
c� ���� International Press
Adv� Theor� Math� Phys� � ������ �������

Asymptotic black hole

quasinormal frequencies

Lubo�s Motl

Je�erson Physical Laboratory
Harvard University

Cambridge	 MA ��
��

motl�feynman�harvard�edu

Andrew Neitzke

Je�erson Physical Laboratory
Harvard University

Cambridge	 MA ��
��

neitzke�fas�harvard�edu

Abstract

We give a new derivation of the quasinormal frequencies of Schwarz�
schild black holes in d � � and Reissner�Nordstr�m black holes in d � ��
in the limit of in�nite damping� For Schwarzschild in d � � we �nd that
the asymptotic real part is THawking log��	 for scalar perturbations and
for some gravitational perturbations
 this con�rms a result previously
obtained by other means in the case d � �� For Reissner�Nordstr�m in
d � � we �nd a speci�c generally aperiodic behavior for the quasinor�
mal frequencies� both for scalar perturbations and for electromagnetic�
gravitational perturbations� The formulae are obtained by studying the
monodromy of the perturbation analytically continued to the complex
plane
 the analysis depends essentially on the behavior of the potential
in the �unphysical� region near the black hole singularity�
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� Introduction� why do we study

quasinormal modes�

Recently it has been proposed 

� that the asymptotic behavior of the high
overtone black hole quasinormal frequencies captures important information
about the spectrum of black hole observables and about quantum gravity
in general� More precisely	 it has been suggested that the asymptotic real
part of the black hole quasinormal frequencies coincides with the frequency
emitted by a black hole whose area decreases by an amount that is natu�
ral from the point of view of discrete approaches to quantization of gravity
such as loop quantum gravity �LQG�� While such approaches remain highly
speculative	 it is nevertheless interesting to understand how far this argu�
ment can be pushed� moreover	 even if this particular line of inquiry has to
be abandoned	 the asymptotic spectrum of black hole excitations is a fun�
damental property of the black hole which should eventually be good for
something� This paper is an attempt to simplify and extend the calculations
of the relevant �experimental data��

Let us brie�y review the recent developments in loop quantum gravity
which have led us to investigate this asymptotic spectrum� �See 
�	 �	 �� for
increasingly lengthy reviews of LQG and 
�	 �� for the original derivations of
the area quantization law in LQG�� In LQG	 the natural quantum A� of the
horizon�s area is proportional to the so�called Barbero�Immirzi parameter �

�	 ��	 a parameter in LQG which is arbitrary from the point of view of the
microscopic de�nition of the theory	 but whose value must be chosen in such
a way that the black hole entropy comes out correctly� This comes about as
follows� one imagines that each quantum of area A� carries a piece of discrete
information� It can be found in k di�erent microstates	 and therefore it
carries entropy log k� This must be equal to the known contribution of this
area quantum to the black hole entropy	 namely� A���G	 so we �nd that

A� � �G log k� �
�

LQG predicts that k � �J �min� � 
	 where J �min� is the minimal allowed
spin carried by the spin networks� This means that k � � if the basic
gauge group of LQG is taken to be SU���	 or k � � if the gauge group is
SO���� However	 from the LQG point of view there seems to be no reason
to choose this strange number log��� or log��� �more precisely	 log�����

p
�

or log������
p
�� for the Barbero�Immirzi parameter�

On the other hand	 seemingly unrelated	 one can consider the �quasinor�
mal modes� of the black hole background� Quasinormal modes are pertur�

�In this paper� we use particle physics units with c 	 � 	 ��
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bations of the background which are allowed to have complex frequency but
whose boundary conditions must be �purely outgoing� both at the horizon
and at in�nity� we will review their precise de�nition in Section �� This
boundary condition singles out discrete complex frequencies �n� As n��	
the quasinormal frequencies of gravitational perturbations are known to be�
have as

�n � THawking���i�n � 
��� � log����� ���

�Varying from the usual convention in general relativity	 we parameterize
the frequencies in terms of THawking	 which is equal to 
���MG for a four�
dimensional Schwarzschild black hole�� The imaginary part of ��� is not
hard to understand� The quasinormal modes determine the position of poles
of a Green�s function on the given background	 and the Euclidean black hole
solution converges to a thermal circle at in�nity with the inverse temperature
� � 
�THawking� therefore it is not too surprising that the spacing of the poles
in ��� coincides with the spacing ��iTHawking expected for a thermal Green�s
function�

However	 we are not aware of a similar classical explanation of the term
log��� in ���� This term is remarkable because	 as was �rst observed in 

�	
it is precisely the same strange number one needs to occur in the Barbero�
Immirzi parameter of LQG if the gauge group is taken to be SO���� There
are also some heuristic arguments which suggest that there might indeed be
a reason to relate the two	 identifying the quasinormal mode with a process
in which the black hole ejects a single spin�network edge and thus reduces
its area by A��

The result ��� was originally obtained by numerical calculations ten years
ago 
�	 
�	 

	 
��� At that time the term log��� was only known to an
accuracy of six decimal places� In 
���	 Hod conjectured 

�� that this
number was exactly log���� His conjecture was recently proven in 

��	 using
the methods of continued fractions initiated by Leaver 
�� and further re�ned
by Nollert 

���

In this paper we would like to reproduce the results of 

��	 using sim�
pler functional methods which also allow us to extend the analysis to the
cases of charged and higher�dimensional black holes� We will �nd that the
answer THawking log��� is in fact universal for Schwarzschild black holes in
all dimensions	 at least for scalar and some gravitational perturbations� For
Reissner�Nordstr�m in d � � we will �nd a more complicated generically
aperiodic behavior	 both for scalar and electromagnetic�gravitational per�
turbations�

Our computation depends on an analytic continuation in the radial coor�
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dinate r	 so it is worth mentioning that analytic continuation in r has been
applied to the determination of quasinormal modes many times before� in
particular	 it was the basis of the numerical calculations in 


� which con�
�rmed that Re� � THawking log��� for Schwarzschild� A review of the use of
complex coordinate methods to compute black hole quasinormal frequencies
has recently appeared in 

��	 to which we refer the reader for more extensive
references� We note that in our calculation of the leading�order asymptotic
frequencies no phase integral technology will be required� it will be enough
to use simply the �rst�order WKB approximation�

We believe that this puzzling behavior of the Green�s functions at large
imaginary frequencies should contain some important information about
black holes and perhaps even quantum gravity�

� Quasinormal frequencies for d � � Schwarzschild

black holes

��� The di�erential equation

In this section we will be concerned with properties of certain perturbations
of a four�dimensional Schwarzschild geometry	 described by solutions of the
di�erential equation 

���

�
��


� 


r

�
�

�r

��
� V �r�� ��

�
��r� � � ���

on the interval 
 � r ��	 with the �Regge�Wheeler� potential

V �r� �

�
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r

��
l�l � 
�

r�
�


� j�

r�

�
� ���

The equation ��� describes the radial dependence of a spin�j perturbation
of the background	 with orbital angular momentum l and time dependence
e�i�t� We have set �GM � 
� in these units the horizon is at r � 
�

The numerator �
� j�� which appears in ��� characterizes the spin j of
the perturbation for j � �	 
	 �	 i�e� for perturbations by scalar or electro�
magnetic test �elds as well as perturbations of the metric itself� �Actually	
in the cases j � 
	 �	 one has to expand in tensor spherical harmonics and
then ��� is only correct if we consider an �axial� perturbation� see e�g� 

����
It is nevertheless interesting to study the problem for general j	 because
our calculation relates this coe�cient to Bessel�s equation and shows that it



L� MOTL� A� NEITZKE �



is very natural to write the numerator in this form� It might be useful to
summarize its values for the most important examples of j�


� j� �

��
�


 � scalar perturbation j � �
� � electromagnetic perturbation j � 


�� � gravitational perturbation j � �
���

The factor
	

� �

r



which occurs in ���	 ��� is the �warp factor� in the

Schwarzschild geometry	 which in Schwarzschild coordinates is simply the
time component �g�� of the metric�

We wish to study ��� on the physical region 
 � r � � and we begin
by describing the asymptotic solutions� To simplify the di�erential operator
which appears it is convenient to de�ne the �tortoise coordinate� x with the
property that

dx �

�

� 


r

���
dr� ���

Integrating ��� gives

x � r � log�r � 
�� ���

Then x takes values �� � x ��	 and ��� becomes�
� ��

�x�
� V 
r�x��� ��

�
� � �� ���

Since V 
r�x��� � as x� ��	 the solutions behave as � � e�i�x at in�nity�

��� Analytic continuation

In our analysis we will �nd that it is essential to extend ��� beyond the usual
physical region 
 � r � �� Continued to the whole complex r�plane	 ���
is an ordinary di�erential equation with regular singular points at r � �	
r � 
 and an irregular singular point at r ��� and by the general theory of
di�erential equations	 any solution of ��� in the physical region extends to a
solution on the r�plane� However	 this solution may be multivalued around
the singular points r � �	 r � 
� This multivaluedness will play a crucial
role in our analysis	 which is essentially concerned with the computation
of the monodromy around a particular closed contour in the r�plane� For
convenience	 to avoid having to deal with multivalued functions	 we can put
branch cuts in the r�plane from r � � and r � 
 and require that ��r�
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satisfy ��� everywhere except at the cuts� In this approach the monodromy
is de�ned by the discontinuity across the cut�

 r

10

Figure �� The r�plane� with regions

where Rex � � denoted by a darker

color� and a convenient choice of

branch cuts shown�

We will �nd it very convenient to exploit the simpler representation ���
for the di�erential equation� After passing to complex r this introduces an
extra complication	 since the relation ��� between x and r is itself multivalued
because of the term log�r� 
�� As a result	 as we travel around a contour in
the r�plane	 the corresponding contour in the x�plane may not be closed� In
the language of branch cuts we would say that x jumps when r crosses the
branch cut which emanates from r � 
�

Although x is not uniquely de�ned as a function of r	 the ambiguity is
only in the imaginary part	 so Rex still makes sense� It will be important
for us to know the sign of Re x in the various regions of the r�plane� the
structure is as shown in Figure 
� We also show a convenient choice of branch
cuts �to economize	 one should take the branch cut to be the same for ��r�
and for log�r � 
�� although nothing we say will depend on this choice�

��� De�nition of quasinormal modes

Because the potential V �r� is positive and decays to zero at both ends	 there
are no discrete normalizable bound states� Nevertheless we may look for
discrete quasinormal states	 counterparts of quasistationary states in quan�
tum mechanics because their frequency is also allowed to be complex� The
mathematical theory of these quasinormal modes is more intricate than for
ordinary normal modes� see e�g� 
��� for a more precise discussion than we
will give here	 as well as an excellent review of the substantial literature on
quasinormal modes of black holes�
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Roughly	 a quasinormal mode with frequency � is supposed to be a solu�
tion of ��� where we require �outgoing� behavior at both ends of the physical
region�

� � e�i�x as x� ��	 ���

� � e�i�x as x� ��� �
��

Since the di�erential operator in ��� would be self�adjoint acting on normal�
izable wavefunctions	 and hence would have to have real eigenvalues	 there
are no quasinormal modes with Im� � �� So we take Im� 
 �	 and then
in ���	 �
�� we are asking for the exponentially decreasing component to be
absent at both ends� It is actually quite delicate to de�ne exactly what this
means� If V 
r�x�� were strictly vanishing at x � �� then one could just
require that � be strictly proportional to e�i�x as appropriate	 but for more
general V 
r�x�� we do not know any way of de�ning the boundary condition
using only the behavior of � on the real line� This problem was also dis�
cussed in 

�� where it was suggested that the appropriate condition would
be obtained by �nding an analytic extension of � to Im� � � and demand�
ing exponential decrease there� this was further shown to be equivalent to
looking for poles in an appropriate Green�s function� In 
�� another criterion
was given in terms of the coe�cients of a power series representation for ��
this criterion is what was used in the analytical calculation of the asymptotic
quasinormal frequencies in 

���

Here we wish to use another way of de�ning the boundary condition	 by
analytic continuation in r instead of �� �The method we describe below has
been studied before	 e�g� in 
�
�� see also 

�� for a recent discussion and
additional references�� By considering complex r we can easily de�ne the
boundary condition at the regular singular point r � 
	 because the functions
e�i�x are distinguished by their monodromy there� Namely	 e�i�x � �r �

��i�e�i�r	 so to get � � ei�x near r � 
 we simply require that ��r� have
monodromy e���� on a counterclockwise circle around r � 
� What is more
subtle is to de�ne the boundary condition at r � �	 but this can be done
by analytically continuing ��r� via �Wick rotation� to the line Im�x � �	
where the asymptotic behavior of the solutions is purely oscillatory and hence
one can really pick out a particular solution by specifying its asymptotics�
In the limit where � is almost pure imaginary	 the line Im�x � � is slightly
tilted o� the line Rex � �� There are two possible directions for the Wick
rotation and we choose the rotation through an angle smaller than ���� For
the time being we assume Re� 
 �� in this case x � � gets rotated to
�x ��	 so our boundary condition �at r ��� is actually

��r� � e�i�x as �x��� �

�
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��� Computation of quasinormal frequencies

Having de�ned the quasinormal modes we now proceed to study their fre�
quencies	 in the limit Im� � Re�� Indeed	 until the end of this computa�
tion we will behave as if � were purely imaginary�

We will compute in two di�erent ways the monodromy of ��r� around
the contour shown in Figure �	 beginning and ending at the point marked
A�

 r  z

10 0

A

B B

A

Figure �� Contour for the calculation of quasinormal frequencies�

shown in terms of r and in terms of z � x � i�� The singularities

at r � � �equivalently z � �	 and r � � �equivalently z � ��	 are

marked� The rotation by ���� in the r plane becomes a rotation by

�� in the z plane as follows from ���	� The monodromy of log�r � �	

around r � � causes a ��i discontinuity in the path in the z�plane�

The regions with Rex � � are denoted by a darker color� The wave

function is well approximated by a sum of Bessel functions in the blue

circle around r � ��

It will prove convenient to use the coordinate z � x � i� instead of
x� Actually	 this de�nition is slightly imprecise since we have not speci�ed
which branch of the logarithm in x�r� we should choose� Depending on the
branch	 the contour in the z�plane will approach some point z � ��in as r
approaches �� for convenience we choose the branch so that n � ��

First we compute the monodromy by matching the asymptotics along
the line Im�z � �� Beginning at A	 the plane wave behavior �

� can be
extrapolated toward the interior since the term �� dominates V in ��� away
from a small neighborhood around r � �� As we extrapolate up from A we
reach r � � at z � �	 and near this point we have

z � r � log�r � 
�� i� � �


�
r�	 �
��
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so in a neighborhood of r � � we may write

V 
r�z�� � j� � 


�z�
� �
��

Thus ��� may be simpli�ed near r � � to�
� ��

�z�
�
j� � 


�z�
� ��

�
��z� � �� �
��

This equation can be exactly solved in terms of Bessel functions� for generic
j	 the general solution is

��z� � A�c�
p
�zJj����z� �A�c�

p
�zJ�j����z�� �
��

We choose the normalization factors c�	 c� so that the asymptotics are

c�
p
�zJ�j����z� � � cos��z � ��� as �z ��	 �
��

where we de�ned

�� �
�

�
�
� j�� �
��

The phase shifts by �� will be very important for our analysis� Using �
��
and �
�� together with the boundary condition �

� which states that ei�z

must be absent as �z ��	 we have

A�e
�i�� �A�e

�i�� � �	 �
��

while for the coe�cient of e�i�z we have

��z� � 	A�e
i�� �A�e

i��


e�i�z as �z ��� �
��

To follow the contour through to B we now have to turn through an angle
���� around r � �	 or equivalently �� around z � �� Using the fact that

J�j����z� � z�j����z�	 ����

where � is an even holomorphic function of z	 after the �� rotation the
asymptotics are

c�
p
�zJ�j����z� � e�i��� cos���z � ��� as �z � ��� ��
�

Then using �
��	 ��
� we get the asymptotics at B	

��z� � 	A�e
�i�� �A�e

�i��


e�i�z �

	
A�e

	i�� �A�e
	i��



ei�z ����
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as �z � ��� Finally	 we can continue along the large semicircle in the
right half�plane from B back to A� Since we are in the region where ��

dominates the potential in ��� we essentially just have plane wave behavior�
this approximation can be trusted at least for the coe�cient of e�i�z 	 which
therefore remains unchanged as we continue back to A and complete the
contour �however	 the same cannot be said for the coe�cient of ei�z	 which
makes only an exponentially small contribution to ��z� in the right half�
plane and hence can be modi�ed by the small correction terms in the WKB
approximation�� In the end we �nd that the monodromy around the contour
multiplies the coe�cient of e�i�z by a factor

A�e
�i�� �A�e

�i��

A�ei�� �A�ei��
�

e�i�� � e�i��

e�i�� � e�i��
� �sin ��j��

sin�j��
� ��
 � � cos �j��

����

On the other hand	 we can also obtain the monodromy action by observ�
ing that the only singularity of ��r� or e�i�z inside the contour is at r � 
�
By our boundary condition going around r � 
 clockwise just multiplies
��r� by e���	 but it multiplies e�i�z by e����	 so the coe�cient of e�i�z in
the asymptotics of ��r� must be multiplied by e
�� after the full round trip�
Comparing with ���� gives

e
�� � ��
 � � cos �j�� ����

Note that if we had chosen Re� � � we would have had to Wick rotate
in the opposite direction	 hence set our boundary conditions at B instead of
A	 and run the contour in the opposite direction� hence we would have gotten
���� with e�
�� instead of e
��� This is as expected since if � is a quasinormal
frequency then ��� must also be one� the corresponding wave functions are
simply complex conjugates of one another� The two possibilities can be
summarized by the equation

exp �
 �Re�� ���� � ��
 � � cos �j�	 ����

implying

j��Re�j � logj
 � � cos �jj� ����

In the case j � �	 � we recover the numerical result of 
�	 
�	 

	 
�� which
was so important for 

	 
���

��� � ��n� 
��i� log���� ����

If our analysis of the dependence on 
�Re�� is correct	 it implies j
 �
� cos �jj � 
� Hence for j � �
��	 ������Z	 there cannot be any asymptotic
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quasinormal modes	 with the possible exception of the case j � �Z�
� �This
case is exceptional in our analysis for another reason as well� if j � 
	 then
our form �
�� for the leading singularity vanishes� A more careful analysis
would be desirable to check whether our results still hold in this case��

We shouldmention that ���� is equivalent to a more complicated equation
derived in 

��	 namely

tan��i�� tan��i� � �j��� tan��i� � �j��� � i
�Re�� ����

This equivalence can be shown by multiplying ���� by

cos��i�� cos��i� � �j��� cos��i� � �j��� ����

and expressing the sines and cosines in terms of exponentials�

��� Some convenient notation

For later convenience we now describe the preceding computation in a more
compact notation� First write

�m�A � �A�e
im�� �A�e

im��� ����

and

�m	n�A � �m�Ae
�i�z � �n�Ae

i�z� ��
�

Then the asymptotic matching through the Bessel region which we did by
comparing �
�� and ��
� shows that a �� clockwise rotation in z transforms
the asymptotic behavior by

�� � �m	n�� �n� �	m� ��	 ����

where the swap between m and n arises because of the swap �z 	 ��z
needed to compare �
�� and ��
��

In the case of four�dimensional Schwarzschild we read o� the initial
asymptotics from �
�� as � � ��	���A� Since the coe�cient of ei�x had
to vanish at A we got the constraint

����A � �� ����

The �� rotation ���� gave

��	���A � ��	��A	 ����
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so following the coe�cient of e�i�x back around the semicircle gives its mon�
odromy as ���A����A	 which we computed using the constraint ����	 obtain�
ing

���A
���A

� ��
 � � cos �j�� ����

� Quasinormal frequencies for other black holes

Having reproduced the result of 

�� for d � � Schwarzschild	 we now apply
the same technology to two other classes of black hole� The generalizations
are surprisingly straightforward�

��� Higher�dimensional Schwarzschild black holes

First we consider Schwarzschild black holes in arbitrary d � �� We will verify
a conjecture from 

��� namely	 the asymptotic quasinormal frequencies of
the Schwarzschild black hole with Re� 
 � satisfy

e�� � �� ����

where � is the Hawking temperature of the black hole� �Strictly speaking	 we
will prove this only for scalar perturbations and for certain tensor modes� we
do not know the appropriate potentials for general perturbations in d 
 ���

To write the generalization of ��� to d � � we need the warp factor for
d�dimensional Schwarzschild	

�g�� � f�r� � 
� 


rd��
	 ����

where we again chose units in which the horizon is at r � 
� Then the
perturbation satis�es�

�
�
f�r�

�

�r

��

� V �r�� ��

�
��r� � �	 ����

where V �r� is known for scalar perturbations to be 
���

V �r� � f�r�

�
l�l � d� ��

r�
�

�d� ���d � ��f�r�

�r�
�

�d� ��f ��r�

�r

�
� ����
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As in the d � � case	 this V �r� grows large only at r � �	 and direct
computation gives the coe�cient of the singularity as

V �r� � ��d� ���

�r�d�

� ����

 r

0 1

Figure �� Regions with Re z �

� �darker	 in the r�plane for a

six�dimensional Schwarzschild black

hole� together with a contour for the

calculation of quasinormal frequen�

cies� The left part of the r�plane is

shown in shadow because Re z can

only be uniquely de�ned in the right

part
 the extra �ctitious horizons are

marked by crosses�

Now we want to describe the tortoise coordinate in d spacetime dimen�
sions� From the warp factor ���� we get the requirement

dz �

�

� 


rd��

���
dr	 ��
�

which can be integrated to give

z � r �
d�
X
j��

e��ij��d���

d� �
log�
� re���ij��d���� ����

where we chose the additive constant so that z � � for r � �� From ����
we obtain the behavior of Re z as shown in Figure �� Unlike the situation
in d � �	 ���� includes phases multiplying the logarithms which come from
the �ctitious �horizons� r � e��ij��d���	 so that Re z is not well de�ned for
arbitrary r� but so long as we stay in the right part of the r�plane it is well
de�ned�

Near r � �	 d�� terms in the Taylor expansion of ���� near r � � cancel
and

z � � rd��

d� �
	 ����

generalizing the behavior �
�� in the d � � case� Actually	 this cancellation
can be seen directly from ��
�	 by neglecting the term 
 on the right hand
side�
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Now we can express the singularity of the potential in terms of z� com�
bining ���� and ���� we �nd simply

V 
r�z�� � � 


�z�
����

Note that this is exactly the same as the behavior for scalar perturbations in
d � �� namely	 it agrees with �
�� at j � �� The other case for which we know
the potential is a particular family of tensor metric perturbations studied in

���	 which exist only in d 
 �� for these the leading singularity corresponds
again to j � �� �One might have expected j � �	 but in our �nal result j
appears only in cos �j	 so that j � � and j � � are indistinguishable�� We
conjecture that with some suitable interpretation this form for the potential
will actually persist for all j	 so that the �
 may be replaced by j� � 
 in
����	 but the skeptical reader may just set j � � in the rest of this section�

At any rate	 writing the potential in this form the Bessel function behav�
ior of the solutions near r � �	 expressed in terms of z	 is just as it was in
d � �	 and again we have plane wave behavior away from a neighborhood of
r � �� Furthermore	 although the left part of the r�plane is rather compli�
cated	 the behavior of Rex on the right part is essentially unchanged from
d � �� So we can repeat the argument from the previous section� The cal�
culation of the monodromy by matching asymptotics in the z�plane works
exactly as in four dimensions	 while the factor e
�� from the monodromy
around r � 
 is modi�ed to e
����d���	 because of the coe�cient 
��d � ��
multiplying log�
� r� in �����

Fortunately	 this same factor appears in the formula for the Hawking
temperature of a d�dimensional black hole� Namely	 recall that the Hawking
temperature can be computed as the surface gravity of the black hole�

THawking �
f ��
�

��
�

d� �

��
	 ����

giving � � ����d � ��� Hence the monodromy of the coe�cient of e�i�x

around the contour is e��	 and comparing this to the result from Bessel
asymptotics gives

e�� � ��
 � � cos �j�	 ����

as desired�

In fact the agreement between the surface gravity and the coe�cient
of the logarithm in the tortoise coordinate is not a coincidence and holds
more generally� This is because a horizon is characterized by the condition
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f�rH� � �	 and the tortoise coordinate near rH then obeys

z �

Z
dz �

Z
dr

f�r�


Z

dr

�r � rH�f ��rH�
�




f ��rH�
log�r � rH� ����

while the surface gravity is f ��rH�����

Our result implies that for scalar and some gravitational perturbations

Re� � �THawking log���� ����

In the revised version of 
���	 considerations of Bohr�Sommerfeld quantiza�
tion �as originally proposed by Bekenstein and ampli�ed e�g� in 
���� led
to the conjecture that Re� � �THawking log�k� for some k� our calculation
establishes this conjecture and furthermore determines the integer k � ��

��� Four�dimensional non�extremal Reissner�Nordstr	m black

holes

Finally we want to extend our results to non�extremal Reissner�Nordstr�m
black holes in d � �� In this case the warp factor is

f�r� � 
� �GM

r
�
Q�

r�
�

�r � 
��r � k�

r�
����

where we have �xed our units by setting GM � �
 � k���	 Q� � k	 so that
the outer horizon is at r � 
 and the inner horizon is at r � k � 
� The
tortoise coordinate is therefore determined by

dz � dr
r�

�r � 
��r � k�
	 ����

which integrates to

z � r �
log�
� r�� k� log�
� r�k�


� k
��
�

where we have again �xed the constant so that z � � at r � �� Then near
r � � we �nd

z � r�

�k
� ����

The form of the potential can be found in 
���� both for scalar perturbations
and for axial electromagnetic�gravitational perturbations �which are coupled
in this background	 so we cannot talk about electromagnetic or gravitational
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perturbations separately� the potential is singular only near r � �	 and the
leading singularity is

V �r� �

 ��k��r� scalar perturbation

��k��r� electromagnetic�gravitational perturbation
����

Using ���� we can rewrite this in the familiar form

V 
r�z�� � j� � 


�z�
����

�with all the k dependence disappearing� and	 remarkably	 the values of j
which come out are nice�

j �




�� scalar perturbation
��� electromagnetic�gravitational perturbation

����

 r

0 1k

z

A

B B

A

Figure �� Regions with Re �z	 � � �darker	 in the r�plane for

four�dimensional non�extremal Reissner�Nordstr�m� with a contour for

the calculation of quasinormal frequencies� shown both in the r�plane

and the z�plane�

Hence the Bessel function behavior near r � � will be unchanged from the
previous examples	 and our calculation will proceed in an almost identical
manner� However	 in this case we must use a slightly more complicated
contour	 going around a �lobe� as shown in Figure �� the point is that we
want to capture only the outer horizon at r � 
	 where we know the boundary
conditions and hence know the monodromy	 and avoid the inner horizon at
r � k� As a result this computation is only valid in the non�extremal case
k � 
�
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The corresponding picture in the z�plane looks rather complicated be�
cause a given z may or may not lie in a �Bessel region� depending on whether
or not the r�plane contour is passing near r � � �the potential is a multi�
valued function of z but an ordinary function of r�� In Figure � this is
indicated by letting the contour pass over or under the blue circles when z
is not passing through a Bessel region� it is easiest to understand that �gure
by redrawing it yourself	 following the given r�plane contour starting at A
and tracing out the corresponding z�plane behavior�

The matching of asymptotic expansions in this case can be done following
the recipe given in Section ���� As before	 we begin at the point marked A
with the asymptotic behavior � � ��	���A	 and we have the boundary
condition

����A � �� ����

Going through a �� rotation in z gives �compare �����

�� � �m	n�� �m� �	n� �� ����

which is in this case ��	���A � ��	��A� Then we can go out along the
lobe where in our approximation the behavior is purely oscillatory� After
going around the lobe we have to return to the Bessel region a second time�
However	 the asymptotics in terms of z will be di�erent this time� we chose
the branch of z so that the �rst time we entered the Bessel region it was at
z � �	 but now we have traveled an additional distance in z �from changing
branches of the second logarithm in ��
��	 namely

� � ���ik���
 � k�� ����

So we may write the solution as

��z� � B�c�
p
��z � ��Jj�����z � ��� �B�c�

p
��z � ��J�j�����z � ����

����

Introducing a slight modi�cation of our previous notation	 we write

�n�� � ei�� � �n�� ����

Then from ���� we obtain � � ���� 	����B 	 giving the constraint

��	��A � ����	����B � ��
�

Making the second �� rotation we get ���� 	����B � ���	����B 	 so the
asymptotics near the point B are � � ���	����B � Now running over the big
semicircle to get back to the point A	 as before	 the WKB approximation
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allows us to claim the coe�cient of the exponentially big component e�i�z

is unchanged� So over the full round trip this component is multiplied by
����B����A� Between ���� and ��
� we have three homogeneous linear con�
straints on the four coe�cients A�	 B�	 so we can determine this ratio� it
turns out to be

����B
���A

� � �
 � � cos �j� � e�i���� � � cos �j�� ����

The contour encloses only the singularity at r � 
 �the outer horizon�	 so
the monodromy comes only from the multivaluedness of � and e�i�z around
r � 
� As discussed in the previous section	 this monodromy is determined
by the surface gravity of the horizon at r � 
	 namely

� �
��

f ��
�
�

��


� k
� ����

Also note that �i� � k��� Then matching the monodromies we obtain the
�nal result	

e�� � � �
 � � cos �j�� ek
��� �� � � cos �j� � ����

The �rst term looks exactly like the result ���� from Schwarzschild	 and then
there is a correction term which came from the phase shift �� Actually	 this
term can also be written in terms of a Hawking temperature	 but this time
the Hawking temperature of the inner horizon�

�I �
��

f ��k�
�

��k�

k � 

� �k��� ����

At any rate	 substituting j � 
�� or j � ���	 from ����	 gives the same
answer in each case�

e�� � ��� �ek
���� ����

So this is our result for the asymptotic quasinormal frequencies of scalar or
axial electromagnetic�gravitational perturbations of Reissner�Nordstr�m in
d � �� This result suggests a somewhat more complicated asymptotic be�
havior for the quasinormal frequencies than we found in the case of Schwarz�
schild� in particular	 the asymptotic frequencies seem to be aperiodic unless
k� is rational	 and the real parts do not settle down to a simple value�

We note that by taking k slightly imaginary it would be possible to get
rid of the last term in the asymptotic limit	 and in this case one would
obtain asymptotically jRe�j � THawking log���� This may not be an unrea�
sonable thing to do	 since k is related to the charge and mass of the black
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hole	 and the mass should be considered as slightly imaginary �the black
hole eventually evaporates�� Indeed	 if Q is real and �xed	 then M is a
decreasing function of k	 so the expected small negative imaginary part of
M corresponds to a small positive imaginary part of k	 which is the cor�
rect sign to suppress the last term� Following 

	 
�� and identifying this
THawking log��� with a quantum of energy emitted by a black hole	 we note
that this corresponds precisely to the black hole reducing its outer horizon
area by �G log��� while keeping Q �xed�

One might be concerned that our result for Reissner�Nordstr�m is incom�
patible with the known results for Schwarzschild because it does not reduce
to THawking log��� as k � �� There is no inconsistency� rather	 there is an
order�of�limits issue� For extremely small k	 Re� will be approximately
THawking log��� for a large range of Im� but then eventually switch over to
the Reissner�Nordstr�m behavior determined by ����� the value of Im� at
which the crossover occurs goes to � as k � �� We can make a rough es�
timate of the critical value k � k���� above which the Reissner�Nordstr�m
description becomes more appropriate than the Schwarzschild description�
namely	 it is the point where the leading term k��r� is of the same order
as the term 
�r
 which would be leading for the Schwarzschild black hole�
To compare these two terms the relevant r is the place where we patch the
plane wave with the Bessel function solution	 namely �z 
 
� To relate z to
r we can use either the relation z � r� from Schwarzschild or z � r��k from
Reissner�Nordstr�m� With either choice	 requiring k��r� � 
�r
	 i�e� k � r	
we obtain �nally k � r � ����� i�e�

k���� � ������ ����

If k � k����	 the asymptotic Reissner�Nordstr�m formula ���� is appropri�
ate� if k 
 k���� the Schwarzschild result is appropriate�

After the preprint version of this paper appeared	 the formula ���� as
well as the order�of�limits issue discussed above were con�rmed explicitly in
the numerical analysis of 
��� �see also 
��� for some discussion��

� Directions for further study

This work suggests various possible directions for further study�

� The machinery developed here may be applicable more generally	 e�g�
to charged black holes in d 
 �	 and perhaps even to general rotating
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black holes� Some work in this direction is in progress for the Kerr
black hole in d � � 
���� In addition one could consider the case of
black holes in de Sitter or anti�de Sitter space� quasinormal frequencies
in these backgrounds have recently been studied 
��	 ���	 and recently
some exact results have been obtained in the limit where the Schwarz�
schild horizon nearly coincides with the de Sitter horizon 
�
�� The
asymptotic quasinormal frequencies in these backgrounds are related
to properties of the holographic dual theory 
��	 ���� The method will
however require some modi�cation	 since the potential no longer van�
ishes at in�nity	 and the expected answer is quite di�erent �the real
part is expected to diverge along with the imaginary part 
��	 �����

� Our results so far only give the asymptotic real part of the frequency
in the limit of in�nite imaginary part� It may be possible to extend
the technique to obtain a systematic expansion including corrections
in 
�

p
j�j� After the preprint version of this paper appeared	 the j

and l dependence of the �rst correction for arbitrary j appeared in

���	 and the exact correction for j � � including numerical coe�cient
was computed in 
����

� It would be desirable to have some numerical calculations of the asymp�
totic quasinormal frequencies in the cases we considered above	 to con�
�rm or reject our proposed analytic solution� In the case of Reissner�
Nordstr�m	 after the preprint version of this paper appeared	 such
calculations were indeed done 
��� and con�rmed our solution in detail
�the agreement is also discussed in 
����� However	 the case of higher�
dimensional black holes remains numerically unstudied as far as we
know�

� In d 
 � Schwarzschild we could only give results for certain types of
perturbation	 because so far a good theory of more general perturba�
tions in these dimensions is apparently lacking� It would be nice to
understand how the leading term in the potential depends on the type
of perturbation�

� According to our calculation	 the asymptotic real part of the frequency
depends only on the coe�cient of the leading term in the potential�
This leading term becomes important only near the singularity at
r � �	 but it still a�ects the transmission amplitude in the physical re�
gion between the horizon and in�nity� Although the importance of the
singularity at r � � was purely mathematical in our approach	 there
could be a more physical explanation of why our procedure works� Can
we view it as a manifestation of the complementarity principle	 re�ect�
ing some kind of duality between what happens inside and outside the
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horizon 

� The occurrence of the Hawking temperature for the inner horizon of
the Reissner�Nordstr�m black hole is surprising� How can the quasi�
normal modes know about the behavior of the black hole in the causally
disconnected interior 

� The original motivation for this work was the LQG explanation 

� of
the log��� in d � � Schwarzschild in terms of a spin network with links
of spin 
� If LQG is correct	 perhaps the more complicated behavior for
Reissner�Nordstr�m should have a similar explanation� The possible
appearance of log��� in the asymptotic frequencies could support some
recent claims 
��� that the gauge group of LQG should be SU��� despite
the log��� for Schwarzschild�

� Similarly	 can spin foam models or other models explain the fact that
the log��� for Schwarzschild black holes seems to be independent of
dimension 

We have answered some questions about the asymptotic quasinormal fre�
quencies of black holes	 but many more remain open�
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