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Abstract

We study the duality group of /Tn_l quiver gauge theories, primarily
using their Mb-brane construction. For N = 2 supersymmetry, this
duality group was first noted by Witten to be the mapping class group of a
torus with n punctures. We find that it is a certain quotient of this group
that acts faithfully on gauge couplings. This quotient group contains
the affine Weyl group of /Tn_l, Z, and SL(2,Z). In fact there are n
non-commuting SL(2,Z) subgroups, related to each other by conjugation
using the Z,. When supersymmetry is broken to A/ = 1 by masses for
the adjoint chiral superfields, a renormalization group (RG) flow ensues
which is believed to terminate at a conformal field theory (CFT) in the
infrared. We find the explicit action of this duality group for small val-
ues of the adjoint masses, paying special attention to when the sum of
the masses is non-zero. In the A'=1 CFT, Seiberg duality acts non-
trivially on both gauge couplings and superpotential couplings and we
interpret this duality as inherited from the N = 2 parent theory. We
conjecture the action of S-duality in the CFT based on our results for
small mass deformations. We also consider non-conformal deformations
of these N’ =1 theories. The cascading RG flows that ensue are a one-
parameter generalization of those found by Klebanov and Strassler and
by Cachazo et al. The universality exhibited by these flows is shown to
be a simple consequence of paths generated by the action of the affine
Weyl group.
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1 Introduction

For nearly a decade, branes have provided crucial insights into supersym-
metric gauge theories. Two arenas where branes have found particular suc-
cess are Maldacena’s gauge/gravity duality [1] and ITA suspended brane
constructions [2-4]. The duality has proved to be a useful arena for ana-
lyzing renormalization group (RG) flows, in many cases exact supergravity
solutions can be found [5-7]. In ten dimensions these flows are driven by
non-trivial profiles for the p-form fluxes and/or geometric moduli. The ITA
constructions on the other hand, have proved perhaps a little less useful, at
least in terms of RG flows but in this paper we will find great utility for
these setups in uncovering explicit actions of duality groups.

With the goal of studying duality symmetries within a certain class of
RG flows, we study the N/ = 2 quiver gauge theory that is dual to IIB string
theory on AdSs x S°/Z, [8, 9]. Five-dimensional, ' = 8 gauged supergrav-
ity has proven very useful in the analysis of holographic flows in N' =4
Yang-Mills. It was argued in [11] that N’ =4 gauged supergravity, with
very specific couplings to N = 4 vector and tensor multiplets would provide
a similar tool for N' = 2 quiver gauge theories. The most general such super-
gravity theory was constructed in [10], and the precise version relevant to
quiver gauge theories was found and analyzed in [11]. It is believed (but not
proven) that this theory is a consistent truncation of the ten-dimensional
theory, and so results derived in five dimensions should precisely correspond
to ten-dimensional backgrounds. The results of [11] thereby made some
intriguing predictions for IIB supergravity backgrounds. In particular, it
was shown that, after gauging, there is an SU(1,n) global symmetry group
that remains unbroken. The SU(1,n) acts on scalars holographically dual
to the complex gauge couplings of each gauge group, implying that each
gauge coupling can be set to an arbitrary value. (In fact the SU(1,n)
acts on more scalars than just those dual to gauge couplings. This will
be described in more detail below.). In the untwisted IIB string theory
on AdSs x S°, this duality group is simply the SU(1,1) = SL(2,IR) which
is broken to SL(2,7Z) in string theory, and hence in the finite N gauge
theory. Thus one must expect, in general, that the SU(1,n) will be bro-
ken to a discrete subgroup for finite-rank gauge groups. This led us to
the present investigation of duality symmetries from the perspective of field
theory.

There is another description of these N' = 2 quiver gauge theories [2, 4]
that is T-dual to the IIB description. This construction is the classic IIA
suspended brane construction lifted to M-theory. In this construction,
the D4-branes and the NS5-branes that they are suspended between, lift
to M-theory as a single M5-brane wrapped on the Seiberg—Witten curve.
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For our purposes, the advantage of this M-theory picture over its IIB coun-
terpart is that the duality symmetries can be easily and precisely described
without the need to take a 't Hooft limit. In [4] Witten noted that the dual-
ity group that acts on complexified gauge couplings is the mapping class
group of a torus with n punctures, which following the notation used in [12]
we denote M (1,n).

The group M (1,n) has been much studied by mathematicians and is
known to be an extension of the torus braid group on n-strands by SL(2,Z)
[12]. We find that the representation of this group which acts on gauge cou-
plings is not faithful but it fails to be faithful in a very simple way. If one
supplements M (1,n) with the condition that permutations are involutions
instead of braiding, i.e., s? =1 where s; exchanges the i-th and i + 1-th
punctures, then one does obtain a faithful representation. With these extra
relations this new group has the following subgroups: the A,_; affine Weyl
group, a Z, which rotates the nodes of the quiver and of course SL(2,Z).
It has already been suggested that affine quiver theories have the affine
Weyl group as a duality group [13], it is nice to find a direct connection to
the M-theory picture. We find that the SL(2,7Z) has a preferred node and
thus there are n copies of SL(2,Z) related by conjugation by elements of
Zy,. These three subgroups appear in an identical fashion in the context of
SU(n) WZW models, this is a tantalizing observation but we are unable to
provide a deeper connection.

These field theories admit a family of relevant deformations by mass terms
for adjoint chiral superfields, which according to the methods of Leigh and
Strassler [14] should flow to a non-trivial CFT in the IR [11, 15]. The main
purpose of this paper is to study the duality group of these flows. For the
Z,, orbifold there are thus n independent mass parameters. One of these
mass parameters is the sum of the masses on the nodes of the quiver and,
being invariant under permutations, it comes from the untwisted sector of
the gauge theory. Such a deformation of the gauge theory is therefore is dual
to the Z, orbifold of the Pilch-Warner flow [6]. The other mass parame-
ters are dual to complexified Kéhler moduli of the blow-ups of the orbifold
singularities [11]. For n = 2, the IR fixed point of the resulting flow is dual
to AdSs x T1 1 [16], and the twisted-sector flows for the general orbifolds
were described in [17]. One may also consider a relevant deformation by a
combination of masses in both the twisted and untwisted sectors, and these
too should flow to a CFT in the IR [11] however the ten-dimensional super-
gravity dual for these IR fixed points, let alone the entire flows has yet to
be constructed.

On the other hand, while the potentials for five-dimensional gauged super-
gravity theories tend to be unwieldy, the analysis of special sub-sectors can
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prove relatively simple. For flows described above it was easy to show [11]
that the SU(1,n) invariance of the theory also acts on the scalars dual to
adjoint masses. In particular, that the compact, SU(n) subgroup acts on
them in the fundamental representation. The holographic dual of the flow
involving only the untwisted sector mass is explicitly known, both in five
dimensions [5], and in ten-dimensions [6]. One can thus use the SU(n) sym-
metry to map the known flow of [5] to any flow involving any combination
of twisted and untwisted sector masses. This symmetry is manifest in five
dimensions, but is far from obvious in ten dimensions: the untwisted sector
mass is dual to a topologically trivial B-field flux, while the twisted sector
masses involve Kahler moduli of blow-ups. Such an unusual duality rotation
was one of the more intriguing geometric predictions of [11].

In the ITA picture, masses for the adjoint fields are introduced by rotating
the NS5-branes [18] and explicit formulas in terms of the ten-dimensional
geometry have been obtained when the masses are small. Using this, we are
able to describe the duality symmetries of these mass deformations and again
we find the affine Weyl group and Z,,, however, only the S-transformation
from SL(2,7) acts non-trivially. Each mass behaves under a Weyl reflection
as a Dynkin label and the sum of the masses, the “global mass”, is the level
and is thus invariant.

As mentioned above, the RG flows that ensue from these mass defor-
mations should all go to non-trivial, conformal fixed points. Indeed, the
holographic solution [11] suggests that the fixed line of [14] becomes a fam-
ily of such lines parameterized by CIP"~! = SU(n)/(SU(n — 1) x U(1)). By
integrating out the massive fields we get a quartic superpotential and a new
set of superpotential couplings, which are proportional to the inverse of the
masses. In the suspended brane construction, Seiberg duality corresponds
to interchanging NS5-branes [19]. In [15] it was shown that Seiberg duality
acts non-trivially on the superpotential couplings and a 1-parameter gener-
alization of the Klebanov—Strassler cascading RG flow to include non-trivial
profiles for the 3-form flux was conjectured. These new flows were shown to
exhibit universality in the sense that after a large number of Seiberg duali-
ties, the sum of the inverse of the superpotential couplings approaches zero,
which is the condition for vanishing 3-form flux. In this paper we point
out that the inverses of superpotential couplings transform under Seiberg
duality as Dynkin labels under an affine Weyl reflection. The universality
is then a simple statement about paths generated by the affine Weyl group.
We interpret this duality as “inherited” from the parent A" = 2 theory.

Inherited dualities are an interesting phenomenon [20]. The concept
first appeared as an attempt to prove that in special cases, namely when
Ny = 2N, Seiberg duality is inherited from A" = 2 S-duality [14, 23]. Since
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then, S-duality of the N = 1* flow has been intensively studied [22, 23]. The
authors of [23] study N = 2 quiver gauge theories with non-zero masses for
the hypermultiplets as well for the adjoint chiral superfields, these theories
flow to either confining or Higgs vacua. Inherited duality for N' = 4 super
yang-mills (SYM) deformed by a single mass term has also been studied
[24]. In this paper we conjecture that the N' =1 A\n,l quiver gauge theories
have n SL(2,7Z) duality symmetries distinct from Seiberg duality. These
SL(2,Z) groups do not commute and thus there is no sense in which we
have a “diagonal” or “overall” SL(2,Z). We establish that all these sym-
metries are inherited from their N' = 2 parent.

2 The N = 2 duality group

In [4], Witten constructed four dimensional N = 2, A\n_l quiver gauge the-
ories by lifting a ITA brane construction to M-theory. The starting point is
ITA with n separated NS5-branes and N D4-branes suspended between each
of them. Specifically, the asymptotic coordinates of the i-th NS5-brane are

2T=28=2%=0and 25 = xf The D4-branes have four world volume coor-

dinates in common with the NS5-branes (2°,...,23), they also have finite
extent in the 2% direction thus the gauge theory living on their worldvol-
ume is effectively four dimensional. There are n gauge coupling constants,
given by

1wy -

- = (2.1)

9; 8mgsL
The affine quiver gauge theories are engineered when the x% direction is
periodic!, with period, L. There are then n NS-5 branes, and the indices in
(2.1) are taken cyclically, except that in going from nth brane to the first

brane, one continues around the circle and picks up a full period so that

"1 1
Y 5= - (2.2)

i=1 9

Upon lifting to M-theory, the NS-5 branes will be separated in the z'°
direction as well and this separation is interpreted as the theta angle, namely
10 10

Tiv1 — 4

—_ 2.3
p (23)

The periodicity properties are now represented in terms of a torus, F;, is

constructed from the 2% and 2'0 directions. First, one must impose that 2'°

0; =

!These are referred to as the elliptic models in [4]
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is periodic:
210 ~ 210 4 27 R, (2.4)
which guarantees the standard periodicity under 6; — ¢; + 27 in each gauge

theory factor separately. The periodicity in the x% direction is now modified
to:

(2%,2'%) ~ (2% 4+ 27L,2'° + OR) (2.5)
If one now defines:
;6 10
) L
bi 1672gL + 2R’ (2:6)
i 0
= — 2.7
’ 87gs * 27’ (27)

then the p; are points on the elliptic curve, E,, with Teichmuller parameter,
7. Individual gauge couplings are then differences between points on this
torus, and the cyclically defined sum, (2.2), becomes
n

> i —pi) =T (2.8)

i=1
Specifically, because the D4-branes wrap the torus along the 25-direction in
the quiver gauge theory, we thus take:

Pnt+1 =pP1 + T, Po=DpPn—T, (2.9)

We will discuss this below.

Witten thus concludes that the moduli space of coupling constants of
the quiver gauge theory is the moduli space M1, of a 2-torus with n dis-
tinct, unordered punctures. The duality group of the four dimensional gauge
theory is then the mapping class group M (1,n).

2.1 Generators and relations

We now describe explicitly how this mapping class group acts on gauge
couplings. The covering space of the moduli space M1, can then be parame-
trized by 7 and the n marked points p; in the complex plane. Since only
differences of the p; have physical meaning, these n points are only defined
up to an overall shift:

(T,pl,...,pn)~(T,p1+c,...,pn+0), (210)

for any complex constant, c. We shall call this basis for the representation
of our group the point basis. Then the generators of M(1,n) are the usual
generators S and T of M(1,1) ~ SL(2,Z), combined with permutations of
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the marked points, s; and individual lattice shifts T; and ¢;. The explicit
action of these generators are:

1 p P
S (T>p17"'apn)—><_a7"'an ’
T T T
T: (Taplv cee 7pn) — (T + 1apla “e. apn)a
T% : (Tvpl) s 7pn) — (Tapla <oy Pi + 1a s apn)v
ti : (T7p17 LI ’pn) — (T’plv Ry % + Tyeun 7pn)a
Si - (T7p1a vy Piy Dikly - 7pn) — (Tapla <o s Pit15Piy - apn)a { 7é n,
Snp - (Tvplv cee )pn) — (T7pn —T,p2...,Pn—-1,P1 + T)'
The action of s, differs in form from the other s; because of the cyclic
structure of the p; arising from the wrapping of the D4-branes. Indeed,
one can obtain this formula if one properly applies the convention (2.9).
This rule will also emerge from the discussion of gauge couplings, where

we require that the permutations act in the same manner upon all gauge
couplings.

There are non-trivial relations between these generators and some of the
generators are actually redundant. First, note that S and T are the usual
generators of SL(2,7) with S? acting non-trivially on the n-points but triv-
ially on 7. Less obvious are the relations obeyed by the other generators. To
elucidate these we first introduce another basis for the representation called

the gauge coupling basis. This basis is (71,...,7,) where
Ti = Di4l — Di, L F N,

P (2.11)

Tn =T+ P1— Pn-

The overall gauge coupling constant 7 can be recovered as 7 =), 7;. In
this basis the modular group acts as follows?

_ 1
S:(T1y.e oy Tn) — (7—1,...,7—" 1,7—"—1—>,

T T T T

T: (11, ™) — (T1ye oy Tn—1,Tn + 1),

Tii (T1yeeoyn) — (T, .oy Tici + L, — 1,000 ),

tit (T1ye oy Tn) —> (T1y ooy Tl + Ty Ti — Ty ooy ),

Sit (Thy ooy Tis 1y Tiy Tid 1y ooy Tn) — (T1y ooy Ticl + Tiy
— TiyTitl + Tiy- vy Tn)

where we now interpret these formula with the exact cyclic convention:
Tna+1 = 71 and 79 = 7,. This fixes the form of s,, above.

2For n = 2 the action of the s; is slightly different, as is familiar from the action of
affine Weyl groups on fundamental weights.
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We can now find relations between these generators. Firstly, the T; and
t; are related by the S-transformation

t;=S87'T;S and T, '=S"'48S. (2.12)

We introduce w, the generator of Z,,, which in the gauge coupling basis acts
as 7; — Ti+1,V @ and can be easily seen to satisfy

W =1;8_18_2---8i11- (2.13)
We can build T; out of T and the cyclic permutations w
T; = "yt (2.14)
Finally, the reflection operations s; are related by cyclic permutations
Sip1 =W Lsw. (2.15)

Thus we have shown that a minimal set of generators is {5, T s1,w} although
for a nice presentation we include s;,t;,T; and exclude w, see the appendix
for such a presentation.

It is quite interesting that the SL(2,7Z) subgroup described above chooses
a preferred node of the quiver. The Z, subgroup rotates the nodes of
the quiver and thus there are actually n different SL(2,7Z) subgroups, all
related by conjugation by an element of Z,,. Note that the different SL(2,Z)
subgroups do not commute with each other. This means that there is no
diagonal subgroup which could be the “overall” SL(2,7Z).

From the point of view of holographic RG flows in type IIB string theory
this might seem a little strange at first. In type IIB theory there is only one
SL(2,7Z) duality group in ten dimensions. However in a compactification
of type IIB theory on an orbifold it is not clear how the SL(2,7Z) acts on
the twisted sector fields. In order to determine that, one has to blow up
the singularity, such that the whole geometry is smooth. Then the action of
SL(2,7) is well defined. The stringy geometry provides n different ways to
blow up the singularity. These blowups are related by the Z,, quantum sym-
metry as we have discovered above. As expected, each SL(2,7Z) subgroup
acts in the same way on the untwisted fields.

For a generic set of gauge couplings, it can happen that after one of the
foregoing duality transformations one or more of the individual couplings
have negative imaginary part. This is unphysical. So one must use these
duality transformations with care. For example, after an S transformation,
the strength of the gauge couplings is determined by the differences of posi-
tions of NS5-branes in the 28 direction. One can then use the involutions, s;,
to reorder the NS5-branes such that the n-tuple (2%,... 28) is restored to
increasing order. As we will see in the next section, the s; are, in fact, Seiberg

dualities acting on the i-th node of the quiver theory. This is therefore in
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perfect accord with the previous observations [13] that Seiberg duality can
be used to prevent 1/g? from becoming negative.

The mapping class group M (1,7n) has been studied in detail by Birman
[12, 25]. This group is an extension of the torus braid group B,(T?) by
SL(2,Z). From the presentation of B, (T?) given in [25] we can see that our
representation is not faithful. If we supplement B, (T?) with the relations
s% = 1 we recover the presentation provided in the appendix. The non-trivial
homeomorphism s? of M (1,n) has become trivial, in the IIA picture this is
due to brane—antibrane annihilation.

3 The N =1 duality group

We now study deformations of the N' = 2 quiver gauge theory by masses for
the adjoint scalars. The methods of Leigh and Strassler [14] predict that,
assuming the hypermultiplet masses are set to zero, the end-point of the
resulting RG flow will be a non-trivial CFT [11, 15].

3.1 Small mass deformations

To understand the A/ = 1 duality group we will again use the 5-brane cons-
truction in M-theory. The construction of N'= 2 gauge theories requires that
the Mb5-brane wraps a complex curve that is embedded in the two complex
dimensions with holomorphic coordinates v = z* + iz® and w = 26 + iz19.
More generally, a N’ =1 theory merely requires that the M5-brane wrap
a curve embedded in three complex dimensions, with the extra dimension
given by v = 27 4 i28. In the IIA theory, the soft breaking of the N = 2 the-
ory down to N = 1 supersymmetry can be achieved by essentially tilting the
NS-5 branes relative to one-another. In M-theory, we need the M5-brane to
wrap a curve in (u, v, w)-space and for large (u,v,w) the NS-5 branes must
be asymptotic to points on the elliptic curve, E;, defined by (2.4), (2.5) in
the w-direction and by straight lines in the (u,v)-direction. The directions
of these lines can be parametrized by points, z;, on a P! that has v and v as
homogeneous coordinates. Therefore, the asymptotic M5-brane data is the
collections of points, p;, on the torus and a set of points, 2z on a P

As before, the gauge coupling constants 7; are given by (2.11). When
at least two of the NS5-branes, or equivalently the asymptotic legs of the
M5-brane, fail to be parallel, (z; # z; for some ¢ and j) the N' = 2 supersym-
metry is softly broken by small masses m; for the adjoint scalars [18]. There
is, however, a problem: given a quiver theory with n nodes, there must be n
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independent mass parameters for the A/ = 1 chiral multiplets in the N = 2
vector multiplets. However, a set of n NS-5 branes has only (n — 1) inde-
pendent relative angles between them, and so the tilting of branes describes
all but one of the mass parameters. We will resolve this issue momentarily.

For a generic angle between the two NS5-branes, there is also an ambiguity
in determining the adjoint scalar. If the branes are almost parallel, the
canonical choice for the scalar is the position of the suspended D4-brane
along the direction of the NS5-branes. However, there is a second, very
heavy scalar for the motion of the suspended D4-branes perpendicular to
the direction of the NS5-branes. For this reason, a mass formula valid for
arbitrary masses should be a function on a double cover of the P!. The field
theoretic meaning of the additional adjoint scalar which must be integrated
in along the flow is unclear. At any rate, we will work primarily with the
small mass formula. This means that all the branes are very nearly parallel
to each other asymptotically.

The group acting in the (u, v)-directions that preserves the complex struc-
ture is GL(2,C). In order to preserve the holomorphic 3-form, this rotation
group has to be restricted to SL(2,C). Since the branes are all almost par-
allel, we can use the SL(2,C) to rotate them so that they are all nearly
asymptotic to the v-direction. This means that they can all be represented
small values of the inhomogenous coordinates, z; = u;/v;, on P!. The mass
parameters, m;, in the superpotential for the adjoint scalar ®; has to be
a holomorphic function of z; and z;41. Further, the mass must vanish iff
the two 5-branes are parallel. From this we get the following approximation
when the masses are small:

m; = Zi4+1 — Z- (31)

Observe that the sum of the masses vanishes, and so, at least for small
m;, the missing mass parameter is the total, or global, mass parameter,

m=>,m;.

In [4] a similar problem was encountered and solved for the independent
hypermultiplet mass terms in the A/ = 2 theory. The solution was to fiber
the mass parameters in a non-trivial manner over the torus: traveling around
one the cycles of the torus resulted in a non-trivial (affine) translation of the
masses. This affine shift, or connection on the fibration thus provided the
non-trivial total mass. Here we use a similar solution, but we cannot use an
affine fibration of the NS-5 branes as this would offset the D4-branes sus-
pended between them, and thus generate unwanted hypermultiplet masses.

To generate a non-zero global mass we should fiber C? described by (u,v)
over E,, and only use the SL(2,C) structure group, so as preserve the
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supersymmetry and fix the origin in C? so as to avoid displacing the D4
branes. Since the global mass can be turned off continuously, the fibration
has to be topologically trivial. The moduli space of such a fibration is
classified by an embedding of 71 (E,) = Z ® Z into the maximal torus® of
SL(2,C). If one considers the projective action of SL(2,C) on the P!, then
the obvious choice of maximal torus is to take the complexified rotations
(rotations and scale transformations) z — a z that fix the origin and the
point at infinity. However, this does not move branes located at the origin,
and so we conjugate this torus so that the fixed points are z = 1 and z = —1
on the P'. That is, we take the torus to be z — (az + b)/(bz + a), with
a? —b> =1. The effect of such transformations on points near z =0 is
an affine shift: z — z + b/a, and thus if one travels around the torus, one
generates an overall shift in the global mass parameter.

We also see that for our purposes, we can approximate the P! bundle
by an affine fibration of C over E., which is incidentally also a principal C
bundle. Our construction therefore closely parallels the construction of a
hypermultiplet global mass via an affine fibration in [4].

A principal C bundle over E, = T? has two gluing functions, one for each
cycle of the base, which are encoded in

(pi»2zi) ~ (pi + 1,2 + a), (3.2)
(pis zi) ~ (pi + 7, 2 + b). (3.3)

However, there is a gauge freedom that means that only one such parameter
is physical. In general the gauge transformation means that we can shift the
fiber coordinate by an arbitrary holomorphic function of the base variable:
zi = #z, = z; + f(p;). However in order to remain consistent with the con-
stant gluing functions above, f(p;) must be a linear function. Further, the
constant part of this linear function has no effect on the gluing functions and
can be set to zero. Thus we have a gauge freedom: g : (p,z) = (p,z + ¢p)
for some constant, ¢. This gauge transformation also modifies the gluing
functions, and so we have:

(7,0,b,pi,2) = (,—c- 0+ a+c-1,—c-0+b+c-7,pi, 2 + cpi)
= (r,a+ ¢, b+ c7,pi, zi + cp;)

By choosing a = —c we get a trivial gluing function associated to the 8-cycle
of T?, while the remaining gluing function is identified with the mass:

m; = Zij+1 — %4, (3.4)

My = 21 — 2p, + M. (3.5

3Note that the maximal torus of SL(2,C) is C*.
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This periodicity now precisely parallels that of the gauge coupling constants.
The gauge choice above (associating m with the 2° cycle) ensures, that T;
acts as the identity on mass parameters as required by physics.

From the foregoing definition it is immediate that the masses transform
in the same way as the gauge coupling constants under the permutation
symmetries which generate the affine Weyl group (now with Y m; = m as
the level) when acting on the masses. In order to understand the action of
S-duality on the mass parameters, we will need to explicitly work out gauge
transformations in local coordinates.

The action of S-duality violates the gauge choice made above, and to
restore the gauge it must be followed by a gauge transformation with ¢ = m.
The geometrical data thus transforms as:

1 i
(1,0,m, p;, 2;) N <—T,m,0,€_,zi> (3.6)

1 . .
N (—,o,m,pl,zi —mp’> . (3.7)
T T T

T

From now on we will leave implicit the fact that S-duality is coupled with
the foregoing gauge transformation. It is instructive to check that S? acts
in the following way

2

S
(T,O,m,pz‘yzz’) — (T,O, —m, _piazi)- (38)

We now have the complete action of the duality group on the masses, namely

m mm MTh—1
S: (m,ml,...,mn)—>(—,ml——,...,mn_l— ,
T T T
mr, = m
my — + — )
T T
tii (myma, ..o omy,.o.,my) — (myma,...,mi—1 +m,m; —m,...,my),
sit (MM, .o M1, My, Mg, -, M)
— (myma, .. M1 My, =My, M1 + My, M),
wi (myma, .oy Myy oy M1, M) — (MM, M1y« ey My, M)

with the generators {7}, T} acting trivially.

We see from the foregoing construction that the N'= 1 duality group is
the same as the A/ = 2 duality group. This is partly due to the fact that the
mapping class group of P! is trivial, so no new symmetries are introduced
in the A/ =1 theory. There are still n different SL(2,Z) subgroups of the
duality group, each related by conjugation by an element of Z,.
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3.2 Seiberg duality

For large mass deformations we must dispense with our geometric mass
formula. However, at a scale below the smallest mass scale, we can inte-
grate out all the massive fields and obtain a quartic superpotential for the
hypermultiplet fields. In the IR we can expect a non-trivial CFT and here
Seiberg duality acts non-trivially on couplings. As we will see, this action
is in agreement with what we derived for the small mass approximation,
namely they transform as Dynkin labels under an affine Weyl reflection and
thus we interpret this duality “inherited” from its A/ = 2 parent theory.

It has long been appreciated that quartic superpotentials play a special
role in Seiberg duality, namely the dual theory also has a quartic super-
potential. This idea was used to great effect in the celebrated Klebanov
and Strassler scenario [7], which is included in our analyis with n = 2 and
mq + mg = 0. In the Klebanov-Strassler solution [7] the superpotential cou-
plings are left invariant under Seiberg duality, this is a fixed point of a
symmetry group elucidated in [15]. In general the superpotential couplings
are not invariant under this operation.

We now review the action of Seiberg duality on the N' = 1 superpotential.
The N'= 2 quiver has a unique renormalizable superpotential [8]:
n
WN:2 = Z)\Z(I)z(AzBl — Ai—lBi—l)a (39)
i=1

where, for N' =2 supersymmetry \; = v/2. We deform by the relevant
operator

AW =Y %cb? (3.10)
=1

which breaks supersymmetry to N’ = 1. Integrating out the massive adjoint
fields results in a new superpotential

Wj\/’;l = Z hz(Ale - Aileifl)Q (311)
=1
where h; = —)\%/mi.

There is a straightforward recipe for calculating the Seiberg dual theory
[26]. When one gauge group becomes strongly coupled (relative to the groups
of its adjacent nodes) one introduces dual quarks and “fundamental” mesons.
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To dualize on the j-th node one introduces a matrix of meson fields:

A;_1A; A, _1B._
M = < éitj é;‘” 1) (3.12)
Jj41g jPj—1

and the superpotential (3.11) becomes
j—2
Wy=1=_hi(AiBi — A;i_1Bi_1)*
i=1
+hjo1(Mfy + (Bj—2Aj-2)” — 2M12Bj_2A;_»)
+ hy(Miy + M3y — 2My1 M)
+ hjp1(M3) + (Aj41B41)* — 2Mo1Aj 1 Bjyq)

n
+ Y hi(ABi — Ai_1B;_1)?
=42
+ y(Muaj_1aj + Migaj_1bj—1 + Marbaj + Masbjbj_1), (3.13)

where we have also introduced “dual quarks”, (aj,a;—1,b;,bj—1). Since
the action is quadratic in these new fields, one can trivially integrate them
out. However, if the mesons, M;;, are massive then they can be integrated
out instead, and this results in a new quartic superpotential. This has
the effect of making the following replacement of the fields attached to the
j-th node:

(4j, Aj—1, Bj, Bj—1) — (aj, aj-1,bj,bj1). (3.14)
However, after integrating out the massive mesons the couplings undergo

non-trivial transformations. If we abuse notation and rescale the “dual
quarks” according to:

Y

o (@ aj-1,05,bj-1) — (A5, 451, Bj, Bj-1), (3.15)
J
then the resulting superpotential is
n
WN:1 == Z h;(AZBZ - Aileifl)Q (316)
i=1

where the couplings have transformed as follows,
Wl =hTl A -1, 41
o = bk byt
Wyt = —hit
L =il bt (3.17)
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Recalling from [15] that the condition for a generalized conifold is 3 h; ' = 0,
one can see that the rescaling (3.15) is necessary for the Seiberg dual of a
generalized confold to be a generalized conifold, for which there is much
evidence [13]. We see from (3.17) that hj_1 transform under Seiberg duality

as Dynkin labels of the ﬁn Weyl group transform under a reflection.

This is in agreement with the transformations that we derived in the
regime of small masses in the previous section. We know that the action
of T; and T is a symmetry of the A/ =1 field theory, they act on gauge
couplings in an identical way as for the N/ = 2 theory and they leave the
superpotential couplings invariant. However it is desirable to provide a field
theory derivation of the S-transformation. Once this is shown the action of
t; is immediate. We leave this for future work.

3.3 The cascade

So far we have considered theories with product gauge groups with the rank
of each group being equal. If one considers the N/ = 1 theories but with
ranks that are no longer all equal, then a non-trivial RG flow ensues [16].
This flow can be adequately described by a cascade of Seiberg dualities on
alternate nodes. In [13] it was realized that the effect of this RG flow on
gauge couplings can be simply described by the motion of a “billiard ball”
in the fundamental Weyl chamber of the A,_; affine Weyl group. When
the ball bounces off a wall this corresponds to a Weyl reflection or Seiberg
duality. From the results of [15] we see that in addition, Seiberg duality
acts on superpotential couplings as a fundamental affine Weyl reflection.
One main result from [15] was that there exists universality in the IR of a
general cascade associated to the A\n quiver. More precisely, define a UV
theory to be one of the N' =1 theories discussed above but with the ranks
of the gauge groups unequal and an arbitrary initial set of superpotential
couplings h;. Define

=Y nt (3.18)
=1

and observe that this quantity is invariant under the actions of Seiberg dual-
ities (3.17). Consider the projective space with homogeneous coordinates
[hl_l, ..., h1], then a sequence of Seiberg dualities taken around the quiver
has the effect of translation along this projective space. There is a sub-
manifold of the projective space defined by = = 0 and called the “conifold
subspace”. Apart from being invariant under Seiberg duality, this subspace

is an attractor for all duality cascades [15]. Consider a theory with h=1 # 0,
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then after a large number of such Seiberg dualities a subset of superpoten-
tial couplings will satisfy |h;!| > h™'. As explained in [15], the physical
couplings are the projective quantities, h;/h;, and since h~1 is invariant,
the physical couplings are actually approaching the conifold subspace.

This property has a simple explanation in terms of paths in the affine Weyl
group. The couplings hi_1 are Dynkin labels for the reflection group, and

hl = Yoy hl-_l is the level. Consider the 21 Weyl group with Dynkin labels
A1, A2 and level A. Under a Weyl reflection the level is left invariant, and
furthermore the pure translations in the affine Weyl group are proportional
to the level. If we draw the line Ay + A2 = A in the plane as in Figure 1, then
a Weyl reflection is a reflection in a hyperplane which passes through either
of the two points (0,A) or (\,0) and is perpendicular to this line. From
the figure we see that alternating reflections result in an arbitrary initial
point (here we chose an initial point to lie between (A,0) and (0, A)) being
mapped toward infinity. In projective space this point is moving toward
the point A\;/A2 = —1. As explained in [15] it is the projective coordinates

Y

Figure 1: Weyl reflections acting on fundamental weights of A
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(A7t ho ] = [M1, A2] that are important parameters. If the initial point was
chosen to lie on the line with A = 0 then the two reflection planes coincide:
the translations collapse because the level is zero. This is the well known
fact that only the subgroup of the affine Weyl group which is isomorphic
to the finite Weyl group acts faithfully on roots, and for A; this means
that the point remains at A; /A2 = —1. This is a simple explanation for the
universality found in [15].

4 Discussion

One interesting open problem that we have not addressed in this paper is
the relationship between the duality group found in the M-theory construc-
tion and the SU(1,n) found in five dimensional gauged supergravity. The
M-theory duality group is the symmetry group of a quiver gauge theory
with finite rank gauge group and we expect that it admits an embedding
into SU(1,n) in the same sense that SL(2,Z) embeds into SU(1,1). There
are certainly n distinct, natural, non-commuting SL(2,Z) subgroups in
SU(1,n), and it is tempting to identify them with the subgroups identi-
fied above. One can also embed the A,_; affine Weyl group into SU(1,n).
This is straightforward if one adds another dimension to the weight spaces.
This extra dimension is the Lg operator familiar from WZW models, but it is
not clear how this relates to the gauged supergravity. Indeed, while parts of
the duality group identified here do fit into the SU(1,n) of supergravity, we
have not yet succeeded in embedding the entire duality group in a manner
consistent with signatures of the appropriate invariant metrics. In fact, this
may not be possible, since it is perhaps naive to hope that supergravity
captures all the dualities of the field theory.

There is a fascinating connection to WZW models which may not be
unrelated. The affine Weyl group and Z,, appear naturally in Kac-Moody
algebras but further, the parameters in the characters have modular trans-
formations identical to those found here for gauge couplings. Obviously
a fundamental input to defining a character is to have a well defined L
operator, something we are lacking here. Moreover, the familiar unitary
representations of WZW models require an integer level, whereas the level,
7, for the field theory is an arbitrary complex number.

There is also the connection between WZW models, the mapping class
group of Riemann surfaces with punctures and Chern—Simons theory [27,
28]. It would be fascinating to find a connection between the F-terms of the
four-dimensional quiver gauge theory and Chern—Simons theory in three
dimensions, perhaps along the lines [29-31].
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A Presentation of the A/ = 2 duality group

Here we write down a presentation for the NV = 2 duality group. The genera-
tors {s;,t;,Tjli=1,...,n—1j=1,...,n} are also generators of B,(T?),
the torus braid group on n strands. When we include the relations s? = 1,
the more complicated relations in B, (T?) collapse (see [25] for a presentation
of B,(T?)) leaving only the relations we have supplied here.

Firstly, we have SL(2,7Z) generated as usual by {S,T}, note that S? is
non-trivial

St=1, S*1=18* (ST)®=1. (A1)

The braid group has only n — 1 permutations but after imposing 8? =1 we
can build one more permutation which enhances the symmetric group into
the A,_1 affine Weyl group,

Sp = tl_ltn$1$2 e Sn_1, (A.2)

57 =1, (A.3)
$iSi+18i = Si+18iSi+1 Vi (n # 2) (A.4)
5i85 = 8585, |i—j| > 1. (A.5)

Taken together (A.4) and (A.5) give the canonical presentation of A,_i.
Other relations within the braid generators are

tT; = Tit;, (A6
Sitis; = tiv1,  Sitiv18i = ti, (A7)
silis; = Tiy1, siliy1si =T; Vi (A.8)
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As mentioned above, the mapping class group is an extension of B, (T?) by
SL(2,7), explicitly this is given by

S71s;S =s;, i#mn, (A.9)
T s, T=s;, i#n, (A.10)
SIS =t, S 'S=T' Vi, (A.11)
T'%WT =Tit;, T'T,T=T,Vi. (A.12)
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