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Abstract

We develop techniques for obtaining the mirror of Calabi-Yau super-
manifolds as super Landau-Ginzburg theories. In some cases the dual
can be equivalent to a geometry. We apply this to some examples. In

particular we show that the mirror of the twistorial Calabi-Yau CP3|4

becomes equivalent to a quadric in CP3|3 × CP3|3 as had been recently

conjectured (in the limit where the Kähler parameter of CP3|4, t → ±∞).
Moreover we show using these techniques that there is a non-trivial Z2

symmetry for the Kähler parameter, t → −t, which exchanges the op-
posite helicity states. As another class of examples, we show that the
mirror of certain weighted projective (n + 1|1) superspaces is equivalent
to compact Calabi-Yau hypersurfaces in weighted projective n space.
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1 Introduction

Mirror symmetry has been quite effective in clarifying non-perturbative as-
pects of the worldsheet theory in various contexts (see [7]). The basic result
of mirror symmetry [8] is that the worldsheet supersymmetric sigma model
can be T-dualized to a Landau-Ginzburg theory, which in certain cases is
equivalent to a supersymmetric sigma model on a different Calabi-Yau man-
ifold.

However, early on it was realized that not every Landau-Ginzburg theory
is equivalent to a Calabi-Yau manifold [17]. For example, rigid Calabi-Yau
manifolds have a Landau-Ginzburg mirror, but it cannot have a Calabi-
Yau mirror as the mirror manifold cannot have a Kähler class. To over-
come this issue it was proposed in [15] that one could broaden the space of
Calabi-Yau’s to include Calabi-Yau supermanifolds, to restore the geometric
nature of the mirror symmetry. The mirror of a Calabi-Yau may be a super-
Calabi-Yau. Super-Calabi-Yau manifolds were further studied in [14] where
it was shown that as far as A-model topological strings are concerned cer-
tain Calabi-Yau spaces and super-Calabi-Yau spaces are equivalent. What
was surprising in this context is that it was found that super-Calabi-Yau’s
which are weighted projective superspaces can be equivalent to complete
intersections in ordinary weighted projective spaces.

Our current interest in the subject arose from the conjectures in [11].

In that paper the topological B-model on twistorial Calabi-Yau CP3|4 [18]
was mapped by a conjectured S-duality to A-model on the same Calabi-
Yau and by a further conjectured mirror symmetry back to a B-model on a
quadric in CP3|3 × CP3|3. The motivation for the latter mirror conjecture
was that it was known that the worldsheet instantons are not needed for a
stringy realization of the N = 4 supersymmetric Yang-Mills on a quadric in
CP3|3×CP3|3, [19] whereas they were expected to be needed in the A-model

on CP3|4. Note that these two conjectures are independent of whether one
assumes the relevant instantans for the gauge sector are closed [18] or open
[11] Riemann surfaces.

The S-duality conjecture has now been put on a firmer ground in [12]
where it was shown that this topological S-duality is inherited for ordinary
Calabi-Yau threefolds from the S-duality of type IIB superstrings in 10 di-
mensions as well as explaining many other existing results in the literature
based on this duality. In this paper we verify the mirror conjecture of [11].

More precisely we find that the mirror of CP3|4 does depend on the Kähler
class tA of CP3|4. We show that in the limit tA → ±∞ the mirror of CP3|4

becomes equivalent to a quadric in CP3|3 ×CP3|3. We offer an explanation
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of why tA enters the picture: The value of tA corresponds to the expectation
value of the dilaton in the N = 4 conformal supergravity. It is natural to
expect that the observations of [19] could be generalized to include the more
general geometry for arbitrary t. It is also conceivable (though we find it less
appealing) that t → ±∞ is necessary for decoupling the gravity sector from
the gauge sector. At any rate for the Yang-Mills sector by itself the value of t
is redundant and can be reabsorbed into a redefinition of the gauge coupling
constant and thus can take any value, including t → ±∞, without affecting
the amplitudes. This thus completes the circle of ideas relating perturbative
Yang-Mills without instantons in the context of a quadric in CP3|3 ×CP3|3

to its realization in twistor CP3|4 which requires holomorphic instantons, as
is standard by mirror symmetry.

A simple consequence of the above, is the existence of a Z2 parity symme-
try which exchanges tA ↔ −tA. This symmetry turns out to exchange the
two CP3|3’s and corresponds to inverting the helicity of the fields. This is
a highly non-trivial symmetry which was expected from the correspondence
with Yang-Mills theory, but not manifestly realized in the twistor space
CP3|4.

The method we use to prove the mirror symmetry is a natural extension
of the method in [8] to the case of supermanifolds realized as linear sigma
models with super-chiral fields. For each fermionic field we T-dualize the
phase of it, which gives another bosonic mirror field. However, to conserve
the central charge we also end up with two additional fermions, i.e., we still
have one net fermionic dimension for the mirror. This is reminiscent of the
bosonization of bosonic ghosts with first order action [6].

As another application of our results we provide an alternative method
to deriving the mirror symmetry for compact Calabi-Yau manifolds. The
results of [14] identify the A-model on Calabi-Yau hypersurfaces with A-
model on certain weighted projective supermanifolds (without taking any
hypersurface). It is easier to justify the mirror symmetry operation in this
context because the circle actions are still symmetries of the theory and we
can dualize them (an alternative strategy was carried out in [8]). We thus
use the mirror symmetry for the non-compact supermanifold theories with
U(1) symmetries to rederive the mirror for ordinary compact Calabi-Yau
manifolds.

The organization of this paper is as follows: In section 2, after reviewing
the standard mirror symmetry derivation of [8] we extend it to the fermionic
case. In section 3 we give a number of examples including the twistorial
Calabi-Yau and the examples of [14]. In section 4 we discuss the physical
implications of the twistorial mirror.
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2 T-duality and a fermionic coordinate

In this section we define and implement the concept of T-duality for a
fermionic field. To do so we first remind the reader of how it works for
the bosonic coordinates [8].

2.1 Review of T-duality for bosonic coordinates

Consider a chiral field Φ coupled to an N = 2 U(1) vector multiplet. Let Σ
denote the twisted chiral superfield in the U(1) vector multiplet. If Σ gets a
vev, then Φ picks up mass QΣ, where Q is the U(1) charge of Φ. The basic
strategy of [8] was to first view the U(1) vector multiplet as a spectator
sector and dualize the phase of the field Φ thus replacing Φ by a twisted
chiral field Y . In particular we define Y by the condition that

|Φ|2 = ReY

and the condition that the phase θ of Φ = |Φ|eiθ, is T-dual to the shift ρ
of Y + iρ in the imaginary direction (which is periodic). As Y and Σ are
both twisted chiral fields they can appear in the superpotential which is a
holomorphic function of them

W (Σ, Y )

The form of W is completely fixed by symmetries as follows: Since Y is
periodic it can only appear as a function of exp(−Y ) except for the fact
that F , the bottom component of Σ, is quantized, and thus allows a term
ΣY . In fact this term follows from the action and its coefficient is the charge
of the Φ field Q. We thus have the term

W (Σ, Y ) = QΣY + f(exp(−Y )).

Under T-duality the momentum modes of phase of Φ are exchanged with
winding modes in the imaginary direction of Y . For the BPS masses to
agree, this means that the above LG superpotential should have critical
points shifted in the imaginary part of Y by 2π. Moreover the |∆W | from
one critical point to the next should be |QΣ| (up to some normalization
conventions), which is the BPS mass of the momentum mode of Φ. This
uniquely fixes f(exp(−Y )) = exp(−Y ). In particular we have the critical
points given by

∂Y W = 0 → exp(−Y ) = QΣ

which are at Y0 + 2πin where exp(−Y0) = QΣ. This gives the BPS mass of
the winding soliton

∆W = 2πiQΣ
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between adjacent critical points, as was required. Then the strategy in [8]
was to do this for every charge field Φi and then recall that Σ is also a
dynamical field. Σ couples to the complexified (by the theta angle of the
U(1) gauge theory) FI term which is sometimes denoted by t = r + iθ. In
other words there is an additional term in the superpotential

W = −tΣ

(note for example that this leads to the theta angle term for the U(1) gauge
field). Thus, at the level of the superpotential, the Σ appears only in the
terms

Σ

(

∑

i

QiYi − t

)

.

Integrating Σ out leads to

(2.1)
∑

i

QiYi = t,

whose real part is the FI term condition for the vacuum
∑

i

Qi|Φi|
2 = r.

We thus end up with the superpotential

W =
∑

i

exp(−Yi)

where one of the Yi’s can be eliminated using the constraint (2.1). This LG
theory then gets related to mirror Calabi-Yau geometries.

2.2 Extension to the super case

Now we apply the same strategy to the case of a chiral field Θ whose top
component is fermionic. We will do this presentation in two steps: First
following the same steps as the bosonic case. Secondly we study the effective
superpotential for Σ and integrate in the dual fields, along the lines of mirror
symmetry derivation in [1].

As in the bosonic case, we wish to dualize the phase of the fermionic field
Θ. By this we mean the phase given by rotating Θ according to

Θ → Θ exp(iω).

Clearly ω is bosonic. So if we dualize it we get a bosonic dual angle which
can now be viewed as the imaginary part of a twisted chiral multiplet X. In
particular we set, by a natural extension of the bosonic case,

ΘΘ∗ = −ReX.
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Moreover the fact that momentum modes of Θ should map to winding modes
of X implies that winding sectors of X should have mass (the choice of the
sign will be explained below) −QΣ in other words we should have

W (Σ, X) = −QΣX + exp(−X).

However, introduction of one twisted chiral bosonic field cannot be the end
of the story. This theory should have net dimension (i.e., central charge ĉ)
equal to −1, whereas X has net dimension +1. To compensate for this we
should have two additional fermionic fields. Let us call them η, χ. This is
very much in the spirit of bosonization of bosonic ghost fields [6]. In order
for the spectrum on the two sides to match we note that we start with the
field Θ which has mass QΣ. The only way this can be realized in the mirror
theory is if one boson and one fermion cancel in pair from the partition
function. For this we must have η and χ both with mass QΣ. This uniquely
fixes the superpotential to be

W (Σ, X, η, χ) = −QΣ(X − ηχ) + exp(−X)

Note that the critical points of W with respect to X, η, χ give

exp(−X) = −QΣ

η = χ = 0.

At each of the critical points X0 +2πin with exp(−X0) = −QΣ, the excita-
tions of η and χ have BPS mass −QΣ. Also the winding modes of X from
one critical point to another have BPS mass −QΣ. Thus this gives back the
same net spectrum as the mirror. Note that we can also shift X → X + ηχ
and rewrite W as

(2.2) W (Σ, X, η, χ) = −QΣX + exp(−X)(1 + ηχ).

Finally, let us explain the sign of |Q| in the superpotential W . This will also
provide a consistency check on what we have done so far.

In the original theory of the fermionic chiral field Θ of charge Q, integra-
tiong out of Θ generates an effective superpotential Weff (Σ) for Σ. This
is generated at one loop, and as fermionic determinants tend to contribute
oppositely to the bosonic determinants, the effective superpotential is the
same as if we were to integrate a bosonic chiral field of charge Q, but of
opposite sign: Weff(Σ) = −QΣ(log Σ − 1). The same effective superpoten-
tial must be generated by starting with the dual theory and integrating out
η, χ and X. The only effect of integrating out η, χ in (2.2) is to change the
measure for X, so that x = e−X becomes a good field variable. Integrating
X we recover Weff(Σ) with the correct sign, as claimed.

Again just as in the bosonic case, we do this T-duality for all charged
chiral fields in the theory, bosonic and fermionic, and then integrate out Σ,
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which leaves us with an effective superpotential

W =
∑

i

e−Yi +
∑

j

e−Xj (1 + ηjχj)

where Yi’s and Xj ’s satisfy:
∑

QiYi −
∑

QjXj = t.

3 Examples

3.1 Calabi-Yau supermanifolds and hypersurfaces in toric vari-

eties

In our first application we show that some bosonic Calabi-Yau manifolds
which are hypersurfaces in toric varieties can be equivalent to super-Calabi-
Yau manifolds without hypersurface constraint! To be precise, the equiv-
alence is strictly speaking only at the level of F-terms, i.e., at the level of
corresponding topological field theories. Note that at the level of F-terms
we can replace the fields by their constant modes, in evaluating periods. In
particular as discussed in [9] the periods of a LG theory are evaluated by
considering

Πα =

∫

α

∏

i

dYi exp(−W ),

where α denotes a mid-dimensional cycle. This fact will also be useful for us
when we change variables in order to identify the LG theory with a sigma
model geometry.

Calabi-Yau n-fold M which is a hypersurface in toric variety is described
by a theory of n + 2 charged chiral fields X and Φi, i = 1, . . . , n + 1 with
superpotential

∫

d2θ XP (Φi)

The charges Qi of Φi and −Q of X satisfy
∑

i

Qi = Q

and are assumed to be positive Q, Qi > 0. For the superpotential to make
sense P (Φi) has to have weight Q. This theory has a phase where it is given
by a non-linear sigma model on Calabi-Yau Y which corresponds to setting

P (Φi) = 0
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and X = 0 in
∑

i

Qi|Φi|
2 − Q|X|2 = t

modulo gauge transformations.

The claim is that the topological A-model on M is the same as the topo-
logical A-model on a super Calabi-Yau manifold M̂ with n + 1 bosonic
fields Φi of charge Qi as above, but with bosonic chiral field X replaced
by a fermionic chiral field Θ of charge +Q and no superpotential. The
corresponding D-term constraint is

∑

i

Qi|Φi|
2 + Q|Θ|2 = t

where the Kähler classes of M and M̂ get identified. This equivalence has
been shown in [14]. In fact the idea in [14] was to use this equivalence

to make the mirror symmetry of hypersurfaces more manifest, because M̂,
unlike M does have U(1) symmetries which can be T-dualized1 . We will

apply our machinary of mirror symmetry to M̂ and show that indeed it
gives rise to the expected mirror B-model of the corresponding bosonic CY.

The B-model mirror in case of M̂ is obtained by simple application of the
above formalism. The path integral is simply given by

Ẑ =

∫

∏

i

dXi dX dη dχ δ

(

∑

i

QiXi − QX − t

)

· exp

(

∑

i

e−Xi + e−X(1 + ηχ)

)

Integrating out η, χ leads just to a measure factor for X

Ẑ =

∫

∏

i

dXi e−XdX δ

(

∑

i

QiXi − QX − t

)

exp

(

∑

i

e−Xi + e−X

)

Using the delta function constraint we can replace X in e−X term in the
measure by

∑

i
QiXi

Q − t
Q and ignoring an irrelevant normalization e−t/Q we

1Note that the compactness of M comes from imposing P = 0. While the A-model
does not depend on the details of the superpotential P (Φi), its presence does affect the
A-model theory – the central charge of the compact theory is reduced by 2 with respect
to the noncompact case, which is reflected in the measure factors. The mirror for M was
constructed from this viewpoint in [8].
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have

Ẑ =

∫

∏

i

dXi e−
P

i QiXi/QdX δ

(

∑

i

QiXi − QX − t

)

· exp

(

∑

i

e−Xi + e−X

)

We can use the δ function to integrate over X, which just fixes its values.
Defining xi = exp(−QiXi/Q) (which requires the standard orbifold proce-
dure on the LG model) we obtain

Ẑ =

∫

∏

i

dxi exp

(

∑

i

x
Q/Qi

i + et/Qx1 · · ·xn+2

)

which is the familiar form of the mirror LG model. The most familiar case is
when Qi = 1 and Q = n + 2. When Q is not divisible by Qi we will have to
take further field redefinitions and orbifolds to obtain a suitable geometric
orbifold. We have thus obtained the mirror for M, as was expected.

3.2 Mirror of CP(3|4)

The CP(3|4) has a linear sigma model description in terms of 4 bosonic
and 4 fermionic chiral fields ΦI , ΘI , I = 0, . . . 3 of charges +1. Since the
sums of the bosonic and fermionic charges equal, CP(3|4) is a super Calabi-
Yau manifold. The lowest components of the bosonic and fermionic fields
describe C(4|4), and the vacua correspond to setting D-term potential to zero

3
∑

I=0

|ΦI |2 +
3

∑

I=0

|ΘI |2 = r

and dividing by the gauge group. The Kähler parameter2 r is complexified
by the θ angle to t = r + iθ.

The Landau-Ginzburg mirror of CP(3|4) is, as discussed in the previous
section

∫ 3
∏

I=0

dYI dXI dηI dχI δ

(

3
∑

I=0

YI − XI − t

)

· exp

(

3
∑

I=0

e−YI + e−XI + e−XI ηIχI

)

2For simplicity of notation here we denote the Kähler parameter by t rather than tA.
The S-duality relates it to tB/gB [12] of the corresponding B-model.
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where

ReYI = |ΦI |2

ReXI = −|ΘI |2.

We notice that this theory has a Z2 symmetry given by

XI ↔ YI

ηI → e−XI χI

χI → eYI ηI

t → −t

where the change in measure factor for the ηI , χI is trivial thanks to the
delta function constraint (up to a trivial normalization factor). In other
words, the Kähler moduli space of the theory is half the t plane. This is a
highly non-trivial statement as it involves relating the non-geometric phase
t < 0 to a geometric phase t > 0. The meaning of this Z2 symmetry will be
discussed in the next section.

We want to rewrite the above as a sigma model on a hypersurface. Con-
sider putting

Xi = X̂i + Y0, Yi = Ŷi + Y0

where i runs as i = 1, 2, 3. After this field redefinition, the δ function above
effectively sets X0 to

X0 =
3

∑

i=0

(Ŷi − X̂i) + Y0 − t.

Taking all this into account and doing a further integration over the fermionic
fields η0, χ0 gives us:

∫

e−Y0−
P

i(Ŷi−X̂i)dY0

3
∏

i=1

dŶi dX̂i dηi dχi

· exp

[

e−Y0

(

3
∑

i=1

e−Ŷi + e−X̂i + 1 + et+
P

3

i=0
(X̂i−Ŷi) + e−X̂iηiχi

)]

.

We see that

Λ = e−Y0

serves as a Lagrange multiplier. We can introduce C−valued fields xi and
yi, related to X̂i, Ŷi by

e−X̂i = xi, e−Ŷi = yixi

and rescale

ηi → eX̂iηi
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we find:

∫

dΛ

∫ 3
∏

i=1

dyi dxidηidχi exp

[

Λ

(

3
∑

i=1

xiyi + xi + 1 + ety1y2y3 + ηiχi

)]

Therefore, the mirror of CP(3|4) can be thought of, locally, as a super-Calabi-
Yau hypersurface:

(3.1)
3

∑

i=1

xiyi + xi + 1 + ety1y2y3 + ηiχi = 0.

The Z2 symmetry which we discussed before is not apparent in this inte-
grated out version. However we can implement it by exchanging the roles
of X0 and Y0 as a Lagrange multiplier, and the field we “solve” for and this
leads to

(3.2) xi ↔ yi, t ↔ −t.

In particular in the other form we end up with the equation

3
∑

i=1

xiyi + yi + 1 + e−tx1x2x3 + ηiχi = 0.

Note that this mirror should still enjoy the original SU(4|4) symmetry of

CP3|4. This is not manifest in the above form of the equation, but it is well
known that some symmetries becomes less manifest upon T-dualization. For
example the mirror of supersymmetric sigma model on P1 is an LG theory
with

W = eX + e−X

and this does not manifestly exhibit the SU(2) symmetry of P1. The same

is true for the mirror of CP3|4 we have obtained here.

Now we come to the interesting part which motivated this discussion in
the first place. Namely, we note that in the t → −∞ limit (3.1) is local

description of a quadric in CP(3|3) × CP(3|3)! That is, up to a coordinate
redefinition (3.1) becomes:

3
∑

i=1

xiyi + 1 + ηiχi = 0

which is an x0 = 1 = y0 patch of a quadric

3
∑

I=0

xIyI + ηiχi = 0
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in CP(3|3) × CP(3|3) with coordinates (xI , ηi) and (yI , χi), respectively.
Moreover, the Z2 symmetry of the parent theory simply becomes the ex-
change symmetry of the two CP(3|3) factors. We will discuss the significance
of these observations in the context of twistor space description of N = 4
SYM in the following section.

4 Interpretation for twistorial Calabi-Yau

In the previous section we have studied the B-model mirror of the topological
A-model on CP3|4. We have seen that the A-model amplitude does depend
on the Kähler structure parameter tA, as is reflected by the fact that the
B-model mirror’s complex structure depends on tA. Moreover we have seen
that the Kähler modulus has a Z2 symmetry:

(4.1) tA → −tA.

Furthermore we have shown that in the limit

(4.2) tA → ±∞

the mirror geometry simplifies to a quadric in CP3|3 × CP3|3.

The aim of this section is twofold: First we would like to argue that
the above mirror symmetry in the limit (4.2) implements the proposal of
[11] in relating the two different twistorial approaches to N = 4 Yang-
Mills. Secondly we would like to give an interpretation of the Z2 symmetry
(4.1). We will argue that this is equivalent to reversing the role of positive
and negative helicity states, which is a-priori not manifest in the twistor
approach3 , but is expected from the viewpoint of the parity symmetry of
the 4 dimensional theory.

We have seen that the topological strings on CP3|4 depends on two pa-
rameters: One is the string coupling constant gA and the other is the Kähler
class tA of CP3|4. We would thus expect that the corresponding gravity the-
ory, which is expected to be N = 4 conformal supergravity [18] also has two
free parameters4 . Indeed the N = 4 conformal supergravity appears to
have two free parameters [2, 5]:

S =

∫

1

λ2
[(Cµνρσ)2 + S′(Φ, . . .)]

3For a proposal of how this is realized in the approach of [3] see the recent paper [4].
4We have greatly benefited from discussions with A. Tseytlin in preparation of this

section.



M. AGANAGIC AND C. VAFA 951

where C denotes the Weyl tensor, Φ denotes a complex scalar field and λ
is the coupling constant of the theory. In principle we thus have two pa-
rameters we can control independently: λ and 〈Φ〉. The full structure of
the Lagrangian is not known, but there is no indication that λ can be reab-
sorbed into the vev of Φ. In particular if one imposes an SL(2, R) symmetry
(whose discrete version is expected to be a true symmetry) the terms of the
form f(Φ)C2 are ruled out [10]. Moreover the recent connections with the
gauge sector induced conformal gravity in the context of AdS/CFT suggests
that such terms are not generated [10, 16]. This is consistent with the fact
that both gA and tA deform the topological string theory. In the context
of a stringy realization we would expect λ to be identified with the string
coupling constant

(4.3) λ = gA

and

(4.4) 〈Φ − Φ〉 = tA.

This identification is also natural from the following viewpoint: It is known
that we need a 2-form field in addition to the holomorphic form on the
CP3|4 to give the correct gravity fields of the N = 4 conformal supergravity
[20]. In [11] this field was identified with the Kähler class of CP3|4. Thus
it is natural to identify the expectation value for this Kähler class with the
expectation value of a field in the gravity sector and the only choice for
this is the expectation value for the field Φ. Why does it have to be this
particular identification between Φ and tA? We will now turn to answering
this question.

To address this, we need to know how the N = 4 SYM couples to CSG,
and in particular how the Φ couples to SYM. This has been studied in [13].
See also the recent discussion of this in [10]:

SY M =

∫

1

gA
[eΦ trF+ ∧ F+ + eΦ trF− ∧ F− + · · · ]

where the 1
gA

in front we obtain automatically in the string realization of

the N = 4 SYM via D-branes. There is a symmetry in this theory obtained
by the exchange of the two helicity states:

F+ ↔ F− Φ ↔ Φ

In the context of the twistorial realization of this theory [18], the instantons
are related to the relative strength of these two terms, i.e.,

exp(−tB/gB) = exp(Φ − Φ).

Given the S-duality conjecture in [11], now confirmed in [12], we thus find

exp(−tA) = exp(Φ − Φ),
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which leads us to
tA = Φ − Φ

Thus the helicity exchange symmetry acts as

tA → −tA

as was demonstrated in the previous section (4.1) using mirror symmetry!
As discussed in the previous section this Z2 symmetry exchanges the two
CP3|3’s. However the holomorphic functions on each CP3|3 signify helicities
of one kind [19]. More precisely they correspond to helicity states

1(1) + 3

(

1

2

)

+ 3(0) + 1

(

−1

2

)

1

(

1

2

)

+ 3(0) + 3

(

−1

2

)

+ 1(−1)

respectively. In particular exchanging the two CP3|3 exchanges the +1
helicity state with the −1 helicity state. Thus we see that the (4.1) which

is also accompanied with exchanging the two CP3|3’s exchanges the two
opposite helicity states. This thus gives a satisfactory explanation of the
miraculous fact that the amplitudes of N = 4 YM do possess this symmetry
which is rather non-trivial in the twistorial formulation of it.

Now we come to the question of the relation of the two twistor approaches
[18, 19], which was conjectured in [11] to be related by S-duality and a
mirror symmetry. We have shown they are equivalent only in the limit
t → ±∞. This is sufficient to establish their equivalence at the level of
the Yang-Mills sector as the t parameter is redundant in the Yang-Mills
sector and can be reabsorbed to redefining the gauge coupling constant.
Nevertheless it is natural to ask what happens if t is finite. There are
two natural scenarios: One possibility is that the approach of [19] could
be generalized to any value of t. This we find very natural because the
mirror does make sense for any value of t and does possess a hidden SU(4|4)
symmetry for any value of t and so it is hard to see what other field theory
one can get on the mirror side. There is one other logical possibility: It
may be that this story requires decoupling of gravity and that for this we
need to take the t → ±∞. This is logically possible because the gauge
sector depends only on the combination τY M = eΦ/gA, but we find it less
appealing.
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