(© 2008 International Press
Adv. Theor. Math. Phys. 12 (2008) 853-888

Stability of marginally outer
trapped surfaces and existence of

marginally outer trapped tubes

Lars Andersson'?, Marc Mars® and Walter Simon3

TAlbert Einstein Institute, Am Miihlenberg 1, D-14476 Potsdam, Germany
2Department of Mathematics, University of Miami, Coral Gables,
FL 33124, USA
3Facultad de Ciencias, Universidad de Salamanca, Plaza de la Merced s/n,
E-37008 Salamanca, Spain

Abstract

The present work extends our short communication L. Andersson, M.
Mars and W. Simon, Local existence of dynamical and trapping hori-
zons, Phys. Rev. Lett. 95 (2005), 111102. For smooth marginally
outer trapped surfaces (MOTS) in a smooth spacetime, we define sta-
bility with respect to variations along arbitrary vectors v normal to
the MOTS. After giving some introductory material about linear non-
self-adjoint elliptic operators, we introduce the stability operator L, and
we characterize stable MOTS in terms of sign conditions on the princi-
pal eigenvalue of L,. The main result shows that given a strictly stable
MOTS Sy C ¥ in a spacetime with a reference foliation 3, there is an
open marginally outer trapped tube (MOTT), adapted to the reference
foliation, which contains Sg. We give conditions under which the MOTT
can be completed. Finally, we show that under standard energy con-
ditions on the spacetime, the MOTT must be either locally achronal,
spacelike or null.
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1 Introduction

The singularity theorems of Hawking and Penrose [2] assert the presence of
incomplete geodesics in the time evolution of Cauchy data with physically
reasonable matter containing a trapped surface. Studying the structure of
these singularities and understanding whether generically they entail a loss
of predictability power of the theory have become central issues in classical
general relativity. More specifically, the weak cosmic censorship conjecture
asserts, roughly speaking, that in the asymptotically flat case the singularity
will be generically hidden from infinity by an event horizon and that a black
hole will form. Since this conjecture aims precisely at showing that a black
hole forms, any sensible approach to its proof should not make strong a
priori assumptions on the global structure of the spacetime. It is therefore
necessary to replace to concept of black hole, which requires full knowledge of
the future evolution of a spacetime, with a quasi-local concept that captures
its main features and that can be used as a tool to show the existence of a
black hole.

This approach has been successfully applied in spherically symmetric
spacetimes with matter fields, where the existence of a complete future null
infinity and an event horizon can in fact be inferred from the presence of
at least one trapped surface in the data [3], plus some extra assumptions.
An important tool in the analysis is to study the sequence of the marginally
trapped surfaces bounding the region with trapped surfaces within each slice
of a spherically symmetric foliation.

Quasi-local versions of black holes are important not only in the context
of cosmic censorship, but also they are relevant in any physical situation
involving black holes where no global knowledge of the spacetime is avail-
able. An outstanding example is the dynamics and evolution of black holes.
In the strong field regime, these evolutions are so complex that they can only
be approached with the aid of numerical methods. In most cases, numer-
ical computations can only evolve the spacetime a finite amount of time,
which makes the global definition of black hole of little practical use. A
quasilocal definition becomes necessary even to define what is understood
by a black hole in this context. More importantly, such a definition is crucial
in order to be able to track the location of the black holes and to extract
relevant physical information from their evolution. Over the last few years,
marginally outer trapped surfaces (MOTS) and the hypersurfaces in space-
time which they sweep out during a time evolution, have become standard
as quasilocal replacements of black holes and have been studied extensively,
using both numerical methods (see, e.g. [4-6]) as well as analytically, with
either mathematical [7] or more physical scope [8]. See [9] for a review of
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some of these issues. However, many open problems still remain. Only in
spherical symmetry a rather complete picture has been obtained thanks to
[3, 10, 11]. In general even finding examples is not easy, see however [12-14]
for interesting non-spherical examples.

A MOTS is a spacelike surface of codimension two, such that the null
expansion 6 with respect to the outgoing null normal vanishes. The notions
of “outer” and “outgoing” are simply defined by the choice of a null section
in the two-dimensional normal bundle of the surface. We call a 3-surface
foliated by MOTS a marginally outer trapped tube (MOTT) [15, 16]; an
alternative terminology adopted in [1] is “trapping horizon”, c.f. [17].

The wide range of applicability of MOTS motivated us to study their
propagation in spacetime from an analytical point of view and in a general
context, i.e., assuming neither symmetries nor the presence of any trapped
regions a priori. In the context of the initial value problem in general relativ-
ity, namely in a smooth spacetime foliated by smooth hypersurfaces ¥, it is
natural to ask the following: Given a MOTS Sy on some initial leaf 3, does
it “propagate” to the adjacent leaves X; of the foliation? In other words, is
there a MOTT starting at Sy whose marginally outer trapped leaves lie in
the time slices X7

It turns out that the key property of a MOTS Sy relevant for this ques-
tion is its “stability” with respect to the initial leaf 3. This concept
has interesting applications even when considered purely inside a hyper-
surface g, in particular for the topology of Sy, and also for the property
of being a “barrier” for weakly outer trapped and weakly outer untrapped
surfaces (defined by 6 < 0 and 6 > 0, respectively). We shall discuss these
two issues, which both originate in the work of Hawking [18, 19], before
turning to the question of propagation of Sy off ¥y. Hawking’s analysis
was extended by Newman [20] who calculated the general variation J, of
the expansion 6 with respect to any transversal direction v. A central issue
in these papers was to show that stable MOTS have spherical topology
in the generic case. The classification of the “rigidity case,” in which the
torus is allowed, was investigated first for minimal surfaces [21] and subse-
quently also for generic MOTS and in higher dimensions [22-24]; see [25] for
a review.

A key tool, both for the topological issues as well as for the present pur-
poses, is the linear elliptic stability operator L, defined by 0,0 = L, for
MOTS (introduced in [1], in deformation form already present in [20, 22])
where v is a suitably scaled vector. L, is not self-adjoint in general, except
in special cases as for example when the MOTS lies in a time symmetric
slice. Nevertheless, linear elliptic operators always have a real principal
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eigenvalue, and the corresponding principal eigenfunction can be chosen to
be positive [26-29]. While we define stability and strict stability of MOTS
in terms of sign conditions for preferred variations 6,6, we can show that
this definition is equivalent to requiring that the principal eigenvalue of L,
is non-negative or positive, respectively. In [1] we also showed that strictly
stable MOTS are barriers for all weakly outer trapped and weakly outer
untrapped surfaces in a neighbourhood. In addition to the properties of the
stability operator, this result uses a representation of MOTS as graphs over
some reference 2-surfaces. In terms of this representation, the condition of
vanishing expansion 6 characterizing a MOTS becomes a quasilinear elliptic
equation for the graph function, for which a maximum principle holds. A
similar application of the maximum principle for the functional # is con-
tained in the uniqueness results of Ashtekar and Galloway [7] where null
hypersurfaces through a given MOTS and their intersection with a given
spacelike MOTT were considered.

A barrier property of trapped and marginally trapped surfaces, which
complements the one discussed above has been considered by Kriele and
Hayward [30]. They showed that the boundary of the trapped region,
i.e., the set of all points in a spacelike hypersurface contained in a bound-
ing, trapped surface is a MOTS, under the assumption that it is piece-
wise smooth. By [1], this MOTS is necessarily stable. Andersson and
Metzger [31] recently showed that the boundary of the trapped region is
a smooth, embedded, stable MOTS, without any additional smoothness
assumption.

Turning now to our main problem, namely the propagation of the MOTS
So off ¥g to adjacent slices, we can prove this for some open time interval if
the MOTS are strictly stable (c.f. Theorem 9.1). As a tool we first extend
the graph representation of Sy C g to 2-surfaces S; C ¥;. The linearization
of the expansion operator 6 is precisely the stability operator, and strict
stability guarantees that this operator is invertible. As Sy is a solution
of the equation § =0 on Xy, we could apply in our earlier paper [1] the
implicit function theorem to get solutions of § = 0 in a neighbourhood. Here
we cut this procedure short by using standard results on perturbations of
differential operators [32, 33] whose linearizations are elliptic and invertible.
Naturally, these results also make use of the implicit function theorem. As
an easy corollary to Theorem 9.1, we find that the MOTT constructed in
this interval is nowhere tangent to the ;. Much more subtle results are
Theorem 9.2 and Corollary 9.2. Under some genericity condition they show
in particular that, if the &; converge smoothly to a limiting MOTS S, C 3,
whose principal eigenvalue \; vanishes, the resulting MOTT is everywhere
tangent to ;.
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We wish to stress that the existence result contained in [1] is local in
time. The attempt to formulate a global result in [1] required the assump-
tions (implicit in the definitions of that paper) that the MOTS remain com-
pact, embedded, smooth and strictly stable during the evolution. In the
present work we allow immersed rather than embedded MOTS in our exis-
tence theorems for MOTT, but we have to deal with the other potential
pathologies. To do so we apply a recent result by Andersson and Metzger
[34] which shows that, in four-dimensional spacetimes, a sequence of sta-
ble and smooth MOTS which lie in a compact set such that the area of
the sequence stays bounded, converges to a smooth and stable MOTS. This
leads to Proposition 9.1. Moreover, if the dominant energy condition holds,
it is easy to show that the area stays in fact bounded provided the MOTS
remain strictly stable in the limit. This gives Theorem 9.3 as a sharper
version of our existence result.

Two final comments are in order. In general the stability of a MOTS
depends on the foliation ¥;, and so does the location of the MOTT, in
particular in the strictly stable case. This raises the question whether there
is an “optimal” choice for the foliation. Given a MOTS S, the optimal non-
timelike direction of ¥ to make S “as stable as possible” is the one along
the null direction complementary to the one defining 6, c.f. Proposition 5.2.
However other possible criteria for “optimality” of a foliation have been
considered, in particular one can require the area of the resulting MOTT to
grow as fast as possible [35].

The heuristic picture of the MOTT in the asymptotically flat case has it
inside the event horizon and reaching timelike infinity. In the spherical sym-
metric case with matter, criteria have been given which ensure (or exclude)
this behaviour [3, 10, 11]. A substantially more involved task is to extend
this analysis to the general case. A first step along these lines has been
recently performed by Korzynski [13] who analysed the evolution of MOTS
in a simple axially symmetric example.

This paper is organized as follows. In Section 2 we explain the most
important items of our notation. In Section 3 we discuss the variation of the
expansion, and introduce the stability operator. The somewhat technical
computation of the variation, which simplifies the derivation by Newman, is
given in Appendix A.

We proceed with some technical material on linear elliptic operators with
first-order term, cf. Section 4. Here and in Appendix B we give an exposition
of, in particular, the Krein—Rutman theorem [36] on the principal eigenvalue
and eigenfunction of linear elliptic operators, and the maximum principle
for operators with non-negative principal eigenvalue [37]. We continue in



858 LARS ANDERSSON, MARC MARS AND WALTER SIMON

Section 5 by discussing in detail stability definitions for MOTS, in particular
the relation between the variational definitions and the sign condition on the
principal eigenvalue, and we give a result on the dependence of stability on
the direction. Section 6 contains the graph representation of a MOTS. In
Section 7 we describe the barrier properties of MOTS which satisfy suitable
stability conditions, along the lines sketched above, slightly extending our
earlier paper [1]. In Section 8, we show, roughly speaking, that strictly stable
MOTS inherit the symmetries of the ambient geometry, and that the same is
true for the principal eigenfunction. In the final Section 9 we prove existence
for MOTT in the three Theorems 9.1, 9.2 and 9.3 already sketched above.
Our final Theorem 9.4 is a slight extension of a result of [1] and shows that
under standard energy conditions, suitable (non-)degeneracy conditions for
the initial MOTS &y and for spacelike or null reference foliations, the MOTT
through Sy is either spacelike or null everywhere on Sy.

2 Some basic definitions

A spacetime (M, g) is an n-dimensional oriented and time-oriented Haus-
dorff manifold endowed with a smooth metric of Lorentzian signature +2.
Some results below require n = 4. S will denote an orientable, closed (i.e.,
compact without boundary) codimension 2, immersed submanifold of M
with positive definite first fundamental form h. An object with all these
properties is simply called “surface” throughout this paper. The area of
S will be denoted by |S|. Spacetime tensors will carry Greek indices and
tensors in S will carry capital Latin indices. Our conventions for the second
fundamental form (-vector) and the mean curvature (-vector) are K(X,Y) =
—(VxY)t and H = trp K. Here X, Y are tangent vectors to S, L denotes
the component normal to § and V is the Levi-Civita connection of g. S will
always be assumed to be smooth unless otherwise stated.

The normal bundle of § is a Lorentzian vector bundle which admits a null
basis {I%, k*} which we always take future directed, smooth and normalized
so that [“k, = —2. This basis is defined up to a boost [ — kI%, k% —
k1k®, k > 0. The null expansions of S are §; = H*l, and 0, = H*k,, and
the mean curvature in this null basis reads H® = —1 (0,1% + 0,k).

Definition 2.1. A surface S is a MOTS if H¢ is proportional to one of the
elements of the null basis of its normal bundle.

This condition is more restrictive than just demanding H® to be null
because it excludes the possibility that H* points along [* in some open set
and along k% on its complement (c.f. [38]). The null vector to which H?* is
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proportional is called %, and the direction to which it points is called the
outer direction (in the case H* = 0, both {¢ and k are outer directions).
In other words, the term outer does not refer to a direction singled out a
priori, but to the fact that we only have information about, or we are only
interested in, one of the expansions. Equivalently, S is a MOTS iff §; = 0.
If furthermore H is either future or past directed everywhere S is called
marginally trapped. Hence a marginally trapped surface satisfies §; = 0 and
either 6 < 0 or 8 > 0 everywhere. Next, S is called weakly outer trapped
iff at least one of the expansions in non-positive, say 6; < 0. Weakly outer
untrapped surfaces satisfy the reverse inequality. Finally, in order for S to be
a future (past) trapped surface we require that the strict inequalities §; < 0
and 0 < 0, (6; > 0, 0 > 0) hold. Since we will only deal with 6; from now
on, we simplify the notation and refer to it simply as 6.

A MOTT G is a smooth collection of MOTS. More precisely, we state the
following

Definition 2.2. Let I C R be an interval. A hypersurface G, possibly with
boundary, is a MOTT if there is a smooth immersion ® : S x I — M, such
that G = ®(S x I) and

(i) for fixed s € I, ®(S,s) is a MOTS with respect to a smooth field of
null normals [¢ on G and
(ii) ®,(0s) is nowhere zero.

Suppose (M, g) contains a foliation by hypersurfaces {¥;}1c;7. A MOTT
G is said to be adapted to the reference foliation {3} if for each s € I, it
holds that S,(5) = ®(S, s) is a MOTS in ¥, (,), where o : I — J is a smooth,
strictly monotone function.

REMARK. Note that if I contains at least one of its boundary points, then
the MOTT G is a hypersurface with boundary.

Condition (ii) is required in order to allow self-intersections of the MOTS
but not in the direction of propagation. For embedded MOTS, the MOTT is
also embedded and its definition is equivalent to Hayward’s “trapping hori-
zons” [18]. The terms “dynamical horizon” and “isolated horizon” [15, 16]
are particular cases in which the causal structure is restricted a prior.

3 Varying the expansion

A fundamental ingredient in our existence theorem is the first-order variation
of the vanishing null expansion 6 of a MOTS. This variation was given
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in full generality by Newman in [20] for arbitrary immersed surfaces (not
necessarily MOTS). We give here a simplified derivation. We first have to
introduce some notation.

Let V, and G,g denote the covariant derivative and Einstein tensor
of (M, g), respectively. Let (S,h) be a spacelike codimension-two surface
immersed in M (not necessarily closed), e% any basis of the tangent space
of §, D 4 the covariant derivative on (S, h) and Rgs its curvature scalar. Let
us fix a null basis {{%, k®} in the normal bundle of S and define a one-form
on S as

1 «
SA = —§kaVeAl .

We shall calculate how 6 changes when the surface S is varied arbitrarily.
This variation is defined by an arbitrary spacetime vector ¢* defined along S.
More specifically, let 0 € I C R be an open interval and ® : S x I — M be a
differentiable map such that for fixed o, ®(-, ¢) is an immersion and for fixed
p, 7y (o) = %(p,0) is a curve starting at p € S with tangent vector ¢®(p).
Define the family of 2-surfaces S, = ®(S,0). Let [$ be a nowhere zero null
vector on the normal bundle of S, which is differentiable with respect to o,
and let 6, be the null expansion of each surface S,. The variation of 6,,
defined as §,0 = 0y05|s=0, depends only on ¢ and on the null vector field
[* and its first variation (if S is a MOTS this last dependence also drops
out), but not on the details of the map ®. For a MOTS, the variation is
moreover linear in the sense that

Saquiaqsd = a0q, 0 + 6,0 (3.1)

for any constant a, while in general 0,460 # 10,0 for functions ).

It should be noted that in the context of trapping and dynamical horizons,
derivatives of 6 have been employed frequently (for instance in the definition
of outer trapping horizon by Hayward [17] or in the uniqueness results by
Ashtekar and Galloway [7]). These are not the variations we are considering
in this paper. The former are derivatives of a scalar function defined in
a neighbourhood of the horizon by extending 6 off the horizon, using the
Raychaudhuri equation. In this case, the derivative is obviously linear with
respect to multiplication by scalar functions, unlike the geometric variation
employed here.

The variation vector ¢® can be decomposed into a tangential part g/l
and an orthogonal part ¢ with respect to S, i.e., ¢® = ¢+® + ¢/l*. The
normal component can in turn be decomposed in terms of the null basis
as gt = bl® — 5k where b, u are functions on §. The following result,
in essence due to Newman [20] and proven in the Appendix A, gives the
explicit expression for the variation of 6 along ¢.
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Lemma 3.1. Let S, 1%, 0 and ¢© = ¢ll® + bl> — 5k* be as before. Then,
the variation of 0 along q is

8,0 = af + ¢l (0) — b (KX, KV APU,L, 4 Guultl) — Asu+ 25" D gu
+ % (Rs — H2 — Gul"k” — 2555 + 2D 45%) |

where Ag = DaD* is the Laplacian on (S,h) and a = —3ka0sl2]o—0-

The decomposition of ¢+® in the null basis {I% k®} is natural for the
surface S as a codimension-two submanifold in spacetime, and Lemma 3.1
gives the general variation with respect to arbitrary vectors on S. However,
we will later refer the variations of S to some foliation of M by hypersurfaces
¥ with § € Xy (c.f. Section 7), and for this we will employ a natural
alternative decomposition of ¢-® adapted to the foliation. We consider
an arbitrary normal vector field v® to & which is, at each point, linearly
independent of [%, and we impose the normalization v*l, = 1 which does
not restrict the causal character of v® anywhere on S. v® is uniquely defined
by a scalar function V on S according to

1
o = gk VI (3.2)

We use {v®, 1%} as a basis in the normal space. Inverting (3.2) we get k% =
2(VI1® — v®). We next define a vector u® = 1k* + VI, which is orthogonal

to v and satisfies u“u, = —v*v, = —2V. The quantities
W = K, KV 4B1,0, + Gl (3.3)
Y = VKL KV AP 4 Gl (3.4)

will appear frequently below. Clearly W is non-negative provided the null
energy condition holds and Y is non-negative if u® is causal and the domi-
nant energy condition holds.

The following definition introduces an object which plays a key role in
this paper.

Definition 3.1. The stability operator is defined by

1
Ly = —Asyp + 25D arp + <2R5 —Y —s%sa+ DASA) Y. (3.5)

The following lemma is a trivial specialization of Lemma 3.1.

Lemma 3.2. Let S be a MOTS, i.e., 8 = 0. The variation of the expansion
0 on S with respect to the null vector ¥Il%, and with respect to any vector
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Yv® orthogonal to S with [*v, = 1, respectively, are given by

We note that (3.6) is the Raychaudhuri equation. For arbitrary vectors w®
orthogonal to § and linearly independent of [%, not necessarily normalized
to satisfy w®l, = 1, we can define another elliptic operator L1 = dy,,0. In
terms of the normalized vector v = F~lw, where F = w®l, we obviously
have

Hence, L, and Lp, contain essentially the same information. To see the
dependence of L, on the vector v, i.e. on the function V we calculate, from
linearity (3.1), and (3.6),

1
Ly= gL~ VW. (3.9)

Due to the presence of the first-order term in (3.5), L, is not self-adjoint
in general. However, self-adjoint extensions still exist in special cases. For
example, if s4 is a gradient, i.e., s4 = D4( for some (, L, is self-adjoint
with respect to a suitable measure depending on (, c.f. Section 4.

Since L, is linear and elliptic, it has discrete eigenvalues and the corre-
sponding eigenfunctions are regular. However, in general, the eigenvalues
and eigenfunctions are complex. Nevertheless, the principal eigenvalue, i.e.,
the eigenvalue with smallest real part, and its corresponding eigenfunction
behave in the same manner as for self-adjoint operators. In particular, they
can be used to give a very efficient reformulation of the maximum princi-
ple. In the next section we collect some material on linear elliptic operators
which will be the key tools in the subsequent discussion of stability.

4 Properties of linear elliptic operators

The results of this section hold for connected compact smooth manifolds S
without boundary, and for arbitrary smooth, linear, second-order, elliptic
operators on S, which can be written as

L=—-A,+2t"Dy+ec, (4.1)

where Apy = DA(hABDBw), hAB is positive definite and smooth, D is the
corresponding Levi-Civita covariant derivative and ¢t and ¢ are smooth.
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Lemma 4.1. Let L be an elliptic operator of the form (4.1) on a compact
manifold. Then, the following holds.

(i) There is a real eigenvalue N, called the principal eigenvalue, such that
for any other eigenvalue p the inequality Re(n) > A holds. The cor-
responding eigenfunction ¢, Lo = A¢ is unique up to a multiplicative
constant and can be chosen to be real and everywhere positive.

(i) The adjoint LT (with respect to the L? inner product) has the same
principal eigenvalue A as L.

Applications of Lemma 4.1 to the stability operator (3.5) in a spacetime
will be described in the next section. Note that our terminology follows
Evans [29]; in particular, regarding the sign of L it is opposite to other
references [26, 37] cited below. This entails that when comparing with these
references one always has to interchange “sup” and “inf” when acting on
expressions containing L.

The existence of the principal eigenvalue and eigenfunction was first
proven by Donsker and Varadhan [26] using parabolic theory and the Krein—
Rutman theorem [36]. For uniqueness of the principal eigenfunction, c.f.
Berestycki et al. [37]. All these papers actually deal with the Dirichlet prob-
lem for bounded domains in R™. However, the proof is easily adapted to
the case of compact connected manifolds without boundary (it is in fact
simpler). For completeness and since this result is not widely known, we
provide in Appendix B a sketch of the proof in the closed manifold case.
The sketch follows the argument in Smoller [28] and Evans [29].

For self-adjoint operators Lo = —Ap + ¢, the principal eigenvalue Ag is
given by the Rayleigh—Ritz formula

Ao = inf (u, Lou) = inf/ (DAuDAu + cu?) s, (4.2)

u u S
where 7ns is the surface element on (S,h) and the infimum is taken over
smooth functions v on S with ||ul|;2 = 1.

For non-self-adjoint operators such a characterization is no longer true.
However, Donsker and Varadhan [26] have given alternative variational rep-
resentations of the eigenvalue, namely

A = inf sup/ v pps, (4.3)
125 ) S
A = sup 11612 N x) Ly (). (4.4)

Y



864 LARS ANDERSSON, MARC MARS AND WALTER SIMON

Here the infimum in (4.3) is taken over all probability measures pus on S,
while the suprema are over all smooth, positive functions ¢ on S.

To get (4.4) from (4.3) we first note that the “inf” and “sup” in (4.3) can
be interchanged (which is non-trivial but follows from a min—max theorem
of Sion [39], c.f. [26]). This done, the infimum of the integral with respect to
all probability measures is achieved by a Dirac delta measure concentrated
at the location where the integrand takes its infimum.

In order to approach a characterization closer to a Rayleigh—Ritz expres-
sion, we note that, since probability measures can be approximated by
smooth positive functions, we can assume pus = u’ns with smooth u > 0
and ||u||;2 = 1. Following Donsker and Varadhan, ¢ can be decomposed as
1 = ue”. Direct substitution in (4.3) and rearrangement gives

A= i%fsup/ (DAuDAu + (c + tAtA - DAtA) u? — (Dgw + tA)2u2> 7s.
w JS

To reformulate this expression we use the Hodge decomposition t 4 = Da( +
z4, where ¢ is a function and z4 is divergence free. This decomposition is
unique except for a constant additive term in (. The supremum over w
only affects the last term, and it only depends on z4 and not on {. Thus,
we need to determine inf,, fs (Daw +ZA)2u2775, for each u. A standard
argument shows that the infimum is achieved and is given by the solution
of the linear elliptic equation

—DaDAw[u] — 202D gwlu] DA = 2u~ 224D gu, (4.5)

where we write w[u| to emphasize that the solution depends on u. A trivial
Fredholm argument shows that this equation has a unique solution satisfying

/ wlwlulns = 0. (4.6)
S

It therefore follows that the Donsker—Varadhan characterization of the prin-
cipal eigenvalue can be rewritten as

A= inf/ <DAuDAu + Qu? — (Daw[u] 4 24)? u2) ns, (4.7)
v Js

where Q = c+t At — D at# and the infimum is taken over smooth functions
of unit L? norm. The symmetrized operator Ly = —Ap, + Q is self-adjoint
and has a principal eigenvalue A, given by the Rayleigh—Ritz formula, as in
(4.2). Since the last term in (4.7) is non-positive, the inequality

As > A (4.8)

follows immediately. This inequality has recently been demonstrated by
Galloway and Schoen [23] using direct estimates. It is interesting that (4.8)
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is a trivial consequence of the Rayleigh-Ritz type formula (4.7) for the prin-
cipal eigenvalue.

As a second application of the characterization (4.7), we note that the
last term can be rewritten as

— (D wlu] + 24)* u? = (DAw[u]DAw[v] - zAzA) u?
— 2D (wlu]u? (ZA + DAw[u}))

after using the equation (4.5) and the fact that z4 is divergence-free. Inte-
gration on § gives the alternative representation for A

A= inf/ (DAuDAu +(Q - zAzA) u? + UQDAw[u}DAw[u]) ns.  (4.9)
u Js

Since the last term is now non-negative, dropping it decreases the integrand
and therefore also the infimum. Thus, defining the alternative symmetrized
operator L, = Ly — 242" and denoting by A, the corresponding principal
eigenvalue, it follows that
A> A,

Therefore the principal eigenvalue of a non-self-adjoint operator is always
sandwiched between the principal eigenvalues of two canonical symmetrized
elliptic operators, and we also note that infs(z42%) < Ay — A, < supg(z42).
Obviously, when L is self-adjoint (w.r.t. to the L? norm), i.e., t4 = 0, the
two symmetrized operators Ls; and L, coincide with it. More generally,
when t4 is a gradient (so that L is self-adjoint with a suitable measure)
the characterization of A given by (4.7) coincides with the Rayleigh-Ritz
expression because whenever z4 = 0, the unique solution to (4.5) and (4.6)
is just wlu] = 0 for all u.

An important tool in the analysis of the properties of the stability operator
will be the maximum principle. The textbook formulations normally require
that the coefficient of the zero-order term of the elliptic operator is non-
negative, at least if a source term is present (see for example [40, Section 3]).
We give here a reformulation, used in several places below, which instead
requires non-negativity or positivity of the principal eigenvalue.

Lemma 4.2. Let L be a linear elliptic operator of the form (4.1) on a com-
pact manifold. Let A and ¢ > 0 be the principal eigenvalue and eigenfunction
of L, respectively, and let 1) be a smooth solution of L1p = f for some smooth
function f > 0. Then the following holds.

(i) If A\ =0, then f =0 and ¢ = C ¢ for some constant C.
(ii) If A >0 and f # 0, then ¢ > 0.
(iii) If A >0 and f =0, then ¢ = 0.

REMARK. Clearly analogous results hold for f < 0.
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Proof. For a positive principal eigenfunction ¢ of L, we define x by ¥ = x¢
and an operator I'[¢] by the first equation in

T(g]x = —Da ($*h*BDax) + 20*t* Dax + Ap*x = ¢f, (4.10)

while the second equality follows by computation. The strong maximum
principle [40, Theorem 3.5], applied to (4.10) gives the desired results. [

We end this section with a result which is essentially a straightforward
application of linear algebra.

Lemma 4.3. Let L be a second-order elliptic operator on S of the form
(4.1). Let \,¢,¢" be the real principal eigenvalue, and the corresponding
real eigenfunctions of L and its adjoint LY. Let P be the projection operator
defined by

(0", f)
(67, ¢)

Pf=¢
and let Q =1—P. Then

(i) L = AP+ A, where A has spectrum o(A) such that for some constant

co > 0,
min —Al>c 4.11
pEa(A),u#0 I | 0 ( )
(ii) For any s > 2, p > 1, there is a constant C' such that the inequality
1Qullwes < CII(A = AQ)ullys-2 (4.12)

holds, where W*P is the usual Sobolev space of functions with s deriva-
tives in LP(S).

REMARK. We refer to the constant ¢y as the spectral gap.

Proof. We shall consider complex eigenvalues and eigenvectors, and use the
sesquilinear L? pairing
(u,v) = / av.
S

It is straightforward to check that LIP = PL = AP, and if we define the oper-
ator A by A = LQ, so that

L=)\P+A,
then
AP=PA=0, AQ=QA=A, A'Pf=0, A4'Qf=4f, (4.13)

where we used that PT is the projector onto ¢' i.e. PHf = ¢t (¢, f)/(41, 0).
It follows that the range of A lies in the space orthogonal to ¢.
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Let 9 be an eigenvector for L corresponding to a non-principal eigenvalue
w# A. We find that

(@t ) = (o1, Lyp) = (LTl o) = Mo, ).

Since p # A by assumption, we conclude that (¢f,4) = 0. Combining the
previous facts, it follows easily that the spectrum o(A) of A satisfies

o(A) = (a(L) \ {A}) U{0}.
Since A is the principal eigenvalue of L, so that A < Re(u) for any non-

principal eigenvalue p, (4.11) follows from the fact that L has discrete spec-
trum.

To prove point (ii), we first note that by construction, A — \Q is a Fred-
holm operator which maps the space orthogonal to ¢! into itself. By point
(i), the spectrum of A — A\Q is bounded from below by ¢o > 0. Thus, by
the Fredholm alternative A — AQ : (¢T) — (¢f)+ is invertible on Sobolev
spaces. U

5 Stability of MOTS

The concept of stability of a MOTS with respect to a given slice . is a central
issue of our paper and crucial for the application to existence of MOTTs. We
first briefly comment on stability of minimal surfaces embedded in Riemann-
ian manifolds (X,~), disregarding any embeddings in spacetimes. Letting
m' be the unit normal to S, the stability operator L, ({) = dymp where p
is the mean curvature of S reads (e.g., [42]) Ln¢ = —AsC — (Riym‘m/ +
K;;K%)(, where and R;; and K;; are the Ricci tensor of (X,7) and second
fundamental form of S, respectively. This expression also follows from (3.5)
by taking S immersed in a time symmetric spacelike hypersurface (X,~)
and choosing v = m. As L,, is self-adjoint its principal eigenvalue A can be
represented as the Rayleigh-Ritz formula (4.2). In terms of the latter, the
standard formula for the variation of the area A of a minimal surface along
a vector v’ = 1m’ gives

524 = &2 /S ns = /S BSupms = /S PLuibs > A /S s, (5.1)

The minimal surface is called stable if A > 0, and (5.1) together with (4.2)
shows that this is equivalent to §2A4 > 0, for all smooth variations d,.

We wish to characterize stable MOTS embedded in arbitrary hypersur-
faces in spacetime in a similar way as stable minimal surfaces in Riemannian
manifolds. In the general case we lose the connection between stability and
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the second variation of the area (except if the variation is directed along
[?*). Using the discussion in the previous section, we can now define sta-
bility either in terms of a sign condition on suitable first variations of 8 at
the MOTS or, in view of (3.5) by a sign condition on the principal eigen-
value of the stability operator. In either case, we wish to establish a relation
between both concepts. Here we choose the variational formulation as defi-
nition, from which we show the properties of the principal eigenvalue.

We could obtain a variational definition by replacing (4.2) by one of (4.3),
(4.4) (4.7) or (4.9), but the resulting definition does not seem very illuminat-
ing. Therefore, instead of defining stability in terms of sign requirements on
integrals over S for all positive variations of 6, we now require the existence
of at least one variation along which 6 has a sign everywhere on §. This
definition also enables us to introduce an important refinement, namely to
distinguish whether this preferred variation of 4 is just non-negative every-
where, or even positive somewhere. (We slightly expand our earlier pre-
sentation [1].) We recall that v® is linearly independent of [* everywhere
on S.

Definition 5.1. A MOTS S is called stably outermost with respect to the
direction v iff there exists a function ¢ > 0, ¥ # 0, on S such that §,,0 >
0. S is called strictly stably outermost with respect to the direction v if,
moreover, d,,0 # 0 somewhere on S.

We will omit the phrase “with respect to the direction v” when this is
clear from the context. We now establish the connection between stability
and the sign of the principal eigenvalue.

Proposition 5.1. Let S C X be a MOTS and let X be the principal eigen-
value of the corresponding operator L,. Then S is stably outermost iff A > 0
and strictly stably outermost iff A > 0.

Proof. If A > 0(> 0), choose v in the definition of (strictly) stably outermost
as a positive eigenfunction ¢ corresponding to A. Then 64,0 = L,¢ = A¢p >

0(> 0). For the converse, we note that from Lemma 4.1 the adjoint L} (with
respect to the standard L? inner product (,) on S) has the same principal
eigenvalue as L,, and a positive principal eigenfunction ¢f. Thus, for ¢ as
in the definition of (strictly) stably outermost,

Mot w) = (Li¢!,v) = (o7, L) 2 0(> 0),
Since (¢f,4) > 0, the proposition follows. O

The stability properties discussed above always refer to a MOTS S with
respect to a fixed direction v® normal to S or a fixed hypersurface to which
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v® is tangent. This raises the question as to how the stability properties
depend on this direction. Using definition (3.2) we can change v® by adjust-
ing the function V, which can take any value, and study the dependence of
the principal eigenvalue A on this function. This yields the following

Proposition 5.2. Let S be a MOTS and let \,, Ay be the principal eigen-
values of the stability operators in the directions v® and v'® defined by (3.2),
with some functions V and V', respectively. Let ¢/ and ¢! be principal
etgenfunctions of L, and L;r) respectively. Then

(Ao = A) (01, @) = (&F, (V' = V)W ). (5.2)

Proof. From (3.9) it follows that,
Ly =Ly + (V' = V)W. (5.3)
Hence, 0= (¢, (L, — Ly — (V' = V)W) @) and the proposition follows
using point (ii) of Lemma 4.1. O

Applying some trivial estimates to (5.2) we find
Ay + igf[(V’ — VW] < Ay < Ay +sup[(V/ = V)W]. (5.4)
S

The inequality (5.4) implies in particular that, in spacetimes satisfying the
null energy condition, a MOTS which is stable or strictly stable with respect
to v will have the same property with respect to all directions “tilted away”
from the null direction [¢ defining the MOTS, and it puts a limit to the
allowed amount of tilting of v® “towards” [* which preserves stability or
strict stability. In particular, if a MOTS S is (strictly) stable with respect
to some spacelike direction, then it is also (strictly) stable with respect to
the null direction —k* complementary to {“ in the normal basis {I%, k*}.

6 The graph representation of MOTS

We now assume that (M, g) is foliated by hypersurfaces ¥; defined as the
level sets of a smooth function ¢t. Assume also that one of the elements
of the foliation, say ¥, contains a MOTS Sy. We further assume that X
is transverse to the null normal vector {“ on S, i.e., T,M = T,% & (I1%|,)
for all p € §g. However, for most results we do not assume any specific
causal character for the foliation 3; and we allow leaves which are spacelike,
timelike, null or which change their causal character. The transversality
above allows us to fix I“ so that {#0,(t) = 1.

The main goal of this paper is to examine under which conditions there
is a MOTT G such that S; = G N X is a MOTS for all ¢. For this purpose
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it is useful to define an abstract copy S of So detached from spacetime. We
are looking for a 1-parameter family of smooth immersions y; : § — >3; for

~

t in some open interval I 3 0 such that S; = x¢(S) is a MOTS and the map
V:IxS— M
(t’p) — iEt 0 Xt(p)

is smooth, where iy, : ¥; — M is the natural inclusion. In other words,
the collection of MOTS should depend smoothly on ¢. Using arbitrary local
coordinates y* on %, #” in S and writing y* = {t,4'}, the immersion ¥
takes the local form

U (t,2) = (X (): (6.1)
For the null expansion we obtain
_ gt pAB _ 1 AByt [ p(s)c 0¥ o> oVY QP
0= Luhi" g = il <FtAB 920~ puAgeE  orlemwe a8 )
(6.2)
(8cC

where h; g4p is the induced metric on S;, I',j5" are the corresponding
Christoffel symbols and Fﬁp are the spacetime Christoffel symbols. The
vector I, (z4) satisfies 1= = I, and solves

oW+
La;TA =0, "M, t=1. (6.3)

under the condition that [{, depends continuously (and hence smoothly) on
t. The condition we want to solve is 6 = 0 which is a scalar condition on
the immersion x;. Since the problem is diffeomorphism invariant, we need
to choose coordinates in order to convert the geometric problem into a PDE
problem. The idea is to construct a suitable coordinate system adapted to
the initial MOTS Sy and to restrict the class of allowed MOTS to be suitable
graphs in this coordinate system. Since Sy may have self-intersections, the
coordinate system and the graphs we will use are only local in the sense that
for any point p € S, , there is a spacetime neighbourhood V), of its image ®(p)
such that the spacetime metric takes a special form in suitable coordinates
adapted to the surface (strictly speaking, to the connected component of
So NV, containing ®(p)). In the following lemma we introduce this adapted
coordinate system. In order to avoid cumbersome notation, we will assume
So to be embedded for this lemma. Since the applications of this result below
will always be local on Sy in the sense just described (and all immersions
are locally embeddings) this suffices for our purposes.

ttpn
it =0, 1

The following lemma does not require Sy to be a MOTS.

Lemma 6.1. Let (M,g), 3¢ and t be as before. There exists a spacetime
neighbourhood V of a smooth, embedded closed spacelike 2-surface S C %o C
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M, local coordinates {t,r,x*} on V adapted to the foliation {3} and func-
tions Z,,n* and hap such that the metric can be written as

gudxtdx” = 2eZ dtdr 4+ @dr? + hap (dmA + nAdr) (dIL‘B + anr) , (6.4)

where Sy NV = {t = 0,7 =0}, Z(t = 0,7 = 0,2) = 0 and hap is a positive
definite (n — 2)-matriz. The function ¢ may have any sign (even a changing
one) reflecting the fact that the hypersurfaces ¥;, which coincide with the
t = const surfaces, are of any causal character.

Proof. Let 2/ be a local coordinate system on Sy and let v® be a smooth,
nowhere zero vector field on Sy orthogonal to this surface, tangent to g and
satisfying v®l, = 1. We extend v® to a smooth vector field (still denoted by
v) in a neighbourhood of Sy within ¥ and define coordinates (r, z) on this
neighbourhood by solving the ODE (again with slight abuse of notation)

v(ir)=1, rls,=0,
v(z?) =0, zi|s, =z
In some tubular neighbourhood of Sy within ¥y, this solution defines a
smooth coordinate system in which we have v*0, = 9,. Furthermore, for
small enough r¢ the sets S,, = {r = 7} define spacelike, closed, codimension-
two surfaces embedded in ¥y and diffeomorphic to Sy. After restricting the
range of r if necessary, we can also extend [* to a nowhere vanishing null vec-
tor field on ¥y orthogonal to each level surface {S, } and satisfying [“0,t = 1.

We finally consider the null geodesics with tangent vector [“ whose
“length” is fixed by I#0,t =1 everywhere in a suitably small neighbour-
hood of Sy in M. On this neighbourhood V define functions {r,z4} by
solving 1%(r) = 0, 1%(z?) = 0 and so that r|y, and 2|5, coincide with the
functions with the same name defined above. The functions {t,, 24} define
a coordinate system on V. Since (%0, = 0; everywhere we immediately have
gt = 0 for the metric. On ¥y = {t = 0} we have (9;,0,4) = 0, where (, )
denotes scalar product with g. The geodesic equation [*V 1% = bl® becomes
O¢gut = bgus in this coordinate system (b need not be zero as the null vector
[* has already been chosen). Hence g,,2 = 0 and g4 > 0 on this neighbour-
hood (because g4 = 1 on &p). O

In terms of the coordinates (6.4), we can consider local graphs S; given
by 7 = f(z4) on the surface {r = 0} C ;. Restricting the allowed immer-
sions (6.1) to those local graphs, (6.2) becomes an operator on f, which
we call 6;[f]. We formulate the ellipticity property of this operator in the
subsequent lemma. We use the shorthands f4 = d,af and p = [pfAfs +
(1+ nAfA)2]r:f, where ¢ and 7 are the metric coefficients in (6.4) and cap-
ital Latin indices are moved with h4p and its inverse h45.
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Lemma 6.2. Consider codimension-two immersions defined locally by a
smooth function f(x) according to

xelf] S — 8 M
at — (t=t,r = f(z?), 2% = 2).

If f€ fo < C for a suitable positive constant C, the operator 04[f] is quasi-
linear and uniformly elliptic.

Proof. We give explicitly some steps of this straightforward calculation,
which requires some care if 3; is not spacelike. We define the quantities

which are smooth even at points where ¢ vanishes (i.e., where ¥; becomes
null). The one-form [}, satisfying (6.3) is

It do® = ~ydt +v (dr — fAd:UA) :
For the metric induced on the S; and its inverse we have
heap = (hap + ofafs + fans + fana+nncfafs) \T:f ;
hAB — pAB 4 1
< [P fon'n® — o f AP = (140" fo) (0 5 + AP, -

Note that h{'? is positive definite wherever p > 0. The operator 6;[f] can
now be written explicitly

Olf] = —vhi® fan — (LORAE) fafi + 2T AR fi 4 1T 1P )

r:f’
(6.6)

where fap = 0,40,8f. Choosing C small enough it follows that p > € for
a positive €. The assertion of the lemma is verified easily by estimating the
eigenvalues of vh{*B. 0

REMARK. We note that for quasilinear elliptic equations such as 6,[f] = 0
there hold regularity results. In particular, if we required C* for the func-
tion f instead of smooth as in the definitions above, the latter differentia-
bility would in fact follow (see, e.g., Section 8.3 of Evans [29]).

We also remark that the stability operator (3.5) coincides with the lin-
earization of the quasilinear operator (6.6) and can be obtained from the
latter by making f infinitesimal. However, the expression (6.6) requires a
choice of coordinates. On the other hand (3.5) was derived in a covariant
manner and therefore holds independently of the coordinates on S or on the
spacetime.
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7 Barrier properties of stable MOTS

Let G be a MOTT, i.e., a 3-surface foliated by MOTS. Then there exists a
positive variation along G such that d,,0 = 0. According to the definition
in Section 5 the MOTS foliating a MOTT are stable with respect to the
MOTT, but they are not strictly stable as dy,6 = L, = 0 implies that the
principal eigenvalue vanishes. In general situations, since the variation of
0 is essentially a derivative of the fs of adjacent surfaces, we expect that
embedded strictly stable MOTS are “barriers”, i.e., local boundaries sepa-
rating regions containing weakly outer trapped and weakly outer untrapped
surfaces. The difficulty in showing this lies again in the fact that strictly
stable MOTS had to be defined in terms of a sign condition on a single vari-
ation, while they should be barriers for all weakly outer trapped surfaces in
a neighbourhood.

Below we give a result on this issue, which in fact requires the full machin-
ery developed in the preceding sections, namely the properties of the prin-
cipal eigenvalue and eigenfunction of the stability operator as well as the
maximum principle applied to the quasilinear elliptic equation (6.6) rep-
resenting the MOTS as a graph. The maximum principles for non-linear
operators normally require uniform ellipticity (c.f., e.g., [40, Section 10])
which is not the case for operators of prescribed mean curvature such as
(6.6) when fC fc is not small (c.f. Lemma 6.2). For this reason we prove
the following theorem “from scratch.” To state the result, we recall from
[1] the definition of “locally outermost.” Note that in the definition and
in the theorem below we require that the MOTS is embedded rather than
immersed as in the previous sections.

Definition 7.1. Let § be a MOTS embedded in a hypersurface 3. § is
called locally outermost in X, iff there exists a two-sided neighbourhood of
S in X such that its exterior part does not contain any weakly outer trapped
surface.

Theorem 7.1. (i) An embedded, strictly stably outermost surface S is
locally outermost. Moreover, S has a two-sided neighbourhood U such
that no weakly outer trapped surface contained in U enters the exterior
of § and no weakly outer untrapped surface contained in U enters the
interior of S.

(ii) A locally outermost surface S is stably outermost.

Proof. The first statement of (i) is in fact contained in the second one. To
show the latter, let ¢ be the positive principal eigenfunction of L,. Since
Ly¢ > 0 by assumption, flowing S in 3 along any extension of ¢v® within
Y produces a family S,, o € (—¢,¢€) for some € > 0. By choosing e small
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enough, the S, have 6|5, < 0 for o € (—¢,0) and 0|s, > 0 for o € (0,¢). We
can now take U to be the neighbourhood of § given by U = U,¢c(—c )So-
We first express the expansion of the level sets of ¢ in terms of connection
coefficients. Setting f = o = const. > 0 in (6.6), only the last term survives
and we have

0 < bfo] = — z;rgBhAByf:U (7.1)

and analogously for o < 0.

Now let B be a weakly outer trapped surface (i.e., 6|z < 0) contained in
U which enters the exterior part of U. Let p be the point where o|g achieves
a maximum value. In a small neighbourhood of p, B is a graph given by a
function f which achieves its maximum at p. From (6.6),

0> 0| =6[f] = —vhi*® fap

— (I8 BAB) fa f + 20T WAB fip + 1T JhAP) |

pnrA (72>

:f -
At p, falp =0 and hABfAB|p < 0. Since o = const and B have a common

tangent plane at p, the last term in (7.2) coincides with (7.1), which yields
the contradiction (we also use v|, = eZ|,)

6:[flp = —e“DA faply — LT ph | > 0. (7.3)

Hence B cannot enter the exterior part of U, and analogously weakly outer
untrapped surfaces cannot enter the interior.

To show (ii), assume S is locally outermost but not stably outermost.
From Proposition 5.1, the principal eigenvalue A is then negative. Arguing
as above one constructs a foliation outside & with leaves which are outer
trapped near S, contradicting the assumption. O

Returning to the example of a MOTT mentioned above, it follows that a
MOTS within a MOTT is not only not strictly stable with respect to the
direction tangent to the MOTT, as we already knew, but also moreover not
locally outermost.

The barrier arguments suggest that a region of a slice ; bounded by an
outer trapped surface S; and outer untrapped surface Sy contains at least
one MOTS. This has been proven recently by Andersson and Metzger [31],
based on an argument proposed by Schoen [41].
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8 Symmetries

As examples one normally considers spacetimes with symmetries, i.e., invari-
ant under the action of some symmetry group. If the symmetry is spacelike,
it is natural to consider spacelike foliations with the same symmetry. In
order to locate the MOTS contained in the leaves and to compute the prin-
cipal eigenfunctions and eigenvalues, it is useful to know whether the MOTS
and the eigenfunctions inherit the symmetries from the ambient geometry.
In this section we address these questions, starting with the MOTS.

Theorem 8.1. Let = be a local isometry of (M, g) (i.e., Legu =0 for the
Lie-derivative L¢ w.r. to the corresponding Killing field £*), and let S be a
MOTS which is stable with respect to a normal direction v* such that the
normal component £+ of £ satisfies €+ = v® for some function . Then
either Z leaves the MOTS invariant (i.e., £ is tangential to the MOTS), or
=2(S) is a MOTT.

Proof. Clearly £ leaves the MOTS invariant iff £ and hence v are iden-
tically zero. Assume this is not the case. From (3.7), 0 = ¢ = dypt = L0
shows that 1 is an eigenfunction of L, with eigenvalue zero. Since the
MOTS is stable with respect to v®, v is the unique (up to a constant)
principal eigenfunction of L, and has therefore a constant sign, which after
reversing £¢ if necessary can be taken to be positive. This implies that = in
fact generates a MOTT as stated. (|

Note that this proof shows in particular that if S is strictly stable then S
must remain invariant under the isometry.

If S lies in some hypersurface ¥ invariant under the isometry, then The-
orem 8.1 implies that either E leaves S invariant, or Z(S) C X. Clearly, in
the second case S is not strictly stable. Moreover, it is not locally outermost
in the sense of Definition 7.1.

We also remark that the range of validity of Theorem 8.1 can be extended
with the help of Proposition 5.2. In this theorem it suffices to require that
the MOTS is stable with respect to any direction normal to & which lies
“between I* and £ (which is in fact a conical segment).

The following theorem on the symmetry of the principal eigenfunction
(“ground state”) is well known for self-adjoint operators, with numerous
physical applications. We have formulated it here for the general linear
elliptic operator (4.1), and therefore it holds in particular for the stability
operator (3.5).
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Theorem 8.2. If L is invariant under a 1-parameter group of isometries
generated by n®, the principal eigenfunction ¢ is invariant as well.

Proof. The invariance of L under the isometry implies that this operator
commutes with the action of the corresponding Lie derivative £,. Hence, if
¢ is an eigenfunction with principal eigenvalue J, it follows that

LLyd = LyLd = ALy, (8.1)

which means that £, ¢ is a principal eigenfunction as well. But from Lemma
4.1(i), the latter is unique up to a factor, i.e., £,¢ = a¢ for some real number
a. This expression integrates to zero on S because L,¢ = D A(én?). Since
¢ has constant sign, it follows that a = 0. This proves the assertion. O

As an example we consider axially symmetric data on ¥ with Killing
vector n® = 0/0p, which has in addition a (¢, ) symmetry, i.e., invariance
under simultaneous sign reversal of ¢ and ¢t. This is the case, in partic-
ular, for data on a t = const. slice of the Kerr metric in Boyer-Lindquist
coordinates. It turns out that the vector s4 introduced in Section 3 is pro-
portional to the axial Killing vector and divergence free, i.e., s4 = z4 in
the notation of Section 4. By Theorem 8.2 the principal eigenfunction is
axially symmetric and therefore satisfies a second-order ODE. Finding the
principal eigenvalue and eigenfunction is therefore equivalent to solving a
one-dimensional Sturm-Liouville problem. Moreover, the first-order term in
the stability operator vanishes when acting on this eigenfunction. However,
this does not imply that the stability operator is self-adjoint in this situa-
tion or that the principal eigenvalue coincides with any of the symmetrized
eigenvalues A; or A,.

9 Existence and properties of MOTTs

The main objective of this paper is to show that MOTS “propagate” from a
given slice to adjacent leaves of a given foliation to form a MOTT. Setting
6 =0 in (6.2) determines the location of a MOTT in terms of immersions.
These may be viewed as defining a family of quasilinear elliptic equations
which do not contain any derivatives along the presumptive “evolution”
direction. Since we have assumed that Sy is marginally outer trapped, the
elliptic equation is satisfied for ¢t = 0 and we can adopt a perturbational
approach. In Section 6 we have derived the “graph” representation (6.6)
in a special coordinate system, which will be used in the existence proof.
The proof makes use of a general existence result [32] which shows the
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existence of solutions near a known solution of a 1-parameter family of non-
linear differential equations (or systems) of arbitrary order and arbitrary
type whose linearization is elliptic. Since we will apply this result to a 1-
parameter family of quasilinear elliptic equations for which regularity results
hold, we will formulate the result here for smooth functions only. Equations
of general type require some care regarding differentiability.

Lemma 9.1 ([32, 33]). Let
F(x,u,0u,d*u;t) =0 (9.1)

be a I1-parameter family of quasilinear, second-order differential equations,
where F is a smooth function of all arguments. Assume that ug is a smooth
solution of (9.1) fort = tg, and that the linearized equation around ug, Lv =
f is elliptic and has a unique solution for any smooth f. Then (9.1) has a
unique smooth solution for t € (tg — €,tg + €) for some € > 0.

This result is an easy application of the implicit function theorem; alter-
natively, the latter theorem can also be applied directly to (6.6), as we sug-
gested in [1]. The result is, in view of the above discussion, that a smooth
horizon exists in some open neighbourhood of the given slice. More precisely,
we have the following theorem and a corollary.

Theorem 9.1. Let (M, gog) be a spacetime foliated by smooth hypersurfaces
¥, t€[0,T] and assume that ¥o contains a smooth, immersed, strictly
stable MOTS Sy. Then for some T € (0,T] there is a smooth adapted MOTT

g[oﬂ-) = (I)(So X [0,7’))

such that for each t € [0,7), S = ®(Sp,t) is a smooth, immersed, strictly
stable MOTS with S8 C Y.

Corollary 9.1. The MOTT Gy ;) constructed in Theorem 9.1 is nowhere
tangent to the leaves ¥y of the foliation.

Proof. Let {t,r,z} be the local coordinate system introduced in Lemma 6.1
and restrict the allowed MOTT to be local graphs on Sy as described in
Section 6. Thus, we are looking for functions f(t,z4) which satisfy 6;[f] = 0
for all t near t = 0 and satisfying f(0,24) = 0. In order to apply Lemma 9.1
we only need to check that the linearization of 6;[f] is elliptic and invertible.
The immersion ® defining the MOTT is given in this coordinate system
by (t,r = f(t,z4),z4). Recall that [“d, = d; and that on Sy the vector
v¥0y = O, satisfies [“v, = 1. Linearizing the operator around (¢t = 0, f = 0)
corresponds to fixing ¢ = 0 and making f infinitesimal, or more precisely to
evaluating L(f") = 0c0i—o[fe]|e=o0 where f. depends smoothly on € and sat-
isfies fe|le=o = 0, Ocfe|le=o = f'. Tt follows that L corresponds to performing
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a geometric variation of 6 along the vector f’d,. The general variation for-
mula in Section 3 gives L(f") = 04, = Ly(f"). Since by assumption, Sy is
strictly stably outermost with respect to v, it follows that L, and therefore
L, is invertible. Existence of f(t,x*) for small t solving 6;[f] = 0 follows
readily from Lemma 9.1. Moreover, the “evolution” vector to the MOTT,
q* = 0,(0;) = 0y + f'0, is by construction nowhere tangent to 3;, which
proves the corollary. O

As a complement to this corollary we now discuss the “tangency” property
of the MOTT when the principal eigenvalue A; vanishes, assuming smooth
convergence of the S; to a stable MOTS S..

Theorem 9.2. Let (M, gag) be a spacetime containing a smooth reference
foliation {Zt}te[O,T}- Assume that g contains a smooth, tmmersed, strictly
stable MOTS Sy. Assume furthermore that the adapted MOTT Gy -y through
So constructed in Theorem 9.1 is such that ast — T, the surfaces Sy converge
to a smooth, compact, stable MOTS S;. Let A\ be the principal eigenvalue of
the stability operator of S; and gbz the principal eigenfunction of its adjoint.
Assume that /\;1<¢I, Wils,) has a limit (finite or infinite) as t — 7.

Then the closure Gio -] = Gjo,r) U Sr is an adapted MOTT. If in addition
Ar =0 and (qbl, Wis,) # 0, then Gjo ;) is tangent to X; everywhere on S;.

Corollary 9.2. If the null energy condition holds on Sy, Ay = 0 and W|s_ #
0 somewhere, then Gjg ;] is tangent to X everywhere on Sr.

Proof. If A+ > 0, then by uniqueness the MOTT through S, constructed
using Theorem 9.1 agrees with Gy ;) for ¢ € [0,7), and hence the closure
Glo,- is an adapted MOTT. It remains to consider the case where A, = 0.

By construction, & = %; NGy, is a MOTS for ¢ € [0,7). Let v be
the normal to S; tangent to 3; (we drop the subindex t for simplicity).
Consider the “evolution” vector ¢* of the MOTS within G ), given by
q“0q = V() = Oy + (0¢f)Or. Recalling that 1“0, = 0, it follows that the
normal component of ¢% can be decomposed as

e = 1%+ w® (9.2)

for some function u. The variation of 6 along ¢® must vanish (this is precisely
the condition that ¢% is tangent to the MOTT). Hence, u must satisfy

840 = Sl = —W + Lyu = 0, (9.3)

c.f. Lemma 3.2.
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Consider the equation L,u = W. Referring to Lemma 4.3, we decompose
u = Pu + Qu and write this as u = z¢ + w for some real z. We have L,yu =
Az¢p + Aw, where A = L,Q as in Lemma 4.3. It follows that

T7 1%.%4
z=\"1 <<gbe, ¢>> (9.4)
and
Aw = QW.

Since for t € [0, 7], L, is uniformly elliptic and its coefficients are uniformly
smooth [43, Theorem 3.1, p. 208], applies to show that the spectral gap is
lower semi-continuous in ¢, i.e., iminf co(¢) > co(7). At 7, the spectral gap
is positive. Thus, it follows that there exists € > 0 and a constant cg > 0
such that the spectral gap estimate (4.11) holds for t € (7 — €, 7]. Recall
that by construction Qw = w. Since by assumption A > 0 for t < 7, we may
apply (4.12) with A = 0, to conclude that Qw, and hence also w, is uniformly
bounded in Sobolev spaces.

Suppose now that (¢, W|s. ) # 0 and A, = 0. Then it follows that z —
00, as t = 7, and hence that u diverges. We see further that in this case,

lim 2z~ tu = ¢, > 0,

t—T1

where ¢, is the eigenfunction of A;. Define a normalized evolution vector
¢ = 2z~ 1¢®. Then
G0y = 2710 + 27 ud,.

It follows from the above that as t 7, the vectors ¢* converge smoothly
to a limit, which is proportional to 0,. By construction ¢% is a smooth
vectorfield tangent to the MOTT g ;), and we have now shown that ¢*
extends smoothly to the closure Gjg ;) = G|o,r) U S7. In order to demonstrate
that the closure is indeed a MOTT, it remains to renormalize the time
parameter.

Thus, let ¢s : So — G- be defined by the flow of the vector field ¢*, and
let I =0, s denote the parameter interval required for this flow to sweep
out Gjg ;. This construction defines a smooth monotone map o : I — [0, 7].
We can now extend the immersion defining the MOTT Gjg ) to an immersion
®:Sg x I — M such that for s € I, we have Sy = ®(Sp,s) C Xy for
s € I. It is clear from the construction that this defines a MOTT Q[O’T] =
g[oﬂ_) UusS:.

It remains to consider the case when (¢l W|s ) =0. In this case, by
applying the same argument as above, we find that u may or may not
diverge as t — 7, depending on the detailed behaviour of A and W as ¢t — 7.
In particular, we see from (9.4) that if A\=!(¢", W) diverges as t — 7, then
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also z diverges, and we are essentially in the situation considered above. On
the other hand, if \='(¢f, W) tends to a bounded limit as t — 7, then we are
in a situation which is analogous to the case with A; > 0. In either case, the
normalized evolution vector ¢¢ converges as t — 7, and an argument along
the lines above shows that Gg ;) = Gjo,r) U S is an adapted MOTT. O

In [1] we claimed that the evolution of the MOTS can be continued “as
long as the MOTS remain strictly stably outermost.” We emphasize, how-
ever, that in [1] the MOTS were taken to be smooth and embedded by def-
inition. Moreover, we have tacitly assumed that the MOTT does not “run
off to infinity.” Hence, our control of the evolution may end not only when
A goes to zero but also when the MOTS develop self-intersections or when
we lose compactness or smoothness. In the present setup, we do not worry
about MOTS developing self-intersections as we have allowed them from
the outset. However, to show in particular that existence continues up to
and including ¥, (which was assumed in Theorems 9.1 and 9.2) we have to
exclude the other pathologies.

To avoid that the MOTT “runs off to infinity” we simply require that it is
contained in a compact subset of M. Note that it may still happen that the
area of the MOTS S; grows without bound as we approach S;. In view of
the curvature estimates of [34], this can happen in the four-dimensional case
only if the MOTS “folds up” sufficiently. Assuming a uniform area bound,
we have the following result, which follows from the work in [34].

Proposition 9.1. Let (M, gap) be a spacetime of dimension 4, with a
spacelike reference foliation {Zt}te[()ﬂ. Assume that X contains a smooth,
immersed, strictly stable MOTS Sy. Let Gjg 7 be the adapted MOTT through
So constructed in Theorem 9.1, and let S = Gjg -y N Xt be the leaf of Gyo 1)
in 3. Assume that fort € [0,7), the leaves S; have uniformly bounded area
and are contained in a compact subset of M. Then the S; converge ast — T
to a smooth compact surface S which is a smooth, immersed, stable MOTS.

If the dominant energy condition is satisfied, the area of the limit set of
the MOTT in fact stays bounded as long as the MOTS stay strictly stable,
as a consequence of the following lemma. (This computation is known in the
context of the topological results [20].) Recall that v* is everywhere linearly
independent of .

Lemma 9.2. In a four-dimensional spacetime (M, go) in which the dom-
inant energy condition holds, let S be a MOTS which is strictly stable with
respect to a spacelike or null direction v, with principal etgenvalue A and area
|S|. Then S is topologically a sphere and N\|S| < 4m. Moreover, if \|S| = 4w
then S has constant curvature, i.e., Rap = Ahap.
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Proof. We take ¢ to be the principal eigenfunction of L,, and we call y4 =
—¢"'D ¢+ 54 and y? = yay?. Taking ¢ as the eigenfunction ¢ in (3.5),
we obtain

1
A=Day" =yl + 5Rs - Y, (95)

where Y has been defined in (3.4). Integrating (9.5) and using the Gauss-
Bonnet theorem gives

AS| =27y — /S(y2 +Y), (9.6)

where x is the Euler number. The first assertion of the lemma now fol-
lows since A > 0 and Y > 0. If A\|S| = 4, (9.6) implies y4 =0 and Y = 0.
Putting this back into (9.5), we have Rs = 2\ which implies the statement
of the lemma as Rap = %Rh g in 2 dimensions. O

We remark that the same method shows that in the case A = 0, the MOTS
can be a torus, which necessarily must be flat (Rap = 0).

With the help of Lemma 9.2, we can now sharpen Proposition 9.1 to
formulate an existence result as follows.

Theorem 9.3. Let (M, gag) be a spacetime of dimension 4, in which the
dominant energy condition holds and which is foliated by smooth spacelike
hypersurfaces ¥, t € [0,T]. Assume that ¥y contains a smooth, immersed,
strictly stable MOTS Sy. Assume further that the MOTT Gy -y through Sy
constructed in Theorem 9.1 is contained in a compact subset of M and that
either

(1) liminf; - A\t > 0, or
(i) limssr At = 0 and limsup,_,, |S¢| < oo.

Then, there is a smooth, compact, strictly stable MOTS S; in ¥, such that
90,71 = Yjo,r) U Sr is an adapted MOTT, which is the closure of Gig 7).

We remark that, as the surface S, C X itself satisfies the requirements of
the theorem, the evolution in fact continues in [0,77] “as long as the MOTS
Sy C X4 stay strictly stable”.

We now reproduce and slightly extend the result [1] on the causal struc-
ture of MOTT foliated by strictly stably outermost MOTS, which must be
either null everywhere or spacelike everywhere.

Theorem 9.4. Let (M, gop) be a spacetime in which the null energy con-
dition holds, which is foliated by smooth, locally achronal (i.e., spacelike or
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null at each point) hypersurfaces 3 nowhere tangent to I*, and that 3¢y con-
tains a strictly stable MOTS Sy. Then, the following holds for the MOTT
G through Sy and adapted to the foliation ;.

(i) The MOTT G is achronal in a neighbourhood of Sy.
(ii) If W does not vanish identically, G is spacelike everywhere near Sy.
(iii) If W wvanishes identically on Sy, G is null everywhere on Sy.

Proof. Recall equation (9.3) for the normal variation vector ¢+® = 1% 4+ uv®.
Applying points 4.2 and 4.2 of the maximum principle, Lemma 4.2, proves
the results. ([l

We finally comment on a possible alternative construction for MOTTs.
Consider a weakly outer trapped surface S on some initial slice and take
the null cone emanating from it. By the Raychaudhuri equation (3.6) if
W > 0, the null cone cuts each subsequent slice on an outer trapped surface
which gives a trapped “barrier” &;. If we also assume an outer untrapped
“barrier” Sy outside &1, which in particular always exists near spacelike
or null infinity in asymptotically flat spacetimes, there is a MOTS in the
region bounded by S; and Sy by the results of [31, 41], c.f. the discussion in
Section 7. In this way, one can show the existence of an outermost MOTS
on subsequent slices. In general however, this collection of MOTS need not
be a MOTT because it may jump, as it always tracks the outermost MOTS
on each hypersurface ;.

Acknowledgments

We thank Jan Metzger for several helpful discussions. We also wish to thank
Alberto Carrasco for comments on the manuscript and Helmuth Urbantke
for improving Theorem 8.2. We gratefully acknowledge the hospitality and
support received from the Isaac Newton Institute, Cambridge, where part
of the work was performed. M.M. and W.S. were supported by the projects
FIS2006-05319 of the Spanish Ministerio de Educacion y Tecnologia and
SA010CO of the Junta de Castilla y Leén. M.M. also acknowledges financial
support from the Junta de Andalucfa under project PO6-FQM-01951. L.A.
was partly supported by the NSF under contract no. DMS 0407732, with
the University of Miami.

Appendix A Proof of Lemma 3.1

Due to the linearity of the variation and the fact that ¢!l generates a
diffeomorphism of S, which implies ¢ 60 = q!1(0), we can assume ¢ = ¢+
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without loss of generality. Since the variation is a local calculation we may
assume that all S, are embedded. Let k, be a null, future directed normal
vector to S, satisfying kg‘lggag = —2. We wish to extend [§ and kY, for
each value of ¢ to a 1-parameter family of vector fields defined on a neigh-
bourhood of §. Let €2, be the null hypersurface generated by k5 by affinely
parametrized geodesics. Extend first [ to (2, by parallel transport along k5.
Then extend [$ away from (2, by affinely parametrized null geodesics and
finally extend kg by parallel transport along [S. Notice that, in general, the
two planes orthogonal to {I%, kS } at each point do not define 2-surfaces. On
S, however they obviously do. Being [§ a geodesic field, the null expansion
0, can be rewritten as 0,(p) = (Valy)|a @) for any p € S, where ®(p, o) is
the variation of Section 3. Defining U* = 0,13 |,=0 (with partial derivative
taken at a fixed spacetime point), we obtain directly from the definition of
the variation

8,0 = VoU" + ¢°V5Vals
= VU + VoV gl® — bGasl®l® + gRagkaz%, (A1)

where (¢ =17_, and k* = k§_, and the Ricci identity has been used in the
second equality. Let us next determine the divergence of U%. From that fact
that 12 is null for all o, it follows U%l, = 0 and hence U® = al® + U4e4 for
a as in the statement of the lemma and for suitable functions U4. Here %
is a basis of the orthogonal subspace to [ and k at each point. Using the
projector hag = gag + %(lakg + kqlp) it is easily found that the divergence
of any vector of the form FAe% is

Vo (F2€3) |s = DaF4s, (A.2)

where we used the fact that [“V,k® = 0 and kavalﬁls = 0. We need to
determine U4 on S: in local coordinates y® (atA, o) for the map @, orthogo-
nality of [& to S, means

oy~
gas(y"(0,77)) 5, 2l " (00%)) =0

Its o-partial derivative at o =0 gives (Ve,q,0) +Uals =0, ie., Usls =
—Dju+ usy. From Z?Valg =0 it follows UV, +1¢V,UP = 0, which
after multiplication with kg and the fact k* is parallel along [* gives [“O,a =
—~UAs . Thus, using (A.2)

VoU%s = — A3u+2sADAu+u(DAsA —SASA) —|—a9‘$. (A.3)

We next consider the second term in (A.1), i.e., blﬁVanlO‘ — gkﬁvavgza.
An integration by parts and using that [ is geodesic implies

1PV V5l% s = —ValgVPI¥s = — KN s KV AP0 5.
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Decomposing k*BVgla =QI*+ rAej and using the fact that Q|s = 74|s = 0,
another integration by parts gives k°V,V3l%|s = 1"9,Q — K4 3 KV 481,k |s.
In order to determine [%0,Q), we first note that —2Q = ko‘kﬂvalg. Taking
covariant derivative along [* and using the Ricci identity we find 21#0,,Q|s =
lak“lﬂk”Ra#gylg. Collecting terms we get

¢*VoVsl®s = —bK' g K 4811,

1
+5 (KQBKvABzukV - 2z%#zﬁk”}zwﬂy>

(A.4)
S

For the last term in (A.1), the definition of the projector h®? gives R+
2Ra5l°‘k‘ﬁ = ho‘ﬁh“”Rwﬁy—k %lo‘k"lﬁk‘”ngy. Making use of the Gauss
identity h*®h* Ry ,60|s = Rs — H? + K, ap K* AP we get

Ropl®kP|s = —Gupl®k® + Rs — H? — K4, KV 481k,
1
+§zak#zﬂk”RWV : (A.5)
S

Inserting (A.3), (A.4) and (A.5) into (A.1) completes the proof. O

Appendix B Proof of Lemma 4.1 (sketch)

The Krein—Rutman theorem states that on a Banach space B, a compact
linear operator E that maps any non-zero element of a closed cone K (i.e.,
a topologically closed subset of B closed under addition and multiplication
by non-negative scalars) into its topological interior necessarily has a unique
eigenvector u in the interior of K of unit norm. Moreover, the corresponding
eigenvalue « is real and positive and any other element (3 of the spectrum
of E (complex in general) satisfies aw > || where | -| denotes the complex
norm. A proof of this theorem can be found in [8.1].

In the case of the elliptic operator L (4.1), let § be a constant satisfying
d > supg —c and define the operator L' = L + . The zero-order term is
therefore positive everywhere and the PDE L’ f = g admits a unique solution
in C%22(8S) for any g € C%*(S) = B. Let Q : B — B be defined by Q(g) = f
and let K be the set of non-negative functions (which is obviously a cone).
The maximum principle implies that if ¢ € K and non-identically zero, then
f=Q(g) is strictly positive everywhere. Thus, all the conditions of the
Krein—Rutman theorem are fulfilled and there exists a unique non-negative
function ¢ of unit C%*(S) norm satisfying Q(¢) = a¢. Since « is positive
and ¢ is in the image of Q) it follows that ¢ is strictly positive and in
C?%(S). Elliptic regularity implies that ¢ is in fact smooth. It follows
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that Lo = (a=! — )¢, so we have a positive eigenfunction (unique up to
rescaling) and a real eigenvalue A = a~! — 4.

It only remains to show that any other eigenvalue of L has larger or equal
real part. This does not follow directly from the Krein—Rutman theorem.
However, we use the following argument, which we adapt from Evans [29].
Let ¢ be a (possibly complex) eigenfunction of L with eigenvalue p. Define
u= ¢ 1. A direct computation gives

—D D+ 22D qu + (A — p)u = 0, (B.1)

where t'4 = t4 — DA¢. Using also the complex conjugate of (B.1) a short
calculation gives

(—DADA +2t'ADA) lu? = 2 (Re(p) — ) |ul?> — DauD?T < 2 (Re(p) — \) |ul?.

Thus, if Re(u) < A the right-hand side is non-positive and the maximum
principle would imply |u|? = 0. Thus, Re(u) > X as claimed.

Finally, the result on the adjoint is a trivial consequence of the positivity
of the principal eigenfunctions, c.f. [29]. Explicitly, if ¢! and Af are the
principal eigenfunction and eigenvalue of L, it follows

0= (L1oT,6) — (of, Lo) = (A = 2) (67, 0)

and A = X as positive functions cannot be L? orthogonal.
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