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This achievement is an extension of the algorithm for approximating
polynomial invariants of colored oriented links found in [2,3]. Thus all the
significant quantities — partition functions and observables — of quan-
tum CSW theory can be processed efficiently on a quantum computer,
reflecting the intrinsic, field-theoretic solvability of such theory at finite k.

The paper is supplemented by a critical overview of the basic concep-
tual tools underlying the construction of quantum invariants of links and
three–manifolds and connections with algorithmic questions that arise in
geometry and quantum gravity models are discussed.

1 Introduction

The possibility of computing quantities of topological or geometric nature
was recognized as a major achievement for quantum information theory in
a series of papers by Michael Freedman and co-workers [4–6] (see also [7]
for an introduction). Their “topological quantum computation” setting,
intrinsically fault-tolerant and protected from decoherence, was designed
to comply with the behavior of “modular functors” of 3D Chern–Simons–
Witten (CSW) non-abelian topological quantum field theory (TQFT) [8–10],
the gauge group being typically SU(2). In physicists’ language, such functors
are partition functions and correlators of the quantum theory and, owing
to gauge invariance and invariance under diffeomorphisms, which freeze out
local degrees of freedom, they share a global, “topological” character. More
precisely, the physical observables are associated with topological invariants
of knots — the prototype of which is the Jones polynomial [11] — and
the generating functional is an invariant of the three–dimensional ambient
manifold, the Reshetikhin–Turaev–Witten invariant [8, 12].

The search for efficient quantum algorithms to compute (approximations
of) knot invariants has been carried out by several groups in the last few
years.

Within the framework of topological quantum computation the existence
of an effective procedure has been taken for granted by resorting to the
fact that this model is polynomially reducible to the standard quantum
circuit model [13]. Later on, this implicit proof has been supported by
the fundamental notion of “additive approximation” introduced in [14] and
borrowed in all the alternative approaches.

The first explicit algorithm for the Jones polynomial of a knot presented as
the plat closure of a braid has been constructed in [15] by efficiently approx-
imating unitary matrices associated with a particular representation of the
braid group, whereas in [16] the knot presentation and the representation of
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the braid group are generalized (these notions will be defined in the following
sections). It is worth stressing that both these approaches rely on the stan-
dard model of quantum computation, namely the quantum circuit model
based on qubits, elementary unitary gates and related algorithmic tech-
niques such as the so-called Hadamard trick [13].

The approach we proposed in [2,3] differs from the previous ones in many
respects. First, we were able to handle more general knot invariants, namely
“colored” link polynomials (a link is a multicomponent knot) which reduces
to Jones’ in a particular case. Second, the model of quantum computa-
tion we adopted, that we refer to as the q-deformed spin network model,
is in some sense a blending of the computational schemes mentioned above
framed within the background provided by the theory of finite-states quan-
tum machines [1]. This topic will be addressed in Section 2, while a few
conceptual questions and implications of our model of computation will be
discussed in the last section of this introduction.

In the main part of the paper, Section 3, we extend our efficient algorithm
for approximating colored link polynomial to deal with “quantum” three–
manifold invariants.

In order to overcome the difficulties due to the fact that we shall resort to
concepts and definitions arising in many different contexts (low-dimensional
topology, quantum group theory, CSW field theory, three–dimensional quan-
tum gravity models, classical and quantum complexity theory), we shall
illustrate in the next few paragraphs the basic conceptual tools underlying
the construction of such “universal” invariants.

1.1 From quantum topology to TQFT

The term “quantum topology” was introduced by Turaev [17] to denote
implications on the topological side of the algebraic theory of quantum
groups — technically, deformations of universal enveloping algebras of Lie
groups. The latter, based on the pioneering work of Drinfel’d [18] and
Jimbo [19], was inspired by theoretical physics from its very beginning since
quantum groups and associated R–matrix representations are the basic tools
of quantum inverse scattering methods and are the backbone of exactly solv-
able models in statistical mechanics [20].

The deformation parameter q was originally assumed to be a real number
related to Planck constant by q = eh, therefore it is commonly referred to as
a “quantum” deformation, whereas the “classical”, undeformed Lie group
symmetry is recovered at the particular value q = 1 (h → 0). When dealing
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with quantum invariants of knots and three–manifolds [17,21] q is most often
a complex root of unity, the case q = 1 being considered as the “trivial”
one. However, in a topologist’s language, “classical” topological invariants
are not the (q = 1)–counterparts of “quantum” invariants, but rather the
usual invariants of algebraic and geometric topology, typically related to the
fundamental group and homology groups of manifolds and submanifolds.

As Roberts remarks in the introduction to [21] the standard topological
invariants were created in order to distinguish between things and, owing
to their intrinsic definitions, it is clear what kind of properties they reflect.
For instance, the Euler number χ of a smooth, closed and oriented surface
S determines completely its topological type and can be defined as χ(S) =
2 − 2g, where g is the number of handles of S. On the other hand, quantum
invariants of knots and three–manifolds were discovered, but their indirect
construction based on quantum group technology often hides information
about the purely topological properties they are able to detect.

What is lost at the topological level is however well paid back by the possi-
bility of bridging this theory with a plenty of issues in pure mathematics and
theoretical physics (cf. the review [21] and the list of references therein). To
the early connections mentioned above (quantum inverse scattering, exact
solvable models) it is worth adding the operator algebra approach used orig-
inally by Jones in defining his knot polynomial [11]. However, the most
profitable development of the theory was that suggested by Schwarz and
formalized by Witten [8] (see [22] for a review and original references).

Indeed, recognizing quantum invariants as partition functions and vacuum
expectation values of physical observables in CSW TQFT provides a “phys-
ical” explanation of their existence and properties. Even more radically, one
could speak of a “conceptual” explanation, as far as the topological origin
of these invariants keeps on being unknown. In this wider sense, quantum
topology might be thought of as the mathematical substratum of an SU(2)
CSW topological field theory quantized according to the path integral pre-
scription (the coupling constant k ≥ 1 is constrained to be an integer related
to the deformation parameter q by q = exp( 2πi

k+2)).

The CSW environment provides not only the physical interpretation of
quantum invariants but it does include as well all the historically distinct
definitions [23]. In particular, monodromy representations of the braid group
[24] appear in a variety of conformal field theories since point–like “particles”
confined in two–dimensional regions evolve along braided worldlines ( [25]
and references therein). As a matter of fact, the natural extension of CSW
theory to a three–manifold M3 endowed with a non-empty two–dimensional
boundary ∂M3 induces on ∂M3 a specific quantized boundary conformal
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field theory, namely the SU(2) Wess–Zumino–Witten (WZW) theory at level
� = k + 2 [8,26]. The latter provides in turn the framework for dealing with
SU(2)q–colored links presented as closures of oriented braids and associated
with Kaul unitary representation of the braid group [27,28]. A further exten-
sion of this representation proposed by the same author in [29] is used in this
paper to construct explicitly the quantum three–manifold invariants in the
form originally defined in [30] within a purely algebraic setting. Such quanti-
ties are essentially the Reshetikhin–Turaev–Witten invariants [12] evaluated
for three–manifolds presented as complements of knots/links in the three–
sphere S3, up to an overall normalization.

1.2 Algorithmic complexity of CSW theory

As mentioned in the introductory remarks, the “quantum field” computer
[4–6] is a model of computation designed to process quantities of topo-
logical nature arising in CSW environment and thus “efficiency” of any
calculation — such as that of Jones knot polynomial — should be guaranteed
by definition (we leave aside here the issue of “exact” versus “approximate”
calculation at least for the moment).

However, when dealing with algorithmic questions, the model of com-
putation adopted should comply with the commonly accepted paradigms of
theoretical computer science. Turing machines, together with the polynomi-
ally equivalent circuit models based on elementary boolean gates, represent
the universal schemes which allow problems and algorithms to be grouped
into classical complexity classes [31]. In quantum computing, the notions
of quantum Turing machine — and associated quantum circuits based on
qubits and unitary elementary gates — can be introduced and represent the
standard, universal model of computation [13].

It was shown in [5] that SU(2) CSW functors at the fifth root of unity,
whose domain is restricted to collections of “topological” qubits (disks with
three marked points) on which suitable unitary representations of the braid
groups B3 and B3 × B3 act, do reproduce the standard elementary gates
of the quantum circuit model. The physical support of such information
processing consists of anyonic systems obeying particular types of braid
statistics and work is in progress on the experimental side to check the
implementability of such approach (see [32] and also [33] for a different kind
of implementation of braiding operators).

Based the above properties, a sort of “minimal” realization of the full
quantum field computer is (polynomially equivalent to) the quantum circuit
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and indeed the work of [15,16] on quantum computation of the Jones invariant
does not depend at all on any field theoretic background. Generally speaking,
this is satisfactory for the aim of introducing an ad hoc computing model
for treating anyonic quantum systems; yet is somehow disturbing because
classical Turing machines and their probabilistic counterparts are able to
simulate efficiently only any dynamical systems governed by classical laws
at any degree of accuracy. Even the objection that we are in the presence
of a quantum field theory — not simply a quantum mechanical many–body
system — is misleading since the CSW model is exactly solvable at the
full quantum level (for each fixed value of the coupling constant) without
resorting to any approximation such as the low-energy limit [22,23]. The cru-
cial feature of possessing only global, purely topological degrees of freedom
makes quantum CSW theory likely to be simulated within a computational
scheme based on a discrete space of states and able to implement polylocal
braiding operations.

As will be illustrated in Section 2, the universal model of computation
able to handle all discrete, many-body quantum systems described by (real
or virtual) pure angular momenta states (not simply two-level systems) as
well as solvable field theories of CSW-type is the (q–deformed) spin network
proposed in [2, 3].

As already recognized in [4] the task of computing the Jones polynomial
of a knot or link represents a major achievement since it is the simplest
observable in quantum CSW theory and then its calculation is a testing
ground of the effectiveness of topological quantum computation. However,
the interest in this algorithmic problem has recently grown in connection
with the search for new testing grounds for quantum information theory in
general, without necessarily exploiting the physical meaning of the invariant.

The reason why Jones link polynomial is so crucial in the computational
context relies on the fact that a “simpler” link invariant, the Alexander–
Conway polynomial, can be computed efficiently, whereas the problem of
computing two-variable polynomials — such as the HOMFLY invariant — is
NP–hard (see [21,34,35] for definitions of these invariants, original references
and accounts of algorithmic questions).

The issue of computational complexity of the one-variable Jones polyno-
mial in classical information theory can be summarized in

Problem 1.1. How hard is it to determine the Jones polynomial J (L, q) of
a link L?

A quite exhaustive answer has been provided in [35], where the evaluation
of the Jones polynomial of an alternating link L̃ at a root of unity q is
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shown to be #P-hard, namely computationally intractable in a very strong
sense.

Recall first that “alternating” links are special instances of links, the pla-
nar diagrams of which exhibit over and under crossings, alternatively. Thus
the evaluation of the invariant of generic, not only alternating links is at
least as hard. Secondly, the computation becomes feasible when the argu-
ment q of the polynomial is a second, third, fourth, sixth root of unity,
so that the first not easy case involves a fifth root of unity (refer to [35]
for details on this technical issue). Finally, the #P complexity class can
be defined as the class of enumeration problems in which the structures
that must be counted are recognizable in polynomial time. A problem
π in #P is said to be #P–complete if for any other problem π′ in #P,
π′ is polynomial-time reducible to π; if a polynomial time algorithm were
found for any such problem, it would follow that #P ⊆ P. A problem is
#P–hard if some #P–complete problem is polynomial–time reducible to it.
Other instances of #P–complete problems are the counting of Hamiltonian
paths in a graph [31] and the more intractable problems arising in statisti-
cal mechanics, such as the enumeration of all configurations contributing to
ground state partition functions [20].

The computational intractability of Problem 1.1 does not rules out the
possibility of “approximating” efficiently Jones invariant, so that we may ask

Problem 1.2. How hard is it to approximate the Jones polynomial J (L, q)
of a link L at a fixed root of unity q (q �= 2nd, 3rd, 4th, 6th root)?

Loosely speaking, the approximation we are speaking about is a number Z
such that, for any choice of a small η > 0, the numerical value of J (L, q),
when we substitute in its expression the given value of q, differs from Z
by an amount ranging between −η and +η (see Section 3.2 below for a
more precise statement). In the framework of classical complexity theory no
algorithm to handle efficiently Problem 1.2 exists, while the answer in the
quantum computational context was given in [14] (see also [16]):

The approximation of the Jones polynomial of a link presented as
the closure of a braid at any fixed root of unity is BPQ–complete.
Moreover, this problem is universal for quantum computation,
namely is the “prototype” of all problems efficiently solvable on
a quantum computer.

Recall that BQP is the computational complexity class of problems which
can be solved in polynomial time by a quantum computer with a probability
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of success at least 1
2 for some fixed (bounded) error. In [14] it was proved

that PJ = BQP, where PJ is defined as the class of languages accepted in
polynomial time by a quantum Turing machine with an oracle for the lan-
guage defined by Problem 1.2. This equality between computational classes
implies that, if we find out an efficient quantum algorithm for Problem 1.2,
then the problem itself is complete for the class BQP, namely each problem
in this class can be efficiently reduced to a proper approximate evaluation
of the Jones polynomial of a link [16].

Explicit, efficient quantum algorithms for approximating the Jones poly-
nomial were proposed by Aharonov et al. [15] and by Wocjan and Yard [16],
whereas an early attempt can be found in [36].

In our papers [2,3] we proved that efficient algorithms can be implemented
for approximating the larger class of “colored” Jones polynomials of links
(addressed also in [37]).

The issue of colored link invariants brings us back to the quantum CSW
environment, where they represent the most general gauge invariant physical
observables of the theory, being vacuum expectation values of generic Wilson
loop operators [8, 22, 23]. In Section 3 we shall provide a generalization of
our algorithm for colored polynomials to handle the quantum three–manifold
invariants introduced in Section 1.1.

Summarizing our results, we have shown that all the significant quanti-
ties — partition functions and observables — in SU(2) quantum CSW theory
can be efficiently approximated at finite values of the coupling constant k.
The intrinsic field–theoretic solvability of CSW theory is thus reflected by
its computability on a quantum computer. Looking at the question the
other way around, classical computational intractability of Jones and col-
ored polynomials can be viewed as a consequence of their quantum nature.
This feature has prevented up to now both exact and approximate effi-
cient calculations of such topological quantities on classical (probabilistic)
machines as it happens for simulations of any non trivial “genuine” quantum
mechanical system (see, e.g., Feynman’s proof in [38]).

1.3 Quantized geometry versus quantum computing

In this section we address some implications of our results in connection
with algorithmic questions that may arise in other physical theories whose
dynamical variables have a geometric character, typically quantum gravity
models in D = 3 and 4 space–time dimensions.
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We have however to face preliminarily a conceptual dilemma, namely
whether

(i) an abstract universal model of computation, able to simulate any
discrete quantum system including solvable topological field theories,
must exists by its own

or

(ii) a (suitably chosen) quantum system is by itself a computing machine
whose internal evolution can reproduce the proper dynamics of classes
of physical systems.

The second alternative is becoming quite popular thanks to Lloyd’s model,
where a net of computing units generates a (superposition of) 4D spacetimes
[39] (see also [40] where similar ideas were anticipated).

The idea that many (if not all) aspects of our reality may be thought
of as “outputs” of some kind of information processing is both appealing
and intriguing. In this connection the role of information theory and its
tools is so enhanced that it becomes a unifying paradigm. Of course, the
classical version of hypothesis (i) is usually taken for granted as far as, on
the one hand, a (probabilistic) Turing machine is capable of simulating the
evolution of any classical system within a given accuracy, and, on the other,
all concrete, finite–size realizations of the abstract machine obey the laws
of classical physics. The practicability of hypothesis (ii) depends heavily
on which system is chosen as a simulator and which types of boundary or
initial conditions must be imposed to reproduce the dynamical behavior of
observed physical systems. Moreover, the concept of “efficient” processing
of information seems difficult to be handled without an abstract reference
model of computation.

With the previous remarks in mind, we favour assumption (i), where the
reference model of computation can be represented by the spin network
simulator [41–43] (see also [44]) or its q–deformed, finite–size counterpart
[2, 3] (see also Section 2 below). Note however that it may be tempting
to assert that the spin network — thought of as a real net of interacting
spin variables — can play as well the role of the reference quantum system
in statement (ii). This is due to the fact that the recoupling theory of
SU(2) angular momenta — representing the algebraic substratum of the
simulator — is the main ingredient of the “spin network models” introduced
by Ponzano and Regge [45] and Penrose [46]. Here classical, discretized 3D
euclidean geometry arises from recouplings of quantum angular momenta in
the asymptotic, large angular momentum limit (see [42], section 5 for a brief
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account). Thus, much in the sense of (ii), spin networks may act — under
suitable constraints — as computing machines able to process information
encoded into quantum spins to output “quantized” three–geometries obeying
Einstein equations in the classical limit.

Thinking back to the issue of algorithms for quantum invariants defined
in the framework of quantum CSW theory, our results can be used to test
the algorithmic complexity of quantum gravity models in D = 3 spacetime
dimensions too. This achievement can be justified — independently from
spin network models — by exploiting the close connection between CSW
theory and 3D gravity both as classical field theories and at the quantum
level [8,26] (classical 3D gravity with a positive cosmological constant, rein-
terpreted as an SU(2) gauge theory, is quantized through the Euclidean path
integral prescription).

For a closed orientable Riemannian three–manifold M3, let Z(M3; k)
denote the Witten partition function associated with the classical
CS action SCS(A), A being the connection one–form. The functional
Z(M3; k)Z(M3; k) ≡ |Z(M3; k)|2 = Z(M3; k) for finite k is the partition
function of 3D Euclidean quantum gravity in the first-order form, where the
coupling constant k is related to the cosmological constant
Λ by k = 4π/

√
Λ.1

The point here is that every manifold in the class considered here can
be presented as the complement of a link L in the three–sphere (techni-
cally, by surgery along a framed version of L, see Section 3.1), so that
M3 ≡ M3

L ∼ (S3 \ L) and Z(M3
L; k) = |Z(M3

L; k)|2, where Z(M3
L; k) is the

Reshetikhin–Turaev–Witten quantum invariant introduced in Section 1.1.
Thus the results on algorithms for quantum invariants of links and three–
manifolds summarized in Section 1.2 work equally well in the context of
Euclidean 3D quantum gravity models, reflecting once more the exact solv-
ability of the theory for finite k.

An even more interesting connection between SU(2)q quantum invari-
ants and quantum gravity emerges when dealing with canonical quantiza-
tion methods applied to general relativity in (3 + 1) dimensions. We refer
in particular to the “loop representation” based on Ashtekar “connection

1Note in passing that the invariant Z(M3; k), on the one hand, equals the Turaev–
Viro invariant for triangulated three–manifolds [47] and, on the other, can be derived by
relating 3D gravity to a BF–type topological field theory [8,22,26]. Recall that the name
“BF theories” derives from the fact that their metric–independent classical action takes
the form

∫
B ∧ FA, where FA is the curvature of a connection A and the B–field is a

Lagrange multiplier. In contrast to Chern–Simons theory such topological field theories
exist and are well defined in arbitrary dimensions.
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representation” of canonical gravity (see [48, 49] for reviews and original
references). The Reshetikhin–Turaev–Viro invariants act there as quantum
states associated with the boundary three–geometries (spatial slices of 4D
spacetimes). Such states were shown to satisfy both the quantum diffeo-
morphism constraint and the quantum Hamiltonian constraint (Wheeler–
DeWitt equation) once a cut-off — related to the deformation parameter
q — has been fixed. Thus quantum invariants constitute the natural kine-
matical arena of loop quantum gravity [50]. This sketchy scenario hides
however the necessity of introducing new types of quantum invariants —
the perturbative invariants — which arise when the cut–off of the underly-
ing quantum field theory is removed.

In the CSW field–theoretic setting, perturbative invariants emerge as coef-
ficients of the asymptotic expansion of the partition function Z(M3

L; k) as
k → ∞ (see [21, Chapter 7]). Besides a first term that corresponds to the
semiclassical approximation of Z(M3

L; k) (saddle point), each contribution
in the expansion is exp{2πkSCS(Â)} times a power series in 1/k (here SCS(Â)
is the CS action evaluated for the flat connection Â). Perturbative invari-
ants are the coefficients of the powers (1/k)n evaluated by using (n + 1)–loop
Feynman diagrams. No complete perturbative treatment of quantum CSW
theory is available at present, and the meaning of such invariants in geomet-
ric topology is only conjectured in a few cases.

We are interested here in discussing briefly the “volume conjecture” con-
cerning special classes of hyperbolic three–manifolds (recall that the volume
is a topological invariant for such manifolds). Note also that most manifolds
obtained by surgery on framed links in the three–sphere can be endowed with
hyperbolic metrics. Focusing in particular on “hyperbolic knots”, namely
those knots which give rise to finite volume hyperbolic three–manifolds, the
volume conjecture proposed in [51,52] (see also the review [21] for extended
versions) can be cast in the form

2π lim
N→∞

log |JN (K)|
N

= Vol (S3 \ K), (1.1)

where K is a hyperbolic knot and the notation JN (K) stands for the
N–colored polynomial of K evaluated at q = exp(2πi/N).

As pointed out many times, all quantum algorithms dealing with link
polynomials are established for a fixed choice of the root of unity q appearing
in the argument of the invariants, while the volume conjecture involves the
analysis of the asymptotic behavior of single–colored polynomials of a same
knot for increasing values of the coloring itself.
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It would be interesting to explore the possibility of borrowing some of the
techniques employed in [53] for dealing with the asymptotics of the Jones
polynomial to test conjecture (1.1) within the computational framework for
colored polynomials addressed in the present paper.

Note finally that the relevance of this issue for quantum gravity stems
from the observation that all vacuum solutions of Einstein field equations
in (2 + 1) dimensions with a negative cosmological constant are hyperbolic
metrics. As recently shown by Carlip [54], the smallest hyperbolic volumes
give rise to the largest contributions in the saddle point term of the path
integral of the quantum theory. This implies in turn that the so–called “real
tunneling geometries” are most probable (a real tunneling geometry repre-
sents the transition from a compact Riemannian spacetime to a Lorentian
one within the framework of the Hartle–Hawking “no boundary” approach
to quantum cosmology [55]). On the other hand, the possibility of con-
trolling such invariants from the algorithmic point of view might help also
in selecting weights to be assigned to three–geometries in the “sum over
topologies” within a “fully quantum” cosmology theory.

2 Processing braiding operators

2.1 q–Deformed spin network and quantum recognizers

As pointed out in the introduction, our reference model of computation to
deal with quantum topological invariants derived from Kaul unitary repre-
sentations of colored oriented braids [27,28] is given by the q–deformed spin
network model.

The (undeformed) spin network simulator has been extensively addressed
elsewhere [42] but for the convenience of the reader we have collected in
Appendix A a few mathematical details. However, in order to recognize the
necessity of introducing a q–deformed version, it is worth to discuss here
the (categorical) foundations of the quantum theory of angular momenta.
The computational space of the spin network simulator — modelled as a
graph — encodes the representation ring of the Lie group SU(2) — namely
finite–dimensional Hilbert spaces supporting irreducible representations
(irreps) of SU(2) endowed with two binary operations, tensor product ⊗ and
direct sum ⊕ (that provide a ring structure over the field C) — together with
all the unitary operators relating (multiple tensor products of) such spaces.
Unlike the usual quantum circuit model [13], here it is possible to han-
dle directly eigenstates of N binary coupled angular momentum variables
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labelled by integers and half–integers j1, j2, . . . , jN (in � units) and not sim-
ply N–qubit states labelled by the fundamental irrep j1 = j2 = · · · = jN =
1/2. The (re)coupling theory of N SU(2) angular momenta provides the
whole class of unitary transformations that can be performed on many–body
quantum systems described by pure angular momentum binary coupled sets
of eigenstates [56, topic 12]. The unitaries that we need here (referred to as
j–gates in Section 3 of [42]) are phase transformations, related to swaps of
two contiguous spins and recoupling transformations expressed in terms of
3nj–coefficients of SU(2) and related to changes in the interaction schemes
of the N angular momenta (N = n + 1).

Within the framework of the categorical approach, the SU(2) representa-
tion ring is an instance of a unitary tensor category, endowed with intertwiner
spaces and two basic morphisms, a “twist” (a trivial type of “braiding”)
and an “associator” [57, 58]. The former acts on the tensor product of two
Hilbert spaces V, W supporting irreps of SU(2) by exchanging the order of
the factors, namely

RV,W : V ⊗ W −→ W ⊗ V, with

RW,V ◦ RV,W = IdV ⊗W . (2.1)

The explicit action of R on a (binary coupled) state is a trivial phase trans-
form, see (A.8), (A.9) in Appendix A.

The associator F relates different binary bracketing structures in the triple
tensor product of irreps V, U, W

F : (V ⊗ U) ⊗ W −→ V ⊗ (U ⊗ W ) (2.2)

and is implemented on a binary coupled state as a Racah transform involv-
ing one Racah–Wigner 6j–symbol (see (A.6), (A.7) in Appendix A). Note
that both (2.1) and (2.2) are isomorphisms (unitary morphisms between
intertwiner spaces in the categorical language) but the associator reflects a
true (physically measurable) modification of the way in which intertwiner
spaces are coupled.

The remarkable fact, derived from the general theory of braided tensor
categories [59], is that more complicated multiple tensor products can be
handled without introducing any further independent morphism. Actually,
multiple tensor product spaces can be related by different combinations of
braidings and associators, so that the basic morphisms must satisfy compat-
ibility conditions, a so–called pentagon identity and two hexagon identities.
In the more concrete language of SU(2) recoupling theory, each 3nj–symbol
can be obtained as a combination of phase and Racah transforms and the
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non–uniqueness of such decomposition is translated into the Biedenharn–
Elliott (pentagon) identity and the Racah identity (see, e.g., [56] or [60] for
their explicit expressions).

In order to deal with non–trivial braiding operators — to be used in con-
nection with the study of braid group representations and braid statistics
(typically occurring in anyonic systems) — we are forced to modify the oper-
ation R in (2.1) by introducing a genuine, non–trivial braiding morphism [59]

RV,W : V ⊗ W −→ W ⊗ V, with
RW,V ◦ RV,W �= IdV ⊗W .

(2.3)

A consistent way of modifying the SU(2) tensor category to include non–
trivial braidings can be achieved by moving to the representation ring R

(SU(2)q) of the q–deformed Hopf algebra of the Lie group SU(2), SU(2)q (q
a root of unity). The resulting braided tensor category is the “universal”
algebraic structure underlying the constructions of quantum invariants of
links and three–manifolds outlined in Sections 1.1 and 1.2. (We refer the
reader to [2,61] for short technical surveys of the quantum group and CSW
approaches.).

According to the above remarks, it should be clear that the “q–deformed”
spin network model of computation [2,3] is modelled on the q–tensor category

(R(SU(2)q); R; F), (2.4)

where we have denoted by F the q–counterpart of the associator F in (2.2).
Once suitable basis sets are chosen in the finite collection of irreducible
spaces ∈ R (SU(2)q), the unitary morphisms R and F can be made explicit.
In particular F turns out to contain the q–deformed counterpart of the
6j–symbol and, regarding it as a unitary matrix, it is also referred to as
“duality” (or “fusion”) matrix borrowing the language of conformal field
theories [25].

The efficient quantum algorithm for (approximating) SU(2)q–colored link
polynomials we obtained in [3] relies on a two–level procedure which can be
summarized as follows:

• Kaul unitary representation of colored oriented braids — associated
with links presented as plat closures of such braids — is processed on
the q–spin network (2.4) in a number of steps that grows polynomially
in the size of the input. In particular, each elementary computational
step is implemented by applying either R or F (see Section 2.2 below).
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• The basic q–morphisms R, F in the Kaul representation can be effi-
ciently compiled on a standard quantum computer, by means of uni-
versal elementary gates acting on suitable qubit–registers.2

In order to analyze in more details the first topic above we need to frame the
q–deformed spin network model within the theory of quantum automata and
quantum languages. According to [1] a quantum recognizer is a particular
type of finite–states quantum machine defined as a five–tuple {Q,H, X, Y,
T(Y |X)}, where

1. Q is a set of n basis states, the internal states;
2. H is an n–dimensional Hilbert space and we shall denote by |Ψ0〉 ∈ H

a start state expressed in the given basis;
3. X and Y = {accept, reject, ε} are finite alphabets for input and output

symbols respectively (ε denotes the null symbol);
4. T(Y |X) is the subset of n × n transition matrices of the form {T (y|x) =

U(x)P (y); x ∈ X, y ∈ Y }, where U(x) is a unitary matrix which deter-
mines the state vector evolution and P (y) is a projection operator
associated with the output measurement on (suitable complete sets of
observables associated with) the upgraded state vector.

In this kind of machine the output alphabet is chosen in such a way that a
word w written in the input alphabet X must be either accepted or rejected,
while for the null symbol the requirement is P (ε) ≡ I (the identity matrix).
Thus the one–step transition matrices applied to the start state |Ψ0〉 can in
principle assume the forms

(a) T (ε|x) = U(x)P (ε) ≡ U(x)I ∀x ∈ X,
(b) T (accept|x) = U(x)P (accept) ∀x ∈ X with P (accept) ≡ |Ψ0〉〈Ψ0|,
(c) T (reject|x) = U(x)P (reject) ∀x ∈ X with P (reject) ≡ I − |Ψ0〉〈Ψ0|,

according to whether no measure is performed (case (a)), or the output is
“accept”/“reject”, namely cases (b)/(c) respectively.

2This result is quite interesting by itself as recently pointed out in [62] where relations
between the basic morphisms and large Fourier transforms are addressed.

The problem of finding out efficient algorithms to compute the fundamental func-
tions of the quantum theory of SU(2) angular momenta — Clebsch–Gordan coefficients,
6j–symbols — has attracted much attention [63]. However, to our knowledge, there are
neither classical nor quantum algorithms available for evaluating these functions for arbi-
trary values of their arguments. The crucial remark is that a q–6j–symbol with arbitrary
entries can be efficiently compiled and approximated on a quantum circuit independently
of the input size of the algorithmic problem owing to the presence of the natural cut–off
provided by k (see Section 3.2, in particular footnote 8). Then we realize once more that
the q–symmetry of solvable topological field theories is indissolubly tied with the effective
computability of these models.
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The general axioms stated above can be suitably adapted to make this
machine able to recognize a language L endowed with a word–probability
distribution p(w) over the set of words {w} ∈ L. In particular, for any
word w = x1x2 . . . xl ∈ L the recognizer one–step transition matrix elements
are required to be of the form Tij(xs) = Uij(xs) on reading each individual
symbol xs ∈ w, namely no measurement is performed at the intermediate
steps (here i, j run from 1 to n, the dimension of the Hilbert space H). Each
Uij(xs) must satisfy the condition

|Uij(xs)|2 > 0, (2.5)

and the recognizer upgrades the (normalized) initial state to

U(w)|Ψ0〉
.= U(xl) . . . U(x1)|Ψ0〉. (2.6)

Then the machine assigns to the word w the number

p(w) = |〈Ψ0|U(w)P (accept)U(w)|Ψ0〉| with 0 ≤ p(w) ≤ 1, (2.7)

which corresponds to the probability of accepting the word w as a whole.

More generally, the machine accepts a word w according to an a priori
probability distribution Pr(w) with a word–probability threshold
0 ≤ δ ≤ 1 if

|Pr(w) − p(w)| ≤ δ, ∀w ∈ L. (2.8)

In what follows the accuracy δ will be set to 0, so that the two probability
distributions Pr and p coincide.

2.2 The Kaul representation as a quantum language

In this section we shall show that the q–deformed spin network computa-
tional scheme (2.4) embodies families of quantum finite–states machines (or
quantum automata) {Aq} — parameterized by the labels of N irreps of
SU(2)q, q = root of unity — that recognize the language generated by the
braid group according to a probability distribution given by the square of
the modulus of the q–colored link polynomial.

This construction complies essentially with what we have done in [2], but
here we should stress the interpretation of the Kaul representation [28] as
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Figure 1: An oriented braid on four strands.

a quantum language, on the one hand, and the role played by the proba-
bility distribution, on the other (leaving aside details on the field–theoretic
background material).

The basic ingredients of Kaul’s construction are oriented geometric braids
(see figure 1), the strands of which are endowed with “colorings” given by
SU(2)q irreps labels. An n–strand colored oriented braid is defined by two
sets of n assignments ĵi = (ji, εi) with (i = 1, 2, . . . , n), corresponding to the
spin ji labelling the strand and to the orientation εi of the strand, with
εi = ±1 (for the strand going into or away, respectively, from a horizontal
rod from which the braid issues). The first set of assignments is associated
to the upper rod, the second to the lower rod (we use the convention that
two braids are composed in the downward direction). The conjugate of ĵi

is defined as ĵ∗
i ≡ (ji,−εi). It follows that the assignments on the lower rod

are just a permutation of the conjugates of the assignments on the upper
rod. A colored and oriented braid can thus be represented by the symbol

σ

(
ĵ1 ĵ2 . . . ĵn

l̂1 l̂2 . . . l̂n

)
, (2.9)

where l̂j = ĵπ(i) for some i and j and a permutation π of {1, 2, . . . n}.

The composition of two colored oriented braids is well defined only if the
orientations and the colors of the two braids match at the merging points,
as shown in figure 2.

The group of colored oriented braid is generated by the identities (one for
each assignment of colors and orientations on a topologically unentangled
braid) and by the braids of type σl, as shown in figure 3.

The collection of {σl} for l = 1, 2, . . . n − 1 are the standard generators of
the (colored) braid group Bn and satisfy the following defining relations:

σiσi+1σi = σi+1σiσi+1,

σiσj = σjσi, |i − j| ≥ 2.
(2.10)
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Figure 2: The composition of two colored oriented braids.

Figure 3: The identity and the generator σl of the colored oriented braid
group.

Figure 4: The platting of a colored oriented braid on 2n strands.

The inverse of a generator σl, (σl)−1, corresponds to the under–crossing of
the left strand ĵl in figure 3 (right).

In order to obtain a link (multicomponent knot) from a colored braid we
need to “close up” the braid. For our purposes we may consider only the
plat closure (or platting) of a colored braid, defined for braids which possess
an even number of strands and whose assignments match as follows (see also
figure 4)

σ

(
ĵ1 ĵ∗

1 ĵ2 ĵ∗
2 . . . ĵ2n ĵ∗

2n

l̂1 l̂∗1 l̂2 l̂∗2 . . . l̂2n l̂∗2n

)
. (2.11)
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Figure 5: The conformal block of type {p; r} (odd).

Figure 6: The conformal block of type {q; s} (even).

Since any (colored oriented) link can be obtained as the plat closure of a
braid [64], we do not lose generality for what concerns the class of links that
can be handled.

The further step consists in embedding the 2n–strand braid into a three–
sphere S3 with two three–balls removed, giving rise to a three–manifold
with two boundaries Σ1, Σ2 (topologically 2 two-spheres S2 with opposite
orientations). The intersections (“punctures”) of the braid (2.11) with the
boundaries inherit the colorings and orientations from the corresponding
strands of the braid (to be associated with Wilson line operators in the ambi-
ent CSW topological field theory). Following [8], finite-dimensional Hilbert
spaces H1 ⊗ H2 are associated with to the two boundaries Σ1, Σ2 and the
basis sets in these spaces are the so–called conformal blocks of the bound-
ary WZW conformal field theory at level �, with 2n external lines labelled
by (different) irreps of SU(2)q (� is related to CSW coupling constant by
� = k + 2, so that from now on we set q = exp{2πi/�}). Two particular
types of conformal block bases are needed to deal with braids the plat clo-
sures of which will give rise to colored oriented links, and their combinatorial
patterns are shown in figures 5 and 6.

The (orthonormal) basis sets are constructed by taking particular binary
coupling schemes of the 2n “incoming” angular momentum variables j1,
j2, . . . , j2n which must sum up to give a spin–0 total singlet state.3 The
procedure can be carried out by parallelling the SU(2), undeformed case (see
Appendix A) but here the labels of the irreps ji’s (integer and half–integers)
are constrained to range from 0 to �/2 and the binary bracketings on tensor

3Incidentally, such a choice complies also with the conditions necessary for the con-
struction of error avoiding codes and implies as well the robustness of the scheme [65,66].
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products are decomposed according to rules of SU(2)q representation theory
(see, e.g., [61, Section 3]).

Looking at the combinatorial structure of figure 5, the most general odd–
coupled basis is consistently labelled as

|p; r〉j, (2.12)

where j stands for the ordered string j1, j2, . . . j2n, p ≡ p0, p1, . . . , pn−1 and
r ≡ r1, r2, . . . , rn−3. In the even–coupled case depicted in figure 6, the states
of the basis are denoted by

|q; s〉j, (2.13)
where j is the same as before while q ≡ q0, q1, . . . , qn−1 and s ≡ s1, s2, . . . ,
sn−3.

The basis vectors associated to the conformal blocks (2.12) and (2.13) are
related to each other by

|p; r〉j =
∑
(q;s)

A
(q;s)
(p;r)

⎡
⎢⎢⎢⎣

j1 j2
j3 j4
...

...
j2n−1 j2n

⎤
⎥⎥⎥⎦ |q; s〉j, (2.14)

where the symbol A
(q;s)
(p;r)[::] represents the unitary duality matrix (or

q–deformed 3nj recoupling coefficient). As pointed out in Section 2.1,
it is a standard result that any such duality matrix can be decomposed
into (sums of) products of “basic” duality matrices or q–6j symbols, see
Section 3.2 below.

A graphical representation of the decomposition (2.14) in the case of eight
incoming spin variables is shown in figure 7. Note that the graphical rep-
resentation of the basic duality transformation (the matrix counterpart of
the associator in the language of tensor categories) can be also drawn in the
most familiar form shown in figure 8.

As proved in [28], the colored polynomial of a link L, presented as the

plat closure σ̂ of a colored braid σ

(
ĵ1 ĵ∗

1 . . . ĵn ĵ∗
n

l̂1 l̂∗1 . . . l̂n l̂∗n

)
as defined in

(2.11), is given by

J [L; j; q] = Tr
n∏

i=1

[2ji + 1]lq 〈0;0|Û
[
σ

(
ĵ1 ĵ∗

1 . . . ĵn ĵ∗
n

l̂1 l̂∗1 . . . l̂n l̂∗n

)]
|0;0〉j,

(2.15)
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Figure 7: Example of decomposition of a duality transformation between
the two extremal conformal blocks in the case of eight incoming spins.

Figure 8: The elementary duality transformation associated with a q–6j
symbol.

where j ≡ (j1, j2, . . . , j2n), [2ji + 1]q is the quantum dimension of the irrep
labelled by ji and the quantum integer [x]q is defined as

[x]q ≡ xq/2 − x−q/2

x1/2 − x−1/2 . (2.16)

Thus J [L; j; q] can be evaluated by taking the trace of the matrix elements
of the composite braiding operator Û [σ] in the Kaul representation with
respect to the odd–coupled basis, where all the intermediate quantum num-
bers are constrained to give singlet eigenstates (a similar result would hold
true for the even–coupled basis). Moreover, Û [σ] can be decomposed into a
finite sequence of unitary matrices U [σ2l+1] (diagonal matrices in the odd–
coupled basis adopted in (2.15)) and duality matrices of the type (2.14) to
be applied whenever a switch to the even–coupled basis is needed, namely
when an even U [σ2l] occurs in the decomposition (see [28] for the explicit
expression of these matrices).
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The construction outlined above can be cast into an effective process of
calculation by resorting the concept of quantum recognizer introduced in
Section 2.1.

The Aq recognizer is defined, for a fixed root of unity q = exp{2πi/�}, by
the five–tuple {Codd,H, B2n, {accept, reject, ε}, U(B2n)}, where

• Codd is the odd–coupled conformal block basis of the boundary WZW
theory (see (2.12) and figure 5).

• H is the ordered tensor product of 2n (2ji + 1)–dimensional Hilbert
spaces supporting irreps of SU(2)q labelled by ji, with ji ≤ (� − 2)/2
(i = 1, 2, . . . , 2n).

• B2n is the braid group on 2n strands whose generators g ≡ {σ1, σ2, . . . ,
σ2n−1} and their inverses represent the input alphabet (we may add
the identity element e ∈ B2n as null symbol).

• Y = {accept, reject, ε} is the output alphabet.
• The transition matrices are expressed in terms of U(B2n), denoting col-

lectively the Kaul unitary representation matrices, while the projectors
P (y) (y ∈ Y ) are defined as in the general case given in Section 2.1.

According to the above definitions, we provide the automaton with an input
word w ∈ B2n of length κ (written in the alphabeth g by natural composition
in B2n)

w = σε1
α1

σε2
α2

· · ·σεκ
ακ

; σαi ∈ g, εi = ±1 (2.17)

and such that the (plat) closure ŵ of the 2n–strand braid w gives the link L
to be processed. Dropping for simplicity all the matrix indices, the unitary
evolution of the automaton is achieved by applying the sequence

U(w) = U(σεκ
ακ

) U(σεκ−1
ακ−1

) · · ·U(σε1
α1

) (2.18)

to a start ket |0;0〉 j in the odd–coupled basis (2.12).

Whenever an odd–braiding σα = σ2i+1 (or (σ2i+1)−1) occurs, the automa-
ton one–step evolution upgrades the internal state by inserting the eigen-
value of the associated unitary U . On the other hand, when an even–braiding
σβ = σ2i (or (σ2i)−1) must be implemented, the automaton has to change the
parity of the internal state by means of a duality matrix (2.14), so that the
effective transformation is given by the product U(σβ) A[: :]. Since any dual-
ity transformation can be split into a sequence of basic duality matrices, we
may look at the q–6j symbol as representing an “elementary”, one–step evo-
lution of the automaton. By resorting to standard results in graph theory it
is possible to estimate how many q–6j symbols are needed to decompose the
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most general q–recoupling coefficient [2, 67]. In the present case the upper
bound can be expressed in terms of 2n, the braid index (or, equivalently, the
number of strands of the input braid). On the basis of the above remarks,
the time complexity function (number of computational steps) for process-
ing a braid–word of length κ on the quantum recognizer Aq is bounded from
above by [2]

κ(Ñ ln Ñ) where Ñ ≡ (2n − 1), (2.19)

implying that the automaton processes efficiently such braids.

Let us finally comment on the “probability distribution” entering into the
definition of a quantum automaton that recognizes a language in a proba-
bilistic sense (end of Section 2.1). On the basis of the expression of the
colored link invariant given in (2.15) and by comparison with the word
probability of a quantum recognizer defined in (2.7), it should be quite clear
that the probability naturally associated with a link L processed on Aq is the
square modulus of its colored polynomial (note that the positivity conditions
required in (2.5) are always satisfied).

In order to check this result in a concrete case, the explicit construction
of the q–spin network automaton that recognizes the braid group language
with a probability distribution given by the square modulus of the Jones
polynomial is carried out in Appendix B.

3 Efficient quantum algorithms for three–manifold
quantum invariants

3.1 Colored framed links and three–manifold quantum invariants

The quantum invariants of three–manifolds that we are going to discuss —
within the mathematical framework developed in [30], see also [68] — can be
obtained as combinations of polynomial invariants of “framed” unoriented
links in the three–sphere S3 on the basis of theorem 3.1 stated below. It
is worth noting that in the CSW environment the necessity of introducing
framings is physically motivated by the requirement of general covariance of
the quantized field theory (see, e.g., [23, Chapter 3]).

Loosely speaking, a framed oriented link [L; f ] is obtained from a link
L — thought of as made of knotted strings — by thickening its strings to
get oriented “ribbons”. If L has S knot components K1, K2, . . . , KS , for
each Ks we introduce another closed path Kf

s oriented in the same way as
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Ks and lying within an infinitesimal neighborhood of Ks (knots and links are
embedded in R

3 or in S3). The overall topology of the link is not modified,
but for each Ks we now have an extra variable τ(Ks) telling us how many
times the oriented ribbon is “twisted”. Denoting by f .= {fs = n(s), n(s) ∈
Z} (s = 1, 2, . . . , S) the framing of the link L, fs is the self–linking number
of the band, or equivalently the linking number lk(Ks, K

f
s ) ≡ χ(Ks, K

f
s )

between the knot Ks and its framing curve Kf
s which winds n(s) times in

the right–handed direction. The twist of the band τ(Ks) is not independent
from lk(Ks, K

f
s ), and the simplest choice we can made is to set

τ(Ks) = w(Ks),

where w(Ks) is the writhe of the sth component.4

The type of framing usually adopted is the “vertical” framing, where the
frame is thought to be placed vertically above the link diagram. Looking
at figure 9, the framing can be represented by putting the writhe number
w(Ks) ≡ n(s) nearby the band or even by writing n(s) next to the string
representing (a portion of) Ks.

The three–manifolds we are going to consider are closed, connected and
oriented, namely compact and without boundary. In general any such man-
ifold M3 can be presented as the union of several components — endowed
with two–dimensional boundaries — glued together by suitable identifica-
tion prescriptions on the points lying in their boundaries. If the components
are sewed together in a different way a topologically different manifold M̃3

may be obtained (recall that two manifolds are topologically equivalent iff
they are homeomorphic, namely there exists a one–to–one continuous map

4Given a link diagram D(L), namely a projection of the oriented link L onto a plane,
we can define two numerical invariants associated with such diagrams. The writhe num-
ber w(DL) is given by w(DL) =

∑
p ε(p) where {p} are the crossing points ∈ D(L) and

ε(p) = ±1 according to whether there appears an over–crossing of the left strand over
the right strand or an under–crossing (both strands are oriented upward). The linking
number, defined for a link with more than one component knot, is defined for each pair of
components (Ki, Kj) as lk(Ki, Kj) = w(DL) − w(DKi) − w(DKj ).

It can be shown that the writhe is a regular isotopy invariant for knots and link and the
linking number is an ambient isotopy invariant for links. Recall that two links in R

3 (or
S3) are ambient isotopic if they can be continuously deformed one into the other. It can be
shown that two links are ambient isotopic if and only if their diagrams are connected by a
finite sequence of Reidemeister moves of type I, II, II. Regular isotopy is a restricted type
of equivalence among links where the allowed Reidemeister moves are of type II and III. It
is worth noting that the colored link polynomials (2.15) are invariants of regular isotopy
while an associated ambient isotopy invariant can be obtained by multiplying J (L; j; q)
by {q−3w(L)/4 /(q1/2 − q−1/2)}, where w(L) is the writhe defined above.
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Figure 9: Graphical representations for the vertical framing.

between them). The new manifold M̃3 is said to be obtained from M3 by
means of “surgery.”

The fundamental theorem that characterizes (equivalence classes of homeo-
morphic) three–manifolds reads [69,70]

Theorem 3.1. Every closed, connected and orientable three–manifold M3

can be obtained by surgery on an unoriented framed link in the three–sphereS3.

Following [23], let us illustrate in some details the (Dehn) surgery procedure
referred to in the statement of the theorem in the simple case of a knot K
(one–component link) ⊂ S3 . The building blocks of the construction are
solid tori, so let us begin the discussion by considering the two–dimensional
torus T 2 = S1 × S1 (the cartesian product of two unit circles). A point in
T 2 can be specified by the coordinates (eiθ1 , eiθ2) in the complex plane and
in particular a point lying on the longitude has coordinate (eiθ1 , 1) while a
point in a meridian has coordinate (1, eiθ2). A solid torus V3 is a three–
manifold homeomorphic to S1 × D2, where D2 is the two–dimensional disc.
The boundary ∂V3 of V3 is the torus T 2.

A framing on the solid torus is a particular homeomorphism h : S1 ×
D2 → V3. Given a framing h of V3, h(1 × ∂D2) is a meridian while h(S1 × 1)
is a longitude.

A tubular neighborhood N of a knot K in S3 is an embedding ι : K × D2 →
S3 such that ι(x, 0) = x ∀x ∈ K. The framing Kf of a knot K is defined
as the framing of the tubular neighborhood of the knot. In particular, the
standard framing Kf of a knot K is such that the linking number χ(K, Kf )
is equal to zero.
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Representing the unit disc D2 in the complex plane, the points of S1 × D2

have coordinates (eiθ1 , reiθ2) with 0 ≤ r ≤ 1. The self–homeomorphisms t̂ of
S1 × D2, defined explicitly by

t̂±(eiθ1 , reiθ2) = (eiθ1 , re(θ2±θ1)), (3.1)

are the basic twist operations of S1 × D2.

Given a tubular neighborhood N of a knot K with standard framing f :
S1 × D2 → N , the right–handed and left–handed twist t± of N are related
to the t̂± by

t± = f t̂± f−1. (3.2)

A Dehn surgery performed along a (framed) knot K ⊂ S3 can be described
as follows:

1. remove the interior
◦

N of a tubular neighborhood N of K (the resulting

manifold (S3
�

◦
N ) is the complement torus);

2. consider (S3
�

◦
N ) and N as distinct spaces;

3. glue back N and (S3
�

◦
N ) by identifying the points in their boundaries

through a given homomorphism h : ∂N → ∂(S3
�

◦
N ).

The resulting manifold M3
K is recovered by setting

M3
K = (S3

�
◦

N )
⋃
h

N (3.3)

and it is completely specified by the knot K and by the choice of the gluing
homomorphism h. Equivalently, the surgery is characterized by the knot
K and by a closed curve γ ∈ ∂N representing h(μ), where μ is the merid-
ian of N .

Dehn surgery is a simple and constructive prescription which basically
consists in removing and sewing back solid tori from the three–sphere. How-
ever, since different surgery instructions may give rise to homeomorphic
manifolds, it is crucial to define the equivalence relations that identify the
surgery instructions providing the same (homeomorphism class of) three–
manifold. Once these rules are taken into account, the classification problem
for three–manifolds can be actually reduced to the problem of classification
of knots (links).

The equivalence relations among surgery instructions yielding a same
three–manifold are topological operations on framed link diagrams known
as Kirby moves.
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Figure 10: The first Kirby move.

Figure 11: The second Kirby move.

I move. The configuration described by the unknot U , with framing +1,
enclosing n unlinked strands Ki, with framing fi, lying on a ribbon can
be changed into the configuration where U is removed and the ribbon is
twisted in the clockwise direction from below, see figure 10. The framing of
the components Ki’s must be changed according to

fi �→ f ′
i = fi − χ2(Ki,U), (3.4)

where χ2(Ki,U) is the square of the linking number between Ki and U .

II move. An unknotted link U with framing −1 can be removed without
affecting the rest of the link, see figure 11.

III move. This is the “inverse” of the first move and amounts to change the
configuration containing U with framing −1 into the anti–clockwise twisted
ribbon of Ki’s and without U . Here the framings change according to

fi �−→ f ′
i = fi + χ2(Ki,U). (3.5)

IV move. This is the “inverse” of the second move. An unknotted link U
with framing +1 can be removed without affecting the rest of the link.
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The extension of the results stated above in order to deal with SU(2)q–
colored surgery links to be associated with three–manifold invariants can be
carried in a quite straightforward way. The construction developed in [2, 3]
and summarized in Section 2.3 basically relies on Kaul unitary representa-
tion of (colored) oriented braids on 2n strands [28] and thus we need prelimi-
narily to generalize such a representation to deal with unoriented braids and
links. The goal can be achieved by suitably modifying the eigenvalues of the
elementary braiding matrices in the odd–coupled basis |p; r〉 j introduced in
(2.12) according to [29]

U(σ2l+1)|p; r〉(...,j2l+1,j2l+2,...) = λl|p; r〉(...,j2l+1,j2l+2,...) with

λl
.= λ(j2l+1, j2l+2) ≡ λl(j, j′) = (−)|j−j′|−lq±(cj+cj′−cl)/2, (3.6)

where cj = j(j + 1) and cj′ = j′(j′ + 1) are the quadratic Casimir invariants
associated with the irreps j, j′. The ±1 in the exponent of the parameter
q refer to left–handed (respectively, right–handed) half–twists in two par-
allel strands carrying the coloring j, j′ and it can be easily checked that
these eigenvalues do not depend on the orientations but only on the over/
under–crossing features (the colored strands are ordered from left to right
as happened for oriented braids, see (2.9) and figure 3).

It is worth noting that the duality matrices (2.14) — needed whenever an
even braiding U(σ2l) has to be applied — are independent from orientations
of the strands, so that they can be used in the present context with no
further modification.

According to Theorem 3.1, what we really have to handle are colored links
in the vertical framing f and then the effect of adding or deleting a ±1 in
the writhe of the link must be properly taken into account (this operation in
the standard framing would not affect the topology of the link). Referring
in particular to a j–colored framed unknot U , the associated link invariant
turns out to be changed into

J [U ; j, +1; q] = qcjJ [U ; j, 0; q],

J [U ; j,−1; q] = q−cjJ [U ; j, 0; q], (3.7)

where ±1 on the left–handed sides denote the ±1 vertical framing whereas
in the right–handed sides there appears the knot invariant of the unknot in
the standard 0–framing, whose numerical value is given by the q–dimension
[2j + 1]q defined in (2.16). The latter relations provide in practice the oper-
atorial content of Kirby moves applied to framed colored links. Then the
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requirement of invariance under Kirby moves of the forthcoming three–
manifold topological invariants makes it necessary to compensate the effects
of (3.7) by resorting to properties of the so–called linking matrix.

For a framed link [L; f ] whose components K1, K2, . . . , KS have fram-
ings n1, n2, . . . , nS respectively, the linking matrix is a symmetric matrix
defined as

χ[L; f ] =

⎛
⎜⎜⎜⎝

n1 χ(K1, K2) χ(K1, K3) · · · χ(K1, KS)
χ(K2, K1) n2 χ(K2, K3) · · · χ(K2, KS)

... · · · · · · · · ·
...

χ(KS , K1) · · · · · · · · · nS

⎞
⎟⎟⎟⎠ , (3.8)

where χ(Ki, Kj) is the linking number between the component knots Ki and
Kj . The signature of the linking matrix, denoted by σ[L; f ], is the difference
between the number of positive and negative eigenvalues of χ[L; f ].

With these preliminary definitions, let us state the following theorem, the
original proof of which can be found in [12,30] (see also [68]).

Theorem 3.2. For a closed, connected and oriented three–manifold M3
L

obtained by surgery in the three–sphere along an unoriented colored framed
link [L; f , j] with S link components and for any fixed root of unity q = e

2πi
k+2

the quantity

I [M3
L ; f ; q] = α−σ[L; f ]

∑
{j}

μj1 μj2 · · ·μjS J [L; f , j ; q] (3.9)

is a topological invariant of the three–manifold endowed with the framing
assignment f .5

Here α ≡ exp 3πik
4(k+2) , μj =

√
2

k+2 sin π(2j+1)
k+2 , j ≡ (j1, j2, . . . , jS) run over

{0, 1
2 , . . . , k

2} and the summation is performed over all admissible colorings.

5This means in practice that, on applying Kirby moves I-IV to [L; f ] ⊂ S3, the value of
the invariant does not change, namely depends only on the homeomorphism class of the
three–manifold. Note however that we are not in the presence of a complete three–manifold
invariant since there exist topologically distinct manifolds with the same I.

The extension of the theorem to deal with surgery operations performed on manifolds
topologically different from S3 and to situations in which q–deformations of other semisim-
ple Lie groups are involved can be found in the reference quoted above. All such invariants
are collectively referred to as three–manifold “quantum invariants” or even as “state sum
models” by noticing that an expression like (3.9) can be interpreted as a partition func-
tion over suitably weighted “states” represented by the link polynomials with different
colorings.
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J [L; f , j; q] in the previous expression is the “unoriented” counterpart of the
polynomial for the link L with coloring assignment j on its components and
the summation is performed over all admissible colorings.

It is worth noting that the presentation of the colored links used both in
Section 2.2 (see (2.15)) and in (3.6) is slightly different from the presentation
given in Theorem 3.2 above, even though we keep on using the same notation
j for the colorings. In the latter case a coloring is assigned to each of the
S link components, whereas in the former we label the 2n strands of the
associated braid with n colors (see, e.g., figure 4).

However, what really matters is the fact that both presentations of the
link L give rise to the same invariant, as could be proved by exploiting
the properties of the SU(2)q–representation ring. From the computational
viewpoint this twofold choice does not matter as well because we could
efficiently implement the transformation from a given link diagram to any
associated closed braid on a classical computer (see, e.g., Section 2 of [61]
for a discussion on classical algorithmic questions about braids and links).
Expression (3.9) makes it manifest the overall dependence on the framing
in the factor α−σ[L;f ], but in what follows we are going to express the link
polynomials J [L; f , j; q] as expectation values of Kaul unitary representation
[29] worked out for an unoriented 2n–strands braid the plat closure of which
gives the link under examination.

3.2 Quantum algorithm for approximating 3–manifold invariants

In this section we shall describe the quantum algorithm for computing
the colored polynomial J [L; f , j; q] and the associate invariant I[M3

L; f ; q]
defined in (3.9). This algorithm is an extension of the quantum algorithm
proposed in [2, 3] which efficiently approximated the value of the colored
Jones polynomials (2.15).

As anticipated in Section 1.2 we need in the present context the notion of
additive approximation introduced [14] (see also [16]). Given a normalized
function g(x), where x denotes an instance of the problem, we have an
additive approximation of its value for each x if we can associate with g(x)
a random variable Z such that

pr {|g(x) − Z| ≤ η} ≥ 3/4, (3.10)

for any η ≥ 0. Moreover, the time needed to achieve the approximation must
be polynomial in the size of the problem and in η−1. Then the problem we
are interested in can be stated formally as follows.



EFFICIENT QUANTUM PROCESSING 1631

3.2.1 Approximating three–manifold invariants

Given a framed link [L; f ] with component knots K1, K2, . . . , KS , fram-
ing f = (n1, n2, . . . , nS), a positive integer k, and a set of allowed colors j =
{0, 1/2, . . . , k/2}, we want to sample out a random variable Z —
representing an additive approximation of the value of the normalized three–
manifold invariant I[M3

L; f ; q] evaluated at q = e
2πi
k+2 — in such a way that

the following condition holds true:

pr
{∣∣I[M3

L; f ; q] − Z
∣∣ ≤ η

}
≥ 3/4. (3.11)

The size of the problem is expressed in terms of the number of crossings κ
of the surgery link L and by the number of strands of the associate braid,
(as it happened for colored link polynomials), but we shall need to handle
properly the whole set of allowed colorings j and the framing f as well.6

As anticipated in Section 2.1, the quantum algorithms for evaluating
(additive approximations of) topological invariants in the framework of qua-
ntum CSW theory are based on a two–level procedure outlined already in [3]
in connection with colored link polynomials and improved here for three–
manifold invariants. The rationale underlying our procedure is briefly sum-
marized below while technical details are developed in the rest of the section.

(A) Within the computational model of the q–deformed spin network rec-
ognizer A q (Section 2) both topological and field–theoretic data —
encoded into a framed colored link [L; f , j] associated with a unitary
braiding operator in the Kaul representation [29] — are efficiently pro-
cessed. The estimate of the time complexity function (number of com-
putational steps) required to complete the calculation given in (2.19)
still holds true.

(B) By resorting to standard quantum circuit model techniques and related
approximation schemes it can be shown that
(i) the start state |ψ〉I of the recognizer Aq needed for processing the

three–manifold invariant I[M3
L; f ; q] is efficiently encoded into a

qubit register;
(ii) the braiding operator associated with the framed link [L; f , j] —

already split into a sequence of “elementary” braiding and duality
transformations on the basis of the recognizer design — can be
efficiently compiled on a standard quantum circuit applied to the
start qubit register;

6From now on we agree that the invariant is normalized by the product of the
q–dimensions associated with the link components, namely by the factor

∏S
i=1[2ji + 1]q.
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(iii) by resorting to the Hadamard test [15] — an efficient sampling pro-
cedure which provides the expectation value of an unitary operator
on a (qubit) state — it is possible to estimate the value of the
invariant I[M3

L; f ; q] from a series of measurements on an ancilla
qubit coupled to the start state.

This two–level computational process for the approximation of
three–manifold invariants in the sense of (3.11) is thus efficient
with respect to the standard model of quantum computation and
not simply from the viewpoint of the q–deformed automaton model.

(C) The expectation value of the braiding operator evaluated on the start
state and sampled as described above, can in turn be related to a suit-
able probability distribution on the language(s) recognized by Aq. In
view of the properties of such distributions (cf. the concluding remarks
of Sections 2.1 and 2.2 and Appendix B), the whole procedure can be
reinterpreted by saying that the automaton recognizes the language
of the braid group with a probability distribution given by the square
modulus of the (normalized) invariant I[M3

L; f ; q].

Given an unoriented link L presented as the plat closure of a 2n–strands
braid with a fixed set of colorings j ≡ j1, j2, . . . , j2n (see Section 2.2 for
the oriented case, in particular figure 4), let us denote again the confor-
mal block odd–coupled basis of the boundary WZW theory by |p; r〉j as in
(2.12) and figure 5. Here p = p0, . . . , pn−1 and r = r0, . . . , rn−3 and both
j and the intermediate quantum numbers p, r take values in the collection
{0, 1/2, . . . , k/2}, bounded form above by the coupling constant k of quan-
tum CSW theory.

Each spin quantum number can be encoded into a qubit register made
of � log2 (k + 1) � qubits, where � x � denotes the smallest integer ≥ x, see
figure 12.

Since an element of the basis is specified by (4n − 3) quantum numbers
(j, p and r), we need

(4n − 3) × � log2(k + 1) � (3.12)

Figure 12: The ith quantum number is encoded into a register made of
�log (k + 1)� qubits.
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Figure 13: The register of the quantum circuit encoding an odd–basis state
|p; r〉j.

Figure 14: Circuit diagram of the unitary gate associated to an odd braid
generator.

qubits to encode one basis vector. The ordering on such quantum register is
shown in figure 13, where the three sets of quantum numbers are associated
with a j–register, a p–register, and a r–register, respectively.

The unitary braiding operator associated with the 2n–strands unoriented
braid under consideration can be decomposed — following the scheme expl-
ained in Section 2.2 and updating the representation according to [29] —
into “elementary” odd braidings and duality transformation.

The elementary braiding matrices are diagonal in the odd–coupled basis,
so that their action can be easily implemented on the quantum register of
figure 13. The quantum gate realization of U(σ2l+1), shown in figure 14,
is simply the identity matrix on the (p, r)–registers, while the j–register is
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modified by the action of a SWAP gate and a phase gate with a phase factor
given by the eigenvalue λ(j2l+1, j2l+2) in equation (3.6).7

The duality transformation introduced formally in (2.14) must be applied
whenever an even elementary braiding matrix U(σ2l) is encountered in order
to recover the current, odd–coupled basis. The associated (q–deformed) 3nj
coefficient can be split into a sequence of “elementary” duality transforma-
tions according to

A
(q;s)
(p;r)

⎡
⎢⎢⎢⎣

j1 j2
j3 j4
...

...
j2n−1 j2n

⎤
⎥⎥⎥⎦ =

∑
t1...tn−2

n−2∏
i=1

(
Atipi

[
ri−1 j2i+1
j2i+2 ri

]
Atisi−1

[
ti−1 qi

si j2n

])

×
n−2∏
l=0

Arlql+1

[
tl j2l+2

j2l+3 tl+1

]
(3.13)

(see figure 7 of Section 2.2 for the graphical representation of such decom-
position).

Each symbol in the latter expression is the matrix form of a q–6j coeffi-
cient (see figure 8), namely

Aj12
j23

[
j1 j2
j3 j

]
.= (−)(j1+j2+j3+j) ([2j12 + 1]q[223 + 1]q)1/2

{
j1 j2 j12
j3 j j23

}
q

,

(3.14)

where the labels of the quantum numbers has been slightly changed to com-
ply with the following standard explicit expression of the q − 6j

{
j1 j2 j12
j3 j j23

}
q

= Δ(j1, j2, j12)Δ(j3, j, j12)Δ(j1, j, j23)Δ(j2, j3, j23)

7Recall that a SWAP acting on two qubits |x〉, |y〉 is the operation

SWAP : |x〉|y〉 �−→ |y〉|x〉,

which corresponds to the matrix

SWAP =

⎛

⎜
⎜
⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞

⎟
⎟
⎠.
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×
∑
z≥0

[
(−)z[z + 1]q!

[z − j1 − j2 − j12]q![z − j3 − j − j12]q![z − j1 − j − j3]q!

× 1
[z − j2 − j3 − j23]q![j1 + j2 + j3 + j − z]q!

× 1
[j1 + j3 + j12 + j23 − z]q![j2 + j + j12 + j23 − z]q!

]
. (3.15)

The symbols Δ(. . . ) are combinatorial factors involving the factorials of
q–dimensions (see Appendix I of [28]), where the factorial of a q–number
[x]q is defined as [x]q! = [x]q[x − 1]q . . . [2]q[1]q.

For each choice of the entries (in the allowed set {0, 1/2, . . . , k/2}) the
latter power series is actually a summation over the finite set of (integer and
half–integers) z’s that yields non–negative quantum integers.

From the remarks above it should be clear that the problem of efficiently
implementing (3.13), namely the most general change of basis, is equivalent
to the simpler problem of efficiently compiling a sequence of q–6j symbols
or elementary duality matrices (3.14). But any such coefficient (i.e., the
symbol with a fixed set of entries) can be easily and efficiently evaluated
with a classical computer owing to the finiteness of its explicit expression
(3.15).

On the other hand, it is necessary to make explicit the action of the
matrix (3.14) on the qubit register, namely on an Hilbert space of dimension
2	log (k+1)
 for each admissible set of entries.8

The circuit realization is shown in figure 15, where the j–register acts as
a control register on the qubits of the p(r)–registers involved in the trans-
formation. The transformation A can then be thought of as a gate with
a “block structure”, or a multiplexor associated with the block structure
depicted in figure 16. Each block corresponds to a particular configuration
of the j–qubits, and the matrix element inside the block are q–6j, up to
suitable factors (equation (3.14)).

On the basis of the decomposition in (3.13) we realize that the allowed
elementary duality matrices are always parameterized by the set j of those
quantum numbers which remain unchanged when they are applied to the

8The “classical” 6j–symbol can be expressed in terms of a series similar to (3.15), but
the encoding of such symbols on qubit registers would depend explicitly on the values
of the entries, so that the computation is not obviously efficient with respect to the size
of the input data, see footnote 2 in Section 2.1.
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Figure 15: The multiplexor gate representing the action of a q–6j transfor-
mation.

Figure 16: The block–decomposition of the matrix corresponding to a q–6j
transformation.

proper registers. The crucial remark here consists in noticing that the dimen-
sion of these matrices is independent of the size of the problem, determined
by the index of the braid group and the number of crossings. Since there
exist efficient methods to approximate unitary matrices of a given dimen-
sion [71], a sequence of universal gates can be always worked out that effi-
ciently approximate every q–6j as well (see [72] for more details).

The number of elementary duality transformations needed to decompose
a general duality transformation (2.6) is (2n − 3), linear in the size of the
problem under consideration. The action of a q–3nj recoupling transforma-
tion on the register of figure 13 is shown in figure 17. Note however that,
once all the (2n − 3) gates represented by q–6j have been applied, it is nec-
essary to swap some of the qubits in order to recover the proper order in the
register, see figure 18.

Upon applying a q–3nj recoupling transformation we end up in the even–
coupled basis |q; s〉 j (see (2.13) and figure 6) which diagonalizes the even
braiding matrices U(σ2l) of the Kaul representation. Their action on the
(even) qubit register can then be implemented by paralleling the procedure
described in the odd case.
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Figure 17: The circuit realization of a general q–3nj recoupling
transformation.

Figure 18: The sequence of SWAP gates needed to reordering the qubit
register.
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Figure 19: The inverse of the circuit of figure 17.

The further step consists in going back to the |p; r〉 j basis, which can be
achieved by means of the finite sequence of q–6j transformations shown in
figure 19, eventually completed by a suitable sequence of SWAPS to recover
the initial ordering of the start register.

This completes the analysis of the quantum circuit which implements
efficiently the Kaul representation [29] on the Hilbert space spanned by the
odd–coupled basis of conformal blocks (point ii) at the beginning of this
section).

For what concerns the preparation of the start state according to point
(i), notice once more that we have considered so far the case of an unoriented
link [L; j] (plat closure of a 2n–strands braid) with a fixed coloring set j. As
already pointed out in the case of oriented links (see Section 2.2, (2.15) and
Appendix B) the start state of the automaton calculation is a singlet vector
in the odd–coupled basis

[L; j] ↔ |0;0〉j; p = p0, . . . , pn−1 ≡ 0, r = r0, . . . , rn−3 ≡ 0, (3.16)

which can be efficiently encoded into the qubit register of figure 13 as a par-
ticular case of the construction carried out above. Then the polynomial for
an unoriented, framed link J [L; f, j; q] can be recovered as the (trace of the)
expectation value of the associated braiding operator in the updated Kaul
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representation. However, the start state |ψ〉I of the recognizer Aq needed
for processing the three–manifold invariant I[M3

L; f; q] must be prepared
in order to comply with the summation over the colorings in (3.9). The
goal can be achieved in a quite staightforward way by resorting to quantum
parallelism, as described in the following.

As before, we first split the qubit register into three ordered parts, the
j-, p– and r–registers. Then we initialize the j–register into the following
weighted superposition of states

|ψ〉J .=
∑
{j}

√
μj|j〉, (3.17)

with μj ≡ μj1 · · ·μjS (S in the number of link components and the coefficients
μ’s are defined as in theorem 3.2 of Section 3.1). Since the link L can be
considered as the plat closure of a braid word w, the quantum circuit needed
to encode the start state can be implemented by the following composition
of unitary gates:

SJ(w)UJ⊗P⊗R(w) : |ψ〉J ⊗ |0;0〉 �→ |ψ〉J ⊗ |p′; r′〉P⊗R, (3.18)

where SJ(w) is the SWAP gate on the j–register and |p′; r′〉 is the state
obtained from the application of the circuit U(w).

The following sequence of equalities shows that this quantum circuit actu-
ally gives the required three–manifold invariant

P⊗R〈0;0| ⊗ J〈ψ|SJ(w)UJ⊗P⊗R(w)|ψ〉J|0;0〉P⊗R

= P⊗R〈0;0| ⊗ J〈ψ| · |ψ〉J ⊗ UP⊗R(w)|0;0〉P⊗R

=
∑
{j}

μj〈0;0|UP⊗R(w)|0;0〉

= I[M3
L; f ; q]ασ[L;f ]. (3.19)

Recall that the signature of the linking matrix σ[L; f ] can be easily computed
classically once the linking matrix (3.8) (which is part of the topological
input data of the algorithmic problem) is given.

Finally, the efficient sampling of the value of the invariant referred to in
point iii) can be carried out by resorting to the techniques of [15, 16], as
already done in [3] for the case of colored link polynomials.
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4 Concluding remarks

We have shown that all the significant quantities — partition functions and
observables — in SU(2) quantum CSW theory can be efficiently approxi-
mated by quantum algorithms at finite values of the coupling constant k,
reflecting the intrinsic field–theoretic solvability of this theory. The effi-
ciency of the quantum algorithms is proved on the basis of a two–level
computational scheme which relies on the implementation of unitary rep-
resentations of the braid group proposed in [28,29]. In particular, as shown
in Section 3.2, the representation needed to handle three–manifold quan-
tum invariants can be efficiently compiled on a quantum circuit equipped
with a suitable start qubit register, namely within the “standard” model of
quantum computation.

The relevance of our result in connection with the algorithmic complexity
of quantum CSW theory has been extensively addressed in Section 1.2, while
further developments and applications to geometry and quantum gravity
models had already been discussed in Section 1.3.

More generally, it would be interesting to improve our approach, on the
one hand, by handling quantum topological invariants arising from CSW
theories with arbitrary semi–simple Lie groups [73] and, on the other, by
exploring the quantum computational complexity of solvable models in sta-
tistical mechanics [74].

Finally, let us comment in some more details the issue concerning the
model of quantum computation adopted. As pointed out in (A) and (C) of
Section 3.2, a central role in our procedure is played by the quantum recog-
nizer Aq able to process efficiently the language generate by the braid group
with transition matrices given by Kaul unitary representations (Sections 2.2
and 3.2) and probability distributions associated with quantum topological
invariants. It may be tempting to proceed without this step, processing
directly the unitary representations within the quantum circuit scheme of
computation. However, we proved in Section 3.2 that the basic morphisms
of the q–tensor category (R(SU(2)q); R; F) on which the recognizer is mod-
elled can be efficiently compiled and approximated on a quantum circuit
(in particular the implementation of a q–6j transformation is independent
of both the input size of the algorithmic problem and on the values of its
entries; see also footnote 2, Sections 2.1, 2.7 and Section 3.2).

This achievement, quite remarkable as it is by itself, opens as well the
further possibility of looking at the q–spin network simulator as the funda-
mental model of computation for a wide range of algorithmic problems in
geometric topology and group theory. According to the quantum recognizer
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definition given in Section 2.1, the specific problems that can be dealt with
it require the selection of suitable start states — that must be efficiently
encoded into qubit registers — and of (possibly constrained) sets of tran-
sition matrices. We conjecture that the approximate evaluation of invari-
ants for (colored) triangulations in dimensions 2 and 3 should require minor
modifications of the scheme employed in this paper for processing quantum
invariants of links and three–manifolds.
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Appendix A The spin network quantum simulator

The universal model of quantum computation proposed in [41–43] relies
on the (re)coupling theory of SU(2) angular momenta [56, 60]. It can be
thought of as a generalization of the standard quantum circuit model in
which the computational Hilbert spaces are binary–coupled eigestates of
N ≡ (n + 1) SU(2)–angular momenta (whose quantum numbers range over
{0, 1/2, 1, 3/2, . . .}) and unitary transformations (“gates”) are expressed in
terms of recoupling coefficients (3nj symbols) connecting pairs of inequiva-
lent binary coupling schemes.9

The architecture of the spin network is modelled as an SU(2) fiber space
structure over a discrete base space V

(V, C2J+1)n (A.1)

which encodes all possible computational Hilbert spaces as well as all gates
for any fixed number N = n + 1 of incoming angular momenta (see Appen-
dix A of [42] and [43] for more details). The base space V

.= {v(b)}
represents the vertex set of a regular, three–valent graph, the so–called
twist–rotation graph [67] Gn(V, E) with cardinality |V | = (2n)!/n!, i.e., the
quadruple factorial number. E, the edge set of the graph, will be associated
with permitted transformations between pairs of verices as described below.

There exists a 1:1 correspondence

{v(b)} ←→ {HJ
n(b)} (A.2)

9The model can be extended to include Wigner rotations in the eigenspace of the total
angular momentum, see Section 3.2 of [42].
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between the vertices of Gn(V, E) and the computational Hilbert spaces of the
simulator, where b denotes the binary bracketing structure that we are going
to describe. For a given value of n, HJ

n(b) is the simultaneous eigenspace of
the squares of 2n + 1 Hermitean, mutually commuting angular momentum
operators

J1,J2,J3, . . . ,Jn+1 ≡ {Ji}; J1 + J2 + J3 + · · · + Jn+1
.= J

and K1,K2,K3, . . . ,Kn−1 ≡ {Kh} (A.3)

together with the operator Jz (the projection of the total angular momen-
tum J along the quantization axis). The associated quantum numbers are
j1, j2, . . . , jn+1; J ; k1, k2, . . . , kn−1 and M , where −J ≤ M ≤ in integer steps.
If Hj1 ⊗ Hj2 ⊗ · · · ⊗ Hjn ⊗ Hjn+1 denotes the factorized Hilbert space,
namely the (n + 1)–fold tensor product of the individual eigenspaces of the
(Ji)2’s, the operators Kh’s represent intermediate angular momenta gener-
ated, through Clebsch–Gordan series, whenever a pair of Ji’s is coupled.

As an example, by coupling sequentially the Ji’s according to the scheme
(· · · ((J1 + J2) + J3) + · · · + Jn+1) = J — which generates (J1 + J2) = K1,
(K1 + J3) = K2, and so on — we would get a binary bracketing structure of
the type (· · · (((Hj1 ⊗ Hj2)k1 ⊗ Hj3)k2 ⊗ · · · ⊗ Hjn+1)kn−1)J , where we add
an overall bracket labeled by the quantum number of the total angular
momentum J . Note that, as far as ji’s quantum numbers are involved, any
value belonging to {0, 1/2, 1, 3/2, . . .} is allowed, while the ranges of the kh’s
are suitably constrained by Clebsch–Gordan decompositions (e.g., if (J1 +
J2) = K1 ⇒ |j1 − j2| ≤ k1 ≤ j1 + j2). We denote a binary coupled basis of
(n + 1) angular momenta in the JM–representation and the corresponding
Hilbert space appearing in (A.2) as

{|[j1, j2, j3, . . . , jn+1]b; kb1, k
b
2, . . . , k

b
n−1; JM〉,−J ≤ M ≤ J}

= HJ
n(b) .= span{|b; JM〉n}, (A.4)

where the string inside [j1, j2, j3, . . . , jn+1]b is not necessarily ordered, b is
the shorthand notation for the current binary bracketing structure and the
kh’s are uniquely associated with the chain of pairwise couplings selected
by b.

For a given value of J each HJ
n(b) has dimension (2J + 1) over C and

thus there exists one isomorphism

HJ
n(b) ∼=b C

2J+1 (A.5)
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for each admissible binary coupling scheme b of (n + 1) incoming spins. It
is worth stressing that such isomorphic spaces are physically inequivalent as
far as they are associated with different schemes of (binary) interactions.

The vector space C
2J+1 is interpreted as the typical fiber attached to each

vertex v(b) ∈ V of the fiber space structure (A.1) through the isomorphism
(A.5).

For what concerns unitary operations acting on the computational Hilbert
spaces (A.4), it can be shown [56] that any 3nj symbols of SU(2) can be
splitted into “elementary gates” represented by Racah and phase transfor-
mations (in the categorical language of Section 2.1 they are referred to as
the basic morphisms introduced in (2.2) and (2.1), respectively). A Racah
transform applied to a basis vector of the type (A.4) is defined formally as

F : | . . . ((ab)dc)f . . . ; JM〉 �→ | . . . (a(bc)e)f . . . ; JM〉, (A.6)

where we are using here Latin letters a, b, c, . . . to denote both incoming (jis
in the previous notation) and intermediate (kh’s) spin quantum numbers.
The explicit expression of (A.6) reads

|(a(bc)e)f ; M〉

=
∑

d

(−1)a+b+c+f [(2d + 1)(2e + 1)]1/2
{

a b d
c f e

}
|((ab)dc)f ; M〉,

(A.7)

where there appears the Racah–Wigner 6j symbol of SU(2) and f here plays
the role of the total angular momentum quantum number. Owing to the
Wigner–Eckart theorem, the magnetic quantum number is not affected by
such transformation and the same holds true for a general, 3nj recoupling
coefficient. Recall also that the square of the 6j symbol in (A.7) represents
the probability that a system prepared in the state |((ab)dc)f ; M〉 will be
measured in the state |(a(bc)e)f ; M〉.

A phase transform on a basis vector (A.4) is defined as

R : | . . . (ab)c . . . ; JM〉 �→ | . . . (ba)c . . . ; JM〉, (A.8)

and explicitly reads

| . . . (ab)c . . . ; JM〉 = (−)a+b−c| . . . (ba)c . . . ; JM〉, (A.9)
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The edge set E = {e} of the twist–rotation graph Gn(V, E) is a subset
of the Cartesian product (V × V ) where an (undirected) arc between two
vertices v(b) and v(b′)

e(b, b′) .= (v(b), v(b′)) ∈ (V × V ) (A.10)

exists iff the underlying Hilbert spaces are related to each other by an
elementary unitary operation of the type (A.6) or (A.8). Note also that

Figure 20: A portion of the spin network graph G3(V, E). The vertices
are labelled by rooted binary trees encoding the combinatorics of the binary
coupled computational Hilbert spaces while the edges represent Racah trans-
formations and the dashed ones are phases.



EFFICIENT QUANTUM PROCESSING 1645

elements in E can be considered as mappings

(V × C
2J+1)n −→ (V × C

2J+1)n,

(v(b),HJ
n(b)) �→ (v(b′),HJ

n(b′)), (A.11)

connecting each given decorated vertex to one of its nearest vertices and
thus define a “transport prescription in the horizontal sections” belonging
to the total space (V × C

2J+1)n of the fiber bundle (A.1).

The structure of the graph Gn(V, E) in the case of (n + 1) = 4 incoming
spin variables a, b, c, d is shown in figure 20 (such a combinatorial pattern
encoding both binary–coupled Hilbert spaces and transformations among
them was used for the first time in [75]).

Figure 21: A portion of the q–deformed twist–rotation graph (G3(V, E))q:
with respect to the previous figure, each phase transformation has been
splitted in order to make manifest the non-trivial braiding features.
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The crucial feature that characterizes the graph Gn(V, E) arises from
the compatibility conditions relating the basic morphisms (A.6) and (A.8)
(referred to as the hexagon and pentagon relations, see Section 2.1). The
Racah identity and the Biedenharn–Elliott identity together with the ortho-
gonality conditions for 6j symbols (see, e.g., [60] for their explicit expres-
sions) ensure that any simple path in Gn(V, E) with fixed endpoints can
be freely deformed into any other, providing identical quantum transition
amplitudes at the kinematical level.

For what concerns the q–deformed spin network modelled on the q–tensor
category (R(SU(2)q); R; F) defined in (2.4) of Section 2.1, we omit here all
technical details and refer the reader to Section 4 of [3] (see also the appendix
of [28] for both definitions and notations). As already pointed out, the basic
morphism F is implemented in this case by means of a q–6j symbol defined
in (3.15) while the braiding R is to be associated with the over– or under–
crossings of two contiguous strands belonging to (colored) braids (see e.g.,
the eigenvalue equation (3.6) of the odd braiding operators employed in
Section 3.2).

A pictorial representation of q–deformed spin network graph is shown in
figure 21.

Appendix B Automaton calculation

The Jones polynomial [11] is a particular instance of colored link polynomial
where the labels of the conformal block basis correspond to the fundamental,
1
2–irrep of SU(2)q. This allows us to simplify the notation for the states of
the recognizer Aq defined in Section 2.2 by setting

|p; r〉j → |p; r〉,

since the coloring assignment {j} is always a string of 2n 1
2–spins. The start

state of the automaton is chosen to be |0;0〉, i.e., all the internal labels are
equal to 0, as depicted in figure 22.

Figure 22: The start state of the q–spin network automaton with probability
distribution associated with the Jones polynomial.
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As discussed at the end of Section 2.2, let us provide the automaton with
an input word w of length κ corresponding to an unitary evolution U(w)
expressed in terms of the sequence given in (2.18).

In order to complete the definition of Aq we need explicit expressions for
P (accept) and P (reject) (see Section 2.1). We choose the following:

P (accept) ≡ |0;0〉〈0;0|,
P (reject) ≡ I − |0;0〉〈0;0|. (B.1)

The “a priori” probability distribution for the language generated by the
braid group that we choose is the square modulus of the Jones polynomial
of the plat closure ŵ of the braid w, namely

Pr(w) = |J (ŵ; q)|2 ≡ V (ŵ; q), (B.2)

where q is the root of unity at which the polynomial is evaluated. Using the
properties of the Kaul representation (see (2.15)) and (B.1) there follows
that

|Pr(w) − 〈0;0|U †(w)P (accept)U(w)|0;0〉|
= |Pr(w) − 〈0;0|U †(w)|0;0〉〈0;0|U(w)|0;0〉|
= |Pr(w) − |〈0;0|U(w)|0;0〉|2|
= |V (ŵ, q) − |〈0;0|U(w)|0;0〉|2| = 0.

Thus we have shown that the spin network quantum automaton recognizes
“exactly” (namely with a word–probability threshold δ = 0, see (2.8) in
Section 2.1) the braid group language according to the “Jones probability
distribution”.

A similar result holds true for the families of automata Aq parametrized
by (j1, j2, . . . , j2n) that recognize the braid group language B2n with a prob-
ability distribution given by the colored polynomial (2.15).
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