)

. (A.3)

We will discuss other cases later.

Given σ, we have a specific choice of resolution having L − 1 P
1’s. More-

over, given a map θ we can determine the corresponding value of the B-field
Bθ by

[Bθ(αi + · · · + αj)] = 	{m ∈ Z | θ(i − 1/2) < mL < θ(j + 1/2)}. (A.4)

It is easy to see that this gives a well-defined values of the integer parts
of the B-field, which parameterize the chamber as explained in the main
text. Conversely, it can also be proven that given any B-field, we can find a
corresponding θ uniquely30.

30This comes from the fact that the action of the affine Weyl group on the space of
B-fields is faithful.
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When condition (A.3) is not satisfied, we need to change the choice of
the crepant resolution. Choose a permutation Σ of {1/2, . . . , L − 1/2} such
that

θ

(

Σ
(

1
2

))

< θ

(

Σ
(

3
2

))

< · · · < θ

(

Σ
(

L − 1
2

))

(A.5)

holds. Then we replace θ by θ′ := θ ◦ Σ and we choose σ′, so that σ ◦ θ =
σ′ ◦ θ′31. Note that the combination σ ◦ θ, which appears in the definition
of the vertex in Section 3, remain invariant under this process. This means
that sometimes different σ, θ and σ′, θ′ corresponds to the same chamber.
We can either fix σ and change θ to parameterize chambers, or change both
σ and θ for convenience. The latter parameterization is redundant, but
sometimes useful.

In the above discussion, θ appears somewhat artificially, but θ is often
used in the mathematical literature. The reason is that the maps θ makes
a group, which is the Weyl group of ÂL−1. As is well-known, the Weyl
group of AL−1 is the L-th symmetric group, which is a set of isomorphism
{1/2, . . . , L − 1/2} → {1/2, . . . , L − 1/2}. The map θ gives a generalization
to the affine case. The affine Lie algebra ÂL−1 appears in the formula for
the BPS partition function [6, 13], and as we have seen specifies a chamber
structure. This is reminiscent of the appearance of the Weyl group of the
Borcherds–Kac–Moody algebra in N = 4 wall-crossing [45, 46]. It would be
interesting to explore this point further.

Finally, let us illustrate this parameterization with examples. Consider
the resolved conifold (L = 2) with the resolution σ(1/2) = +, σ(3/2) = −.
Due to condition (A.2), we can write

θ(1/2) = 1/2 − N, θ(3/2) = 3/2 + N. (A.6)

and this integer N parameterize the chambers. This integer N is the same
integer N appearing in section (3.1). When N ≥ 0, condition (A.3) is sat-
isfied and we are in one resolution σ. When N < 0, (A.3) is not satisfied
and by a flop transition we are in a different crepant resolution specified by
σ′(1/2) = −, σ′(3/2) = +. If we define θ′ by

θ′(1/2) = 1/2 + N, θ′(3/2) = 3/2 − N,

then σ, θ for N > 0 and σ′, θ′ for N < 0 parameterize the same chamber. In
this sense, we can either choose σ to be fixed and change θ, or change both
σ and θ, although the latter is a redundant parameterization. The chamber

31In fact, we can take σ ◦ θ ◦ Σ−1 ◦ θ−1 as σ, where θ is the permutation induced by θ.
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corresponding to topological string theory for one resolution σ is given by
N → ∞ in (A.6), and another resolution σ′ given by N → −∞.

As a next example suppose L = 3. When

θ(1/2) = −5/2, θ(3/2) = 3/2, θ(5/2) = 11/2,

we have

[Bθ(α1)] = [Bθ(α2)] = 1, [Bθ(α1 + α2)] = 2.

This is also given by

θ(1/2) = 11/2, θ(3/2) = 3/2, θ(5/2) = −5/2.

However, they parameterize different chambers in general32. This is because
the two θ’s are related by a permutation Σ : {1/2, 3/2, 5/2} �→ {5/2, 3/2, 1/2},
and correspondingly we have to change the choice of crepant resolution σ
by σ ◦ Σ as mentioned around (A.5).

More generally, if we have

θ

(
1
2

)

=
1
2
− 2L1 − L2, θ

(
3
2

)

=
3
2

+ L1 − L2, θ

(
5
2

)

=
5
2

+ L1 + 2L2.

then

[Bθ(α1)] = L1, [Bθ(α2)] = L2, [Bθ(α1 + α2)] = L1 + L2,

and if we have

θ

(
1
2

)

= −1
2
− 2L1 − L2, θ

(
3
2

)

=
3
2

+ L1 − L2, θ

(
5
2

)

=
7
2

+ L1 + 2L2.

then

[Bθ(α1)] = L1, [Bθ(α2)] = L2, [Bθ(α1 + α2)] = L1 + L2 + 1.

32Sometimes they give the same chamber. This happens, for example for C
2/Z2 × C,

where there is a unique choice of crepant resolution.
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Figure 10: The convention of the Maya diagram in this paper.

Appendix B Young diagrams and Maya diagrams

A Young diagram λ is a set of non-increasing positive integers λ = (λ1, λ2, . . .).
As is well-known, this is equivalently represented by a Maya diagram, namely
a map

λ : Zh → {±1},
such that λ(h) = ±1 for ±h 	 1. We sometimes represent λ by

λ = · · · λ(−5/2) λ(−3/2) λ(−1/2)
∣
∣
∣ λ(1/2) λ(3/2) λ(5/2) · · · ,

where the symbol
∣
∣
∣ represents the position of the origin. For notational

simplicity, we use the same symbol λ for a Maya diagram. Our convention
is shown in figure 10.

For example,

= · · · − − −− + −
∣
∣
∣ + + − + + + · · · ,

= · · · − − − + −−
∣
∣
∣ + − + + + + · · · .

For a Young diagram and a positive integer M , define the quotients λi(i =
1, . . . , M) by

λi(h) = λ (i − 1/2 + (h − 1/2)M) , for h ∈ Zh. (B.1)
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As an example, let us consider λ = shown in (B.1). If you take
M = 2, then M = 2-quotients are given by

λ1 = · · · − − −−−−
∣
∣
∣ + + + + + + · · · ,

λ2 = · · · − − −− + −
∣
∣
∣ − + + + + + · · · .

Suppose that M is chosen such that the representation λi is trivial for all
i = 1, . . . , M . This means that λi can be written as

λi(h) = ∅(h + MN(i)). (B.2)

The integers N(j) are called M -cores of λ, and satisfies

M∑

i=1

N(i) = 0.

For example, if we take M = 3 for (B.1),

λ1 = · · · − − −−− +
∣
∣
∣ + + + + + + · · · ,

λ2 = · · · − − −−−−
∣
∣
∣ − + + + + + · · · ,

λ3 = · · · − − −−−−
∣
∣
∣ + + + + + + · · · ,

and
N(1) = −1, N(2) = 1, N(3) = 0.

Appendix C Proof of (4.2)

In this appendix we give a proof of (4.2). First, the following is clear from
the definition:

Proposition C.1. Let σ, θ to be maps specifying the chamber for a Calabi–
Yau manifold X. Choose an integer M and σ′, θ′ for X ′ = X/ZM such that
the following condition holds:

σ ◦ θ = σ′ ◦ θ′, μ ◦ θ = μ′ ◦ θ′.

Then we have

C(σ′,θ′ ;μ′,ν′)(q
′, Q′)|

qθ
i =q′θ′i =q′θ′i+L=···q′θ′

i+(M−1)L
= C(σ,θ ;μ,ν)(q, Q).
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This is because the both sides of the equation are defined by the same crys-
tal with the same weights. The crystal for an orbifold is the same as
the original crystal, the only difference being the difference of the weights;
the crystal for the orbifold has more colors (variables). However, in the
above equation we are specializing the variables so the weights are also the
same.

Lemma C.2. For any σ, θ, λ, we can take M, σ′, θ′ such that

σ ◦ θ = σ′ ◦ θ′, μ ◦ θ = ∅ ◦ θ′.

Proof. We choose an integer M such that all the M -quotients33 of μi’s
become trivial, i.e. ML-quotients of the combined representation μ (see (3.1))
is trivial. For example, this is satisfied if we define

h− := min{h ∈ Zh | μ ◦ θ(h) = +}, h+ := max{h ∈ Zh | μ ◦ θ(h) = −},

and take M so that ML > h+ − h−34. This means that for any half-integer
1/2 ≤ h ≤ ML − 1/2 we can take N(h) ∈ Z such that

μ ◦ θ(h + NML) =

{

− (N < N(h)),
+ (N ≥ N(h))

= ∅ (h + (N − N(h))ML) .

In other words, N(j) is the ML-core35 of μ.

Therefore, the second condition of (C.1) holds if we define θ′ : Zh → Zh

by

θ′(h) = h − N(h)ML,

for h ∈ Zh
36. It is clear that the first condition of (C.1) determines σ′

uniquely. �

Our theorem follows from Proposition C.1 and Lemma C.2.

33See Appendix B for the definition of M -quotients.
34The choice of M is not unique. But the final result is independent of the choice of M .

For practical computation it is useful to take the minimum M .
35See Appendix B for the definition of M -quotients.
36For practical computations, it is useful to further perform a permutation to θ such

that (A.3) holds. See Appendix A.
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Theorem C.3. For σ, θ, λ, take M, σ′, θ′ as above. Then we have

C(σ,θ ;∅,μ)(q, Q) = C(σ′,θ′ ;∅,∅)(q′, Q′)|
qθ
i =q′θ′i =q′θ′i+L=···q′θ′

i+(M−1)L
.

It is straightforward to generalize this theorem to the case of refined BPS
invariants discussed in Section 3.3.
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