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Abstract

We replace our earlier condition that physical states of the super-
string have non-negative grading by the requirement that they are an-
alytic in a new real commuting constant t which we associate with
the central charge of the underlying Kac-Moody superalgebra. The
analogy with the twisted N=2 SYM theory suggests that our covariant
superstring is a twisted version of another formulation with an equiv-
ariant cohomology. We prove that our vertex operators correspond in
one-to-one fashion to the vertex operators in Berkovits’ approach based
on pure spinors. Also the zero-momentum cohomology is equal in both
cases. Finally, we apply the methods of equivariant cohomology to the
superstring, and obtain the same BRST charge as obtained earlier by
relaxing the pure spinor constraints.
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1 Introduction

Recently, we developed a new approach to the long-standing problem of the
covariant quantization of the superstring [1]. The formulation of Berkovits of
the super-Poincaré covariant superstring in 9+1 dimensions [2] is based on a
free conformal field theory on the world-sheet and a nilpotent BRST charge
which defines the physical vertices as representatives of its cohomology. In
addition to the conventional variables xm and θα of the Green-Schwarz for-
malism, a conjugate momentum pα for θα and a set of commuting ghost
fields λα are introduced. The latter are complex Weyl spinors satisfying the
pure spinor conditions λαγmαβλ

β = 0 (cf. for example [3]). This equation can
be solved by decomposing λ with respect to a non-compact U(5) subgroup
of SO(9, 1) into a singlet 1, a vector 5, and a tensor 10. The vector can be
expressed in terms of the singlet and tensor, hence there are 11 independent
complex variables in λα.

Since the presence of the non-linear constraint λαγmαβλ
β = 0 makes the

theory unsuitable for a path integral quantization and higher loop compu-
tations, we relaxed the pure spinor condition by adding further ghosts. We
were naturally led to a finite set of extra fields, but the BRST charge Q of
this system was not nilpotent, and the central charge of the conformal field
theory did not vanish. The latter problem was solved by adding one more
extra ghost system, which we denoted by ηm and ωmz . The former problem
was solved by introducing yet another new ghost pair, b and cz, which we
tentatively associated with the central charge generator in the affine super-
algebra which plays an essential role in the superstring [4].

The BRST charge is linear in cz, and without further conditions on phys-
ical states the theory would be trivial. We proposed that physical states
belong not only to the BRST cohomology (Q |ψ〉 = 0, but |ψ〉 6= Q |φ〉), but
also that the deformed stress tensor T+V (0), where V(0) is a vertex operator,
satisfies the usual OPE of a conformal spin 2 tensor. (The latter condition
is weaker that the requirement that vertex operators be primary fields with
conformal spin equal to 1).

The definition proposed in [5] replaced the stress tensor condition by the
requirement that the physical states belong to a subspace H′ of the entire
linear space H of vertex operator. The latter can be decomposed w.r.t.
a grading naturally associated with the underlying affine algebra as H =
H−⊕H+, with negative and non-negative grading, respectively. The BRST
charge Q =

∑

n≥0Qn contains only terms Qn with non-negative grading,
hence one can consistently consider the action of Q in H+. The physical
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space is identified with the cohomology group H(Q,H+), namely

Q|ψ〉 = 0, |ψ〉 ∈ H+,
|ψ〉 6= Q|ψ〉, |ψ〉 ∈ H+.

(1.1)

Furthermore, by rescaling the ghost fields with a parameter t to the
power equal to the grading of the ghost field and assigning the grading −1/2
to the parameter t, we restate the definition of physical states as the BRST
cohomology of vertices with vanishing grading and analytical in the new
parameter t.

The essential point is that the cohomology in the pure-spinor formulation
[2] is a constrained cohomology and this translates in our formalism into
an equivariant cohomology. This implies that the physical observables are
identified not naively by the BRST cohomology, but with the classes of an
equivariant cohomology. This is evident from the structure of our BRST
operator and from the fact that on the complete functional space the BRST
cohomology is trivial. Usually, in that situation one has to identify what is
the functional space on which the BRST cohomology should be computed
and, depending on the context, one has to determine an operator which
defines such physical states.

At the time when we completed paper [5] we were not aware of the fact
that the functional subspace characterized by the non-negative graded mono-
mials was indeed the subspace on which the BRST cohomology becomes an
equivariant cohomology, but we did observe that it gives the correct spec-
trum for the superstrings. In the present paper, we completely spell out the
equivalence between the grading condition and the equivariant cohomology.

We also want to mention that the same situation can be found in the
context of topological Yang-Mills, topological sigma models and RNS su-
perstrings [6]. Essentially, also in those cases the BRST cohomology is not
well defined due to the commuting character of superghosts unless a further
condition is imposed. For example in [7], to avoid the ambiguities of the co-
homology in presence of commuting ghosts, Siegel introduced non-minimal
terms in the action and observed that suitable combinations of fields and
constraints can be read as creation and annihilation operators acting in
Hilbert space. The definition of the vacuum removes the ambiguities in the
cohomology computations.1

1Similar problems occur if one adds a BRST invariant field Yα such that Yαλα 6= 0 (see
for example

[8]), but they can be solved by using our grading (restricted to λα) and our definition
of physical states.
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The paper is organized as follows: in section 2, we review the definition
of the grading and of the decomposition of the BRST charge according to it.
In section 3, we restate the condition on physical states and we show how
the BRST charge presented in [1] can be reformulated in the context of the
equivariant cohomology. This leads to the same result achieved in [1], but
the interpretation is different. In section 4, as a pedagogical example and to
underline the relation between the present formulation with the equivariant
cohomology theories, we review the Donaldson-Witten model in D = (4, 0)
and the relation with the twisted N = 2 SYM. In section 5, we present a
proof of the equivalence of the pure-spinor cohomology with our formulation
and some examples. In section 6, we reproduce the results of [1] starting
from yet another point of view, but which illustrates some of the details
in the proof of the previous section. In section 7, as a last application, we
compute the zero momentum cohomology.

2 Grading

Following [1], we review the definition of the grading, the construction of its
worldsheet current and the decomposition of the BRST charge according to
the grading.

We have based our approach on the following affine superalgebra [4]

dα(z)dβ(w) ∼ −
γm

αβ
Πm(w)

z−w , dα(z)Πm(w) ∼
γm

αβ
∂θβ(w)

z−w ,

Πm(z)Πn(w) ∼ − 1
(z−w)2

ηmn k , dα(z)∂wθ
β(w) ∼ 1

(z−w)2
δ β
α k ,

Πm(z)∂wθ
β(w) ∼ 0 , ∂zθ

α(z)∂wθ
β(w) ∼ 0 ,

(2.1)
where ∼ denotes the singular contributions to the OPE’s.

This algebra has a natural grading defined as follows: dα(z) has grading
1/2, Πm(z) has grading 1, ∂zθ

α(z) has grading 3/2, and the central charge
k (which numerically is equal to unity) has grading 2. The corresponding
ghost systems are (λα, βzα), (ξm, βzm), (χα, κ

α
z ), and (cz , b). We thus define

the following grading for the ghosts and corresponding antighosts

gr(λα) = 1
2 , gr(ξm) = 1 , gr(χα) = 3

2 , gr(cz) = 2 ,
gr(βα) = −1

2 , gr(βm) = −1 , gr(κα) = −3
2 , gr(b) = −2 .

(2.2)

We also need the ghost ωm and the antighost ηmz , although this pair does
not seem to correspond to a generator. We assign the grading gr(ηmz ) = −2
and gr(ωm) = 2 for the following reason. In [1], we relaxed the pure spinor
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constraint by successively adding quartets starting from (λ+, λ[ab];β
+, β[ab])

of [2] (the indices a, b belong to the fundamental representation of the U(5)
subgroup of SO(1, 9)), and adding the fields (λa, βa; ξ

a, β′a) with grading
(1/2,−1/2, 1,−1). This procedure yields the covariant spinors λα and βα,
but now the fields (ξa, β′a) are non-covariant w.r.t. SO(9, 1). Thus, we added
the quartet (ξa, β

′a;χa, κ
a) with grading (1,−1, 3/2,−3/2). The spinors

(χa, κ
a) are part of a covariant spinor and the missing parts are intro-

duced by adding the quartets (χ+, κ+; c, b) and (χ[ab], κ[ab];ω
m, ηm), both

with grading (3/2,−3/2, 2,−2). In this way, we obtain the covariant fields
λα = (λ+, λ

a, λ[ab]); βα = (β+, βa, β
[ab]); ξm = (ξa, ξa); β

m = (β
′a, β′a);

χα = (χ+, χa, χ
[ab]); κα = (κ+, κ

a, κab); b, c and ηm, ω
m.

As usual for a conformal field theory, it is natural to introduce a current
whose OPE’s with the ghost and antighosts reproduce the grading assign-
ments in (2.2)

jgradz = −
1

2
βz,αλ

α − βz,mξ
m −

3

2
καzχα − 2 b cz − 2 ηmz ωm . (2.3)

Independent confirmation that this current might be important comes from
the cancellation of the anomaly (namely the terms with (z − w)−3) in the

OPE of the stress energy tensor Tzz(z) (cf. eqs. (1-3) of ref. [1]) with jgradz .
In fact, one finds

cgrad =
1

2
×(+16)λβ+1×(−10)ξβ+

3

2
×(+16)κχ+2×(−1)bc+2×(−10)ηω = 0 .

(2.4)
The requirement that the vertex operators contain only terms with non-
negative grading leads to the correct massless spectrum [5]. It will also
severely restrict the contribution of the vertex operators to correlation func-
tions (in the usual RNS approach ghost insertions are needed to compensate
the anomaly in the ghost current, whereas here we anticipate to need in-
sertions of fields in H− to compensate the non-negative grading of vertex
operators U (1) ∈ H+).

All the terms in the stress tensor Tzz(z) and in the ghost current

Tzz = −
1

2
Πm
z Πmz − dzα∂zθ

α − βzm∂zξ
m − βzα∂zλ

α − καz ∂zχα + ∂zb cz − ηmz ∂z ωm ,

Jghz = − (βmzξ
m + καzχα + βzαλ

α + b cz + ηmz ωm) , (2.5)

have grading zero, since they are sums of terms of ghost and antighost pairs
with opposite grading. On the other hand, the terms in the current jBz (z) (cf.
eq. (1.2) in [1]) and the field Bzz(z) have different grading2. For instance,

2In [1] we presented four different solutions Bi of the the equation Tzz(z) = {Q, Bi
zz(z)}.

None of the solutions Bi have definite grading except BIV
zz (z) = b T̂zz(z) + b∂zbcz − 1

2
∂2

zb

which has grading equal to −2 carried by the antighost b.
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the BRST current can be decomposed into the following pieces jBz (z) =
∑2

n=0 j
B,(n)
z (z)

j
B,(0)
z (z) = − ξmκαz γmαβλ

β − 1
2λ

αγmαβλ
ββzm+

−1
2b

(

ξm∂zξm − 3
2χα∂zλ

α + 1
2∂zχαλ

α
)

− 1
2∂z (b χαλ

α) ,

j
B,( 1

2
)

z (z) = λαdzα , j
B,(1)
z (z) = −ξmΠzm ,

j
B,( 3

2
)

z (z) = −χα∂zθ
α , j

B,(2)
z (z) = cz .

(2.6)

It is clear that all terms in jBz (z) have non-negative grading.

3 A New Definition of Physical States.

We begin with some notation that will be used in the following. We denote
the quantities in Berkovits’ formalism with pure spinor constraints with a

lower index B. For example QB is his BRST charge and U
(1)
B is his uninte-

grated vertex operator. The physical spectrum of superstrings is identified
with the ghost number +1 elements of the cohomology H(QB |Hp.s.) where
Hp.s. is the linear vector space of vertex operators expressed as polynomials
of the world-sheet fields xm, θα and of the pure spinors λα. The latter satisfy
the pure spinor condition λγmλ = 0. The group H(QB |Hp.s.) is an example
of a constrained BRST cohomology, or equivalently, of equivariant cohomol-
ogy [9]. In the latter case, the BRST cohomology is computed on the super-
manifold xm, θα on which the space-time translations xm → xm + 1

2λγ
mλ,

generated by unconstrained spinors λα, act freely. One finds that Q2
B = −LV

where V m = 1
2λγ

mλ. (In Howe’s work on pure spinors [3] a translation
xm → xm + λγmλ̄ is considered where λ are pure spinors. The integrability
condition for a covariantly constant field, λα∇αφ = 0 lead to the SYM field
equations).

In order to compare with our formalism [1], let us rescale the pure spinors
with a constant commuting parameter t ∈ IR. One can interpret this con-
stant as the quartic root of the central charge of the Kac-Moody algebra,
t4 = k. Using the gradings discussed in the previous section, we obtain
QB =

∮

λadα → t
∮

λadα and Q2
B = t2

∮

1
2λγ

mλΠm. Notice that the r.h.s.
can be also written in term of the Lie derivative LV = d ιV + ιV d, where ιV
is the contraction of a form with the vector V m. One can represent ιV by the
operator

∮

dz V mβzm; its action on (parity reversed forms) ξm is then given
by the OPE of βzm(z) with ξm(z). The exterior differential d is ξm∂m where
ξm are the parity-reversed coordinates of the cotagential bundle ΠT ∗M. The
usual exterior derivative d = dxm∂m has been replaced by −

∮

dz ξmΠzm .
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Since Πm
z (z)∂lxn(w) ∼ (z − w)−l−1, the operator −

∮

dz ξmΠzm represents
the exterior derivative on the jet bundle {xm, ∂ xm, ∂2xm, . . . }. One may
represent Πm

z by the functional derivative δ/δxm(z), but note that the latter
operator has a central charge and the former has not. The definition in terms
of Πm

z is explicitly supersymmetric. Following the approach of equivariant
cohomology [9], one can define a new BRST operator Q′ by

Q′ = tQB + t2d+ ιV = Q− t2
∮

ξmΠzm −

∮

1

2
λαγmαβλ

ββzm . (3.1)

Unfortunately, this operator fails to be nilpotent for two reasons: the opera-
tor d does not commute with QB and d2 6= 0. Notice that this is a quantum
effect: in fact the Kac-Moody generator dα on the space of functions on the
superspace M acts like the covariant derivative

∮

dα F (x, θ) = DαF (x, θ),
and in the same way Πm acts like the ordinary space-time derivative. This
is clearly true only on functions on the superspace M and not on forms of
Ω∗(M). In addition, one has to take into account that the OPE of Πm with
itself has a central term. Computing the square of Q′ one finds

(Q′)2 = t2
(

Q2
B + d ιV + ιV d

)

+ t3 {QB , d} + t4d2

= t3
∮

ξmλ
αγmαβ∂zθ

β + t4
∮

ξm∂zξm .
(3.2)

where we used Q2
B = −LV from [2] and we also used that QB =

∮

λαdα
anticommutes with ιV , and ιV anticommutes with itself. According to the
grading of [5], ξmγ

m
αβλ

β has grading 3/2, and we associate the factor t3 to

∂zθ
β because then the whole expression for (Q′)2 gets grading −3/2 (we

define gr(t) = −1/2).

The t3 term generates fermionic translations in the extended superspace
M′ parametrized by the coordinates (xm, θα, φα) and constructed in [4].
However, as noticed by Siegel, since {i ∂

∂φα
, i ∂
∂φβ

} = 0, one can apply the

first order constraint i ∂
∂φα

= 0 to eliminate the variable φα, obtaining the

usual superspace M. Since ∂zθ
β generates translations of the variable φα,

we can view it again as a Lie derivative and repeat the construction in (3.1).
Namely, the first term in (3.2) can be seen as a Lie derivative Lψ along the
fiber φα of the superspace M′ with respect the spinor ψα = ξmγ

m
αβλ

β. We
have

Q′′ = Q′ + t3dφ + ιψ (3.3)

where dφ =
∮

χα∂zθ
α and ιψ = −

∮

καξmγ
m
αβλ

β. One can again square this
expression and study the terms on the right hand side. One finds only terms
proportional to t4, and these terms are Q′′ invariant. At first sight they seem
not to contain any new translation generator. However, adding cz(z) plus
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b(z) time the t4 terms yields the final BRST charge ([1],[10]). It coincides
with the expression we derived in [1]

Q0 = −

∮

(

ξmκαz γmαβλ
β +

1

2
λαγmαβλ

ββzm +
1

2
b (ξm∂zξm −

3

2
χα∂zλ

α +
1

2
∂zχαλ

α)
)

,

Q = t

∮

λαdzα − t2
∮

ξmΠzm − t3
∮

χα∂zθ
α + t4

∮

cz +Q0 . (3.4)

First, we note that the BRST charge Q is a polynomial in the constant t and
the ghost terms collected in Q0 are t-independent. As a consequence Q2

0 =
03. This is a well-known fact in the Sugawara construction based on a super-
Kac-Moody [12]. Extracting the ghosts (λa, ξm, χα) from Q and Q0 leads
to two representation of the generators of the same affine algebra, namely

(dα,Π
m, ∂θα) and

(

(−βmγ
mλ−ξmγ

mκ−b ∂χ−3/4 ∂bχ)α ,−κγ
mλ−b ∂ξm−

1/2 ∂b ξm, b ∂λα + 1/4 ∂b λα)
)

. Next, we note that by assigning the grading

to the fields discussed before and the grading −1/2 to the parameter t, the
BRST charge obtains zero grading4. Since the parameter t is constant the
assignment of this grading does not spoil the cancellation of the anomaly of
the grading current. It is interesting to compute the BRST transformations
of the antighosts

{Q, b} = t4 ,

[Q,καz ] = −t3∂zθ
α + b ∂zλ

α +
1

4
(∂zb) λ

α , (3.5)

{Q, βmz } = −t2Πm
z − κzγ

mλ+ b ∂zξ
m +

1

2
(∂zb) ξ

m ,

[Q, βzα] = t dzα − βmz (γmλ)α − ξm(γmκz)α − b ∂zχα −
3

4
(∂zb)χα .

From the t-dependent terms it becomes evident that the BRST transforma-
tion of b contains the central charge of the Kac-Moody algebra. Being a
number, one can set it to 1. We refer to [13] (remark 17 on page 48) for a
discussion of this point

The BRST charge Q, the stress tensor Tzz, the ghost current J ghz and
the action S (see [1]) have grading zero. Thus, we require that physical
observables have zero grading as well. A generic vertex operator U can be
expanded into power series of the parameter t, U =

∑N+

n=−N−
tn Un where

N− and N+ are the lowest and the highest power of t. In general N− ≥ 0,
and the numbers N− and N+ are bounded for a fixed ghost number and at

3In [11] a non-nilpotent Q has been found, but it contained a Q0 which is nilpotent.
This Q0 corresponds to our Q0.

4In the case of topological field theories obtained from supersymmetric models by twist-
ing, the grading corresponds to the R-charge [13].
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fixed world-sheet conformal weight (the latter is number of z indices in the
expression for the unintegrated vertex U). The definition of physical states
presented in [5] can be now reformulated by requiring that the vertex oper-

ators are analytic functions of t, as earlier proposed for topological gauge
theories [13] and for topological sigma models [14]. This is completely equiv-
alent to our previous requirement that only H+ with non-negative graded
operators has to be taken into account [5]. In the following, the space H+

is identified with the analytic functions of the parameter t. To justify the
choice of functional space, we note that

QB = lim
t→0

t−1Q(t) , (3.6)

if ξm = χα = c = λγmλ = 0, namely if all additional ghost fields (except the
pure spinors) are set to zero and λ satisfy the pure spinor constraints.

As an example, we consider the vertex operator massless states in the
open string

U (1)(z) = t λαAα + t2 ξmAm + t3 χαW
α + t4 ωmBm

+b
( 1

t2
λαλβFαβ +

1

t
λαξmFαm + t0ξmξnFmn

+t0λαχβF
β

α + t χα ξ
mFαm + t2χαχβF

αβ
)

(3.7)

+b ωm
(

t λαGmα + t2ξnGmn + t3χαG
α

m

)

+ t4b ωmωnKmn ,

where Aα, . . . ,Kmn are arbitrary superfields of xm, θ
α. The analyticity w.r.t.

t implies that the first two terms in the first bracket should be canceled. The
rest of the vertex is polynomial in t and

lim
t→0

t−1U (1)(z)
∣

∣

∣

ξm=χα=c=0
= U

(1)
B (z) , (3.8)

namely it coincides with pure-spinor unintegrated vertex. In fact, by iden-
tifying t = k

1

4 , where k is the Kac-Moody central charge, setting k = t = 0,
implies that the OPE of Πm with itself vanishes, and the BRST charge is
consequently nilpotent. There is a caveat in this argument: ∂tQ|2t=b=0 6= 0
as we know from [2]. But if λα satisfies the pure spinor constraint, it is
nilpotent. This point will be clarified in the forthcoming sections.

4 N=2 D=4 SYM and Topological Yang-Mills

The introduction of grading by means of a constant parameter t and the
requirement that the space of unintegrated vertex operator be restricted to
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non-negative grading or to analytical functions of t is a common situation in
so-called equivariant cohomology theories [9]. We believe that our covariant
superstring is related to a worldsheet supersymmetric model by a suitable
twisting. It may be illuminating to review the relation between N=2 SYM
in D=(4,0) dimensions and the topological Donaldson-Witten model [15] be-
cause these models are also related by twisting, and the cohomology after
the twisting is also restricted to the polynomials which are analytical in the
constant twisted supersymmetry ghost t.

The N=2 supersymmetric theory is described by a gauge potential Aµ,
the gauginos ψiα, ψ̄

i
α̇ and a complex scalar φ. The index i = 1, 2 is the

index of the R-symmetry group U(2). The subgroup U(1) determines the
R-charge. All fields carry an index a in the adjoint representation of the
gauge group which we suppress. By twisting the R-symmetry with one of
the SU(2) subgroup of SO(4), one obtains fermions with Lorentz-vector
indices, and the susy parameters become a Lorentz-scalar t, a vector and a
self-dual antisymmetric tensor

ψµ = σ̄iα̇µ ψiα̇ , χµν = σiαµνψiα , η = εiαψiα , (4.1)

εµ = σ̄iα̇µ ζiα̇ , tµν = σiαµνζiα , t = εiαζiα .

With the gauge potential Aµ and the complex scalar φ, these are the fields
of the Donaldson-Witten model. To compare the fields of the two different
models, the Wess-Zumino gauge has been chosen in superspace, and susy
auxiliary fields have been eliminated. In this particular case, the susy trans-
formations generated by qiα and q̄iα̇ close only up to gauge transformations
and up to equation of motions

{qiα, q̄jα̇} = δijσ
µ
αα̇∂µ + gauge transf.+ eqs. of motion , (4.2)

{qiα, q
j
β} = {q̄iα̇, q̄

j

β̇
} = gauge transf.+ eqs. of motion .

To define the supersymmetric and gauge invariant observables in the
N=2 susy model, one needs to define a new BRST operator which is the
sum of the usual BRST operator Q, the supersymmetry generators and the
translation generator multiplied by their constant ghosts (the commuting
ζiα and ζ̄iα̇ and the anticommuting τµ) and a further term

QS = Q+ ζ iαqiα + ζ̄iα̇q̄iα̇ + τµ∂µ − ζiασµαα̇ζ̄
α̇
i ∂τµ . (4.3)

The last term is needed in order to make QS nilpotent on all classical fields
and on ghost except the gauginos. Further, Q contains also terms which
transform the Yang-Mills ghost ca into two supersymmetry ghosts ζ iα and
ζ̄iα̇. Nilpotency of QS on the gauginos can be achieved by adding to the
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theory suitable antifields and constructing the corresponding BRST operator
of the BV formalism.

Twisting the supersymmetry generators, we find Witten’s fermionic sym-
metry δW = εiα qiα, the vector supersymmetry δµ = σ̄iα̇µ q̄iα̇ and the self-
dual antisymmetric tensor supersymmetry δµν = σ̄iαµν qiα. The corresponding
BRST operator is given by

QT = Q+ t δW + εµδµ + τµ∂µ − t εµ∂τµ , (4.4)

where the ghost t is associated to δW and εµ to δµ. QT is again nilpotent
on all fields except the selfdual antisymmetric tensor χµν . We drop the an-
tisymmetric generator δµν since the observables are completely determined
by the remaining symmetries. By twisting the fields of the supersymmetric
action, the new fields will carry the same R-charge as before twisting and
in particular t carries the charge −1. Explicitly, the transformations gen-
erated by QT are given by (we can set εµ = τµ = 0 without affecting the
conclusions5)

[QT , Aµ] = −∇µc+ t ψµ , {QT , ψ
µ} = {c, ψm} − t∇µφ , (4.5)

{QT , c} = c2 − t2 φ , [QT , φ] = [c, φ] , [QT , φ̄] = [c, φ̄] + 2 t η ,

{QT , η} = {c, η} +
t

2
[φ, φ̄] , {QT , χµν} = {c, χµν} + t F+

µν +
t2

2
χ∗
µν ,

[QT , χ
∗
µν ] = −2 (∇[µψν])

+ + 2 [φ, χµν ] + [c, χ∗
µν ] ,

where χ∗
µν is the antifield of χµν . Here the superscript + denotes the selfdual

part of the tensor. For the purposes of the present section we will not describe
the action of QT on the antifields. It can be shown that the cohomology of
QT is independent from the antifields [16].

The crucial point is that the cohomology of QT is only non-trivial if one
restricts the space of polynomials to those which are analytical in the global
ghosts t, εµ and tµ [16]. In fact, the cohomological classes are generated by
monomials Pn(φ) of the undifferentiated fields φ

Pn(φ) =
1

n
tr

(

φn
)

, n ≥ 2 . (4.6)

Thus the cohomology is not only restricted to monomials analytic in t, but it
is even independent of t. Due to the commuting nature of φ, the expressions

tr
(

φn
)

for n sufficiently large is related to higher order Casimir invariants

of the gauge group.

5By this we mean that εµ and τµ do not transform into terms without either εµ or τµ,
implying that we can apply filtration methods.
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The analysis of the proof in [16] is based on a filtration of the functional
space (which contains the constant ghosts t, εµ, τµ), and of the BRST opera-
tor with respect to the counting operator N = t∂t. One has QT =

∑2
n=0Qn,

where

Q2
0 = 0 , {Q1, Q0} = 0 , Q2

1 + {Q0, Q1} = 0 , {Q1, Q2} = 0 , Q2
2 = 0 .

(4.7)
The first term of the decomposition Q0 selects the pure gauge transforma-
tions in the BRST symmetry (4.5) whereas Q1 and Q2 lead to shift trans-
formations.6

By relaxing the constraint of analyticity, it is easy to show that all mono-
mials Pn(φ) become BRST trivial. For instance we have

tr
(

φ2
)

=

{

Q, tr
(

−
1

t2
c φ+

1

3t4
c3

)

}

. (4.8)

In other words, working in the functional space whose elements are power
series in the global ghosts (in particular t), namely U =

∑

n≥0 t
nUn, the

cohomology is non-trivial, but in the larger space with also negative powers
of t the BRST cohomology becomes trivial, in agreement with the results of
Labastida-Pernici and Baulieu-Singer [9].7

In terms of the cohomological representatives (4.6) , one can construct
the solution to the descent equations: {Q,Ωn

p} + dΩn+1
p−1 = 0, where d is the

exterior differential and Ωn
p are p-forms with ghost number n. The generators

of the equivariant cohomology of QT satisfy the descent equations

[QT ,
1

2t4
trF 2] = −d 1

t3
tr

(

F ψ
)

, {QT ,
1
t3
tr

(

F ψ
)

} = −d 1
t2
tr

(

φF + 1
2ψ

2
)

,

[QT ,
1
t2
tr

(

φF + 1
2ψ

2
)

] = −d tr
(

1
t
φψ

)

, {QT , tr
(

1
t
φψ

)

} = −1
2dTrφ2 ,

[QT ,
1
2 trφ

2] = 0 .
(4.9)

Except the last element of the descent equations, namely the monomial trφ2,
all the other generators are explicitly non-analytical. The same situation will
happen in the case of open superstrings: the descent equations are given by

6In the case of superstrings, the charge Q0 in (3.4) implements the pure spinor constraint
at the level of cohomology (it generates the gauge transformations of the antighost fields).
The charge Q − Q0 in (3.4) leads to shifts of the fields as in the topological model.

7It is interesting to note that in the string case, by imposing the restriction that U =
P

n≥1
tnUn. The cohomology is further restricted to the states of topological super-Yang-

Mills in D=(9,1). This might lead to the construction of topological super-Yang-Mills
model in higher dimensions where the action is given by S = 〈Ψ, QT Ψ〉. Clearly, one needs
a definition of the inner product in order to have a gauge invariant and supersymmetric
model.
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{Q,U} = 0 and [Q,Vz] = ∂zU . Here U corresponds to the so-called non-
integrated vertex and Vz to the integrand of the integrated vertex. Following
the suggestions of topological models, one finds that U is written in terms
of a power series of t, but Vz will contain also non-analytical terms. It
turns out that those non-analytical pieces are irrelevant for computations of
amplitudes.

5 Equivalence with Berkovits’ formulation

In the case of massless states a direct comparison with the equation of mo-
tions obtained in [2] can be easily done, but, for massive states, the field
equations in N=1 d=(9,1) superspace formulation are not known. Only re-
cently, the equations of motion for the first massive state for open superstring
has been derived in [17] using the pure spinor formulation.

Since the comohology H (1)(QB |Hp.s.) has been proved in [2] to contain
uniquely the spectrum of the RNS superstring, or equivalently of the Green-
Schwarz string quantized in the light-cone gauge, it will be sufficient to prove
the equivalence of our cohomology group H (1)(Q,H+) with the pure spinor
constrained cohomology H (1)(QB |Hp.s.).

Both the BRST operator (3.4) and the vertex operators are analytic
functions of an indeterminate variable t. We are therefore studying a coho-
mology with values in a ring of analytic functions of t. However, as discussed
in [18], we can work at a fixed value t = t0 as long as the multiplication by
the monomial (t − t0) is an injective map in the cohomology. In our case,
the presence of a grading implies that this is true for any value of t except
possibly for t = 0. In fact, the equation (t − t0)U = 0 can be separated
according to the grading in tU = 0 and t0 U = 0. The latter is only satisfied
for U = 0 unless t0 = 0. This means that, in analyzing the cohomology, we
can consider t as a given non-zero real parameter.

The next step is to prove that the cohomology is in fact independent
of the value of t. This follows from the fact that one can change the value
of t by applying a similarity transformation to the BRST operator. More
precisely, defining Qgrad to be the grading charge, Qgrad =

∮

jgradz , one has
the following “evolution” equation

t
∂

∂t
Q(t) = [Qgrad, Q(t)]. (5.1)

This equation is in fact the statement that Q(t) is an homogeneous function
of grading zero in t and all the fields. Since Qgrad does not depend on t, the
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equation is easily solved by Q(t) = e
Qgrad ln t

t1Q(t1)e
−Qgrad ln t

t1 . Thus Q(t1)
is related to Q(t) by a similarity transformation that is, however, singular at
t = 0. Following the ideas of Witten [19], we will consider the limit t → 0.
For this purpose, it is more convenient to use the operatorDt ≡

1
t
Q(t), which

has of course the same cohomology as Q. In eq. (5.1), the left-hand side is
manifestly at least linear in t, but the right-hand side is also linear because
the t-independent term Q0 commutes with Qgrad. We can then divide both
sides by t and get ∂tDt = [Qgrad, Dt]. The main idea of our proof is that, in
the limit t → 0, the divergent term in Dt, Q0/t, has the effect of localizing
the cohomology on the fixed points of the action of Q0. The transformation
properties of various fields under Q0 are given below:

{Q0, ξ
m} = −1

2λγ
mλ ,

{Q0, χα} = ξm(γmλ)α ,
{Q0, c} = ξm∂ξm + λα∂χα − χα∂λ

α ,
(5.2)

one can see that the fixed points of Q0 are λγmλ = 0, ξm = 0, χα = 0 and
cz = 0. The first of this conditions, of course, reproduces the pure-spinor
constraints, and the other ghosts are set to zero. The BRST operator re-
duces to the Q1 term, that reproduces the Berkovits’ one, and Q0. The only
difference with Berkovits’ cohomology is that the vertices can still depend
on βzm, the antighost of ξm. We must recall that the pure-spinor con-
straint λγmλ = 0 implies that the antighost of λ has the gauge-invariance
wα → wα+Λm(γmλ)α, for an arbitrary parameter Λm. The vertex operators
must then be restricted to be invariant with respect to this gauge transfor-
mations [17]. In our formalism we do not see this requirement even after
the localization. But we must still consider the action of Q0, that exactly
reproduces the transformations: {Q0, wα} = βm(γmλ)α. Vertices that are
not gauge-invariant are ruled out by the cohomology of Q0. This completes
the proof of the equivalence of our cohomology with the pure-spinor one.

As an illustration of this point, we consider explicitly the first massive
level of the open superstring. After the localization, the most general form
of the vertex, at ghost number 1, is

U (1)
z = ∂λαAα(x, θ) + ∂θβλαBαβ(x, θ) + dβλ

αCβα(x, θ) + ΠmλαHmα(x, θ) +

+wαλ
βλγEα(βγ)(x, θ) + βmλ

βλγFm(βγ)(x, θ) . (5.3)

Comparing with the vertex in [17], one can see that the only difference
is in the second line, where the second term is absent and the first one
only appears in the gauge-invariant combinations JλαEα and NmnλαE[mn]α,

where J = wαλ
α and Nmn = wα(γ

mn)αβλ
β. Requiring that Q0 annihilates

the vertex implies βmλ
βλγλδγm

α(βE
α
γδ) = 0 and καλβλγλδγmα(βF

m
γδ) = 0. The
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coefficient Eα
(γδ), considered as a matrix in the indices α, γ, can be expanded

on a basis of Dirac matrices, and the expansion contains terms with 0, 2 or 4
gamma matrices. The terms with 0 and 2 matrices reproduce the Berkovits’

terms. The term with 4 matrices has to satisfy βmλ
αλβλγγ

[mpqrs]
(αβ Eγ)[pqrs] =

0 and by decomposing λαλγ → λγtuvwxλγαγtuvwx, one obtains the equation

γ
[mpqrs]
βα γαγtuvwxEγ[pqrs] = 0 which implies that Eγ[pqrs] = 0. On the other

hand, decomposing Fm
(βγ) as a 5-form Fm[npqrs]γ

[npqrs]
αβ , one immediately obtains

that Fm[npqrs] = 0.

At this point, to construct the elements of the cohomology for t 6= 0,
it is convenient to disentangle the vertices and the BRST charge into fixed
grading numbers. We shall show that only four equations must be really
solved: all the others give only algebraic relations among the different pieces
of the vertices and can be easily solved.

As already mentioned, the BRST charge Q is an analytic functions of t
up to power four: Q =

∑4
n=0 t

nQn (in order to simplify the notation, we
denote QB by Q1). The nilpotency of Q is translated into the relations

m
∑

n=0

{Qm−n, Qn} = 0 , m = 0, . . . , 8 , Qn = 0 , n > 4 . (5.4)

However, due to the particular form of the various Qn, the equations (5.4) re-
duce to

Q2
0 = 0 , {Q0, QB} = 0 , Q2

B + {Q0, Q2} = 0 ,
{Q0, Q3} + {Q2, QB} = 0 , Q2

2 + {QB , Q3} + {Q0, Q4} = 0 ,
{Q2, Q3} = 0 , Q2

3 = 0 , {Qi, Q4} = 0 , i = 1, . . . , 4 ,
(5.5)

A generic vertex operator U (1) for the open superstring with ghost num-
ber 1 belongs to H+ and it can be expressed in terms of a power series of the
parameter t, U (1) =

∑

n≥0 t
n Un. This implies that expanding the equation

{Q,U (1)} = 0 in different powers we have the following equations

{Q0,U0} = 0 ,

{Q0,U1} + {QB ,U0} = 0 ,

{Q0,U2} + {QB ,U1} + {Q2,U0} = 0 , (5.6)

{Q0,U3} + {QB ,U2} + {Q2,U1} + {Q3,U0} = 0 ,

{Q0,Un} + {QB ,Un−1} + {Q2,Un−2} + {Q3,Un−3} + {Q4,Un−4} = 0 , n ≥ 4 .

Using the fact that b2 = 0, we can decompose any contribution Un into a
b-dependent term and a b-independent one, Un = U ′

n + b∆n. We therefore
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decompose all the equations into a b-dependent part and a b-independent
one. Since {Qi, b} = 0 for i = 1, . . . , 3, and {Q4, b} = 1, the b-independent
equations for n ≥ 4 can be easily solved. For example, let us consider the
equation for n = 4; we can solve it for ∆0

−∆0 = {Q0,U
′
4} + {QB ,U

′
3} + {Q2,U

′
2} + {Q3,U

′
1} . (5.7)

In a similar way all ∆n with n > 0 are solved by using (5.6) with n > 4.
Note that {Q,U} = 0 can be decomposed into Q = Q′ + Q4 and (Q′)2 +
{Q′, Q4} = 0 and U = U ′+b∆, this implies {Q′,U ′}+∆ = 0 and {Q′,∆} = 0
(as a consequence of (5.6)). Now, inserting ∆ = −{Q′,U ′} in {Q′,∆} =
−{{Q′, Q′},U ′} = {{Q′, Q4},U

′} = 0 and {Q′, {Q4,U}}+{Q4, {Q
′,U}} = 0,

but {Q4,U} = {Q′,∆} and {Q′,U} = −∆ which is Q4 invariant. This fixes
all the ∆n. However, from the first equation of (5.6) , one gets the two
equations {Q0,U

′
0} = 0 and {Q0,∆0} = 0. The second is a constraint on

∆0 and the solution (5.7) should be compatible with it. This can easily be
proved by using the commutation relations (5.5) and equations (5.6) for
U ′
i , i = 1, . . . , 3. In the same way, one can solve all the equations for n > 4

and the four remaining equations can be now expressed in terms of only the
b-independent part of Un. Hence, at this point all the equations in (5.6) for
n ≥ 4 have been solved.

As an example, we illustrate the construction in the case of massless
vertex for the open superstring. This example will also provide some hints
for constructing the massive states in the present formalism.

In the massless case, we consider only worldsheet scalar vertex operators.
This implies that only the antighost b is allowed in the expression for the

vertex. Moreover, this also implies that U (1) =
∑3

n=0 t
nU

(1)
n . Now, using the

decomposition U
(1)
n = U

′(1)
n + b∆

(2)
n and by noting that U

′(1)
0 vanishes we can

simplify eqs. (5.6). For n = 4, . . . , 7 we have

n = 4 : {QB ,U
′(1)
3 } + {Q2,U

′(1)
2 } + {Q3,U

′(1)
1 } + ∆

(2)
0 = 0 ,

n = 5 : {Q2,U
′(1)
3 } + {Q3,U

′(1)
2 } + ∆

(2)
1 = 0 ,

n = 6 : {Q3,U
′(1)
3 } + ∆

(2)
2 = 0 ,

n = 7 : ∆
(2)
3 = .0

(5.8)

Observing that {Q3,U
′(1)
i } = 0 for i = 1, 2, 3 because the massless vertex

U (1) cannot depend upon dzα (and upon the corresponding right-movers in

the closed string case), we obtain ∆
(2)
3 = ∆

(2)
2 = 0. The remaining ∆

(2)
0 and

∆
(2)
1 depend only upon the variations of U

′(1)
i with i = 1, 2, 3. Moreover,
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∆
(2)
0 and ∆

(2)
1 should satisfy the following consistency conditions

{Q0,∆
(2)
0 } = 0 , {Q1,∆

(2)
0 } + {Q0,∆

(2)
1 } = 0 ,

{Q1,∆
(2)
1 } + {Q2,∆

(2)
0 } = 0 , {Q2,∆

(2)
1 } = 0 ,

(5.9)

where we have already used {Q3,∆
(2)
i } = 0 for i = 0, 1. The b-independent

terms U
′(1)
i with i = 1, 2, 3 should satisfy the equations

{Q0,U
′(1)
1 } = 0 ,

{Q1,U
′(1)
1 } + {Q0,U

′(1)
2 } = 0 ,

{Q2,U
′(1)
1 } + {Q1,U

′(1)
2 } + {Q0,U

′(1)
23 } = 0 .

(5.10)

From Lorentz invariance, ghost number and analyticity, we have that

U
′(1)
1 = λαAα(x, θ) where Aα(x, θ) is a generic superfield. It automatically

satisfies the first equation of (5.10). Furthermore, we have that U
′(1)
2 =

ξmAm(x, θ) solves the second equation if the superfieldsAα(x, θ) andAm(x, θ)
satisfy

Am =
1

8
γαβm DαAβ , γαβmnrpqDαAβ = 0 . (5.11)

The third equation is solved by assuming U
′(1)
3 = χαW

α(x, θ) if the super-
field Wα is related to Aα(x, θ) and Am(x, θ) by the usual equation W α =
1
10γ

αβ
m (DβA

m − ∂mAα). From eqs. (5.8), we have

∆
(2)
0 = −λαχβDαW

β − ξmξnFmn , ∆
(2)
1 = −ξmχα∂mW

α , (5.12)

where Fmn = 1
2(∂mA−n−∂nAm). It is easy to verify that the equations

(5.9) hold because the superfields Aα, Am and Wα satisfy

Fmn = γ α
mn,βDαW

β , DαFmn =
(

γ[m∂n]W
)

α
. (5.13)

This concludes the example for the massless vertex operator. The result
coincides with that obtained in [2] and in [5].

In order to underline again the relevance of the analyticity (or of the
grading) to select the correct physical spectrum, one can notice that at a
given mass level8 (or, equivalently, at a given conformal weight) one has the
following structure for the vertex operators

Uz1...zn =

l≤n
∑

i=0

∑

({pi},{ki})

i
∏

j=0

(∂pi
z b)

k1 U ({pi}{ki})
z1...zn−l

, (5.14)

8In the following formulae, we denote by the subscript z1 . . . zn the conformal weight
n, in order not to be confused with the grading index p of the vertex Up



516 On the BRST Cohomology of Superstrings . . .

where
∑

i pi = l, 0 < p1 < · · · < pl and ki = 0, 1. For example the first
massive vertex operator can be decomposed into

Uz = U ({0,0},{0,0})
z + bU ({1,0},{0,0})

z + ∂zbU
({0,1},{0,1}) + b ∂zbU

({1,1},{0,1}) .
(5.15)

Since {Q, ∂kz b} = 0, given a vertex operator of a lower level, fox example,
the massless vertex U , one can construct an element of the BRST cohomology
at the next level by ∂zbU . In the same way, at the conformal weight 2
level, one can have ∂2

z bU . This phenomenon is unwanted since the total
cohomology at a given mass level is not described by a single vertex operator.
However, the minimum grading of the unwanted terms is −4,−8, . . . and
therefore they are excluded, by choosing analytical (or, positive gradings)
vertex operators.

Notice that relaxing the constraint on analyticity, one can find the mass-
less vertex as a part of the massive vertex operator by selecting the −4
grading part of the vertex. In order, to project out the unwanted terms one
can multiply the vertex operator Uz1...zn by ∂zb ∂

2
z b ∂

3
z b . . . ∂

n
z b.

6 Construction of a nilpotent covariant BRST charge

based on equivariant cohomology.

In this section we present yet another derivation of our BRST charge, in
addition to the derivation in [1] based on relaxing constraints by adding new
ghosts, and the derivation of Sec. 3 based the BRST charge with opera-
tors d and ιV but not imposing the pure spinor constraints. We assume
that the pure spinor constraints is imposed each time after performing the
OPE’s. This is different viewpoint of equivariant cohomology, but it clarifies
the construction of vertex operators in our cohomology starting from those
constructed in the pure spinor formulation.

We assume for the present discussion that the spinors λα satisfy the pure
spinor constraint: λγmλ = 0. As shown in [2], in order to match correctly
the degrees of freedom and to cancel the central charge also the conjugate
momentum βα describe only 22 dof. This can be achieved by observing
that the action is invariant under the symmetry δ βα = Λm(γmλ)α and
δXm = δdα = δθα = δλa = 0. The gauge parameters Λm removes 10 dof
from βα matching the corresponding 22 dof of λα.

This symmetry is encoded in the BRST QB =
∮

λadα, by acting twice o
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βα

{Q2
B , βα} = {QB , dα} = −Πm(γmλ)α . (6.1)

This implies that, on Hp.s., the BRST charge is nilpotent up to gauge trans-
formations with Λm = Πm. However, to study its cohomology, it convenient
to modify the BRST operator such that it squares to zero on Hp.s.. This is
equivalent to doing the standard Weyl complex procedure [20].

This can be done by extending the BRST transformation of βα by adding
a gauge transformation

{Q′
B , βα} = {QB , βα} − βm(γmλ)α , {QB , other fields} = 0 , (6.2)

This approach leads to introduce a new field βm with ghost number −1.
On all the other fields the action of Q′

B is the same of that of QB .

The requirement of nilpotency implies that ({Q′
B , βm}+Πm)(γmλ)α = 0.

The most general solution of this equation is given by {Q′
B , βm} = −Πm −

καγmαβλ
β where κα is a new spinorial field. In this way, the BRST charge is

nilpotent, except on βm. Requiring that Q′
B is nilpotent,

{Q′
B , κ

α
z } = −∂zθ

α − b ∂zλ
α − hz λ

a , (6.3)

where b is a scalar with ghost number −1, and hz is a 1-form also with ghost
number −1. Notice that the new terms are allowed because of the pure
spinor condition. Finally, imposing that Q′

B is nilpotent on κα, we obtain
that {QB , b} = 1 and {QB , h} = 0. A particular realization of hz is h = x ∂b
where x is a constant. At this point we obtain the same BRST charge as
obtained earlier by other methods.

The BRST transformations obtained for the antighost fields βα, βm, κ
α

and b coincide with (3.5) if we set ξm = χα to zero. In particular, we note
that this is implied by the eq. (3.8) which relates the pure-spinor vertices
with those of our cohomology.

The BRST transformation of the field b would render the BRST coho-
mology trivial, if we did not introduce further constraint to define physical
states. Therefore, we restrict the space on which the BRST charge Q′

B acts
on that part of the enlarged space H′

p.s. (the pure spinor space which also
contains the new fields βm, κ

α and b), which has non-negative grading (us-
ing the same grading discussed in the previous sections). This simplifies the
comparison with pure-spinor formalism as already discussed in the previous
section.
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7 Zero-Momentum Cohomology

Another good test of the physical equivalence of our covariant formulation
with the pure spinor approach is the computation of the zero-momentum
cohomology in one holomorphic sector.9 We compute the cohomology at
zero momentum for all ghost numbers. This computation yields all zero-
momentum states which describe not only the gauge field and its supersym-
metric partner, but also, for ghost numbers different from one, the target
space ghosts and their antifields [21]. First, we briefly review the zero mo-
mentum cohomology in the pure spinor formulation, then we discuss the pro-
cedure which extends this result to our formulation and, finally, we present
the result.

Using pure spinors, the zero-momentum cohomology is described by the
string field Ψ

Ψ = C U
(0)
0 + am U

(1)
1,m + ψα U

(1)
2,α + +ψ∗

α U
(2)α
3 + a∗m U

(2)m
4 + C∗ U

(3)
5 , (7.1)

where C, am, ψ
α are the ghost, the gauge field, and the gaugino, while

C∗, a∗m, ψ
∗
α are their antifields. The transversal components of the gauge

field and the gaugino at km = 0 are the natural extension of the same physi-
cal states at km 6= 0, but at km = 0 there are new “physical” states which in
physical application are expected to cancel each other: the longitudinal and
timelike components of the Yang-Mills gauge and the spacetime Yang-Mills
ghost fields.10 The vertices Ui generate the cohomology H(QB |Hp.s.); they
are constructed in [22] and are given by

U
(0)
0 = 1 , U

(1)
1,m = λγmθ , U

(1)
2,α = λγmθ (γmθ)α , (7.2)

U
(2)α
3 = λγmθ λγnθ (γmnθ)

α , U
(2)m
4 = λγnθ λγrθ (θγmnrθ) ,

U
(3)
5 = λγmθλγnθ λγrθ (θγmnrθ) .

The superscripts refer to the ghost number, and all the vertices have van-
ishing conformal spin. An inner product 〈Ψ,Ψ〉 is defined by assuming that
the product of the ghost field C should have inner product only with its
antifield C∗, the gauge field am with its antifield a∗m and so on.11 Therefore,
this leads to the conclusion that

〈 U
(0)
0 ,U

(3)
5 〉 = 〈 U

(1)
1,m,U

(2)m
4 〉 = 〈 U

(1)
2,α,U

(2)α
3 〉 = N (7.3)

9To restore the complete superstring spectrum, the string field for the closed superstring
ΨC is given by the tensorial product of the two sectors ΨC = ΨL ⊗ ΨR.

10For the bosonic string the zero-momentum cohomology consists of the four states given
by

H

bU|0, km = 0〉 where U = 1, cz∂zxm, cz∂zcz∂zx
m, cz∂zcz∂2

zcz.
11The definition of an inner product leads to the symplectic BV measure given by

〈δΨ, δΨ〉 =
R

d10x δφi ∧ δφ∗
i where φi and the fields and φ∗

i are the antifields.
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where N is a normalization factor. It is easy to check that the vertices
(7.2) indeed satisfy the equations (7.3) and, in particular, by choosing N = 1
for simplicity, one obtains the condition

〈λγmθλγnθ λγrθ (θγmnrθ)〉 = 1 . (7.4)

This coincides with Berkovits’ prescription for the zero-mode computations
in tree level amplitudes [2] and it leads to the construction of the measure
µ(θ, λ) for the zero modes at tree level, namely

〈λγmθλγnθ λγrθ (θγmnrθ)〉 =
∫

µ(θ, λ)
(

λγmθλγnθ λγrθ (θγmnrθ)
)

,(7.5)

µ(θ, λ) = dΩλ

(

λ∗γm ∂
∂θ

)(

λ∗γn ∂
∂θ

)(

λ∗γr ∂
∂θ

)

( ∂
∂θ
γmnr

∂
∂θ

)

,

where dΩλ is the Haar measure for the pure spinor coset. All vertices in
(7.2) carry a grading (namely the grading of λ is 1 and the grading of θ is
zero) and since only the ghost λα appears, the total grading of each vertex
is equal to the ghost number which is positive. Following the analysis of the

previous sections, given a vertex U
(n)
B,i with ghost number n, of the zero mo-

mentum cohomology H (n)(QB |Hp.s.) (the subscript B stands for Berkovits),
it can be lifted to our cohomology H (n)(Q|H+) such that

U
(n)
i = U

(n)
B,i +

N
∑

p≥0

U
(n)
(p),i (7.6)

where U
(n)
(p),i is a vertex operator with ghost number n and grading number

p. At zero momentum the charges Q2 = 0 and Q3 have no effect on a generic

zero momentum vertex U
(n)
i . The latter is a polynomial of θ and of the ghost

fields λα, ξm, χα, ωm and the antighost b.

Note that {Q0,U
(n)
B,i} = 0 because U

(n)
B,i depends only upon θ and λ.

Acting with QB on U
(n)
B,i (which coincides with the charge Q1 in (3.4)), we

obtain that {QB ,U
(n)}B,i = λγmλMm(θ) where Mm(θ) is a polynomial in

θ. The right hand side is Q0-exact term: λγmλMm(θ) = −2 {Q0, ξ
mMm(θ)}

since Mm(θ) is Q0 invariant. The new vertex operator U
(n)
(n+1),i = 2 ξmMm(θ)

has the same ghost number as U
(n)
B,i , but the grading is increased by one unit.

The next step is to insert the two vertices in the next equations of the system
(5.6), namely

{Q2,U
(n)
B,i} + {QB ,U

(n)
(n+1),i} + {Q0,U

(n)
(n+2),i} = 0 . (7.7)

As already pointed out, the first terms are zero, and therefore we have to

repeat the previous sequence of operations: one has to find U
(n)
(n+2),i which
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compensates the QB variation of U
(n)
(n+1),i. At the next level, we have a

further equation to satisfy, namely we have

{Q3,U
(n)
B,i} + {Q2,U

(n)
(n+1),i} + {QB ,U

(n)
(n+2),i} + {Q0,U

(n)
(n+3),i} = 0 . (7.8)

Again, due to the vanishing of momentum, the action of Q2 and Q3 on

the vertices U
(n)
B,i and U

(n)
(n+1),i

vanishes. Therefore, we can solve for U
(n)
(n+3),i

.
At the next level, we have the simplification that by inserting a b term we
can easily solve the equation. The only limitation comes from the fact that
the grading should be positive. This means that n+3 ≥ 4. Finally, we have

to take into account that the operation QB removes from U
(n)
(p),i one fermion

θ and replaces it by a ghost λ. This means that the new vertex U
(n)
(p+1),i has

one less fermion θ and therefore the sequence of new vertices stops when all

the θ are removed. This also implies that the highest-grading term U
(n)
(p),N

in the polynomial U
(n)
i is given by the sum of the ghost number n plus the

fermion number.

We give two examples. Starting from U
(1)
B,1,m = λγmθ, we have

{QB , λγ
mθ} = λγmλ = −{Q0, 2ξ

m}.

Here, we have U
(1)
(2),1,m = −2 ξm. Furthemore, {QB ,−2ξm} = 0. This implies

that U
(1)
(p),1,m = 0 for all p ≥ 3. Notice that the complete vertex of our

cohomology U
(1)
1,m = λγmθ + 2 ξm is not a cohomological trivial term at zero

momentum. The vertex U
(1)
1,m is coupled to the gauge field am.

In the same way, starting from U
(1)
2,α = λγmθ (γmθ)α, by using the Fierz

identities, we have {QB , λγ
mθ (γmθ)α} = 3

2(λγmλ)(γmθ)α. This gives the

new vertex U
(1)
(2),2,α = −3 ξm(γmθ)α. Reiterating the procedure, we find the

new vertex U
(1)
(3),2,α = −3χα and U

(1)
(p),2,α = 0 for all p ≥ 4.

The final result is

U
(0)
0 = 1 ,

U
(1)
1,m = λγmθ + 2 ξm ,

U
(1)
2,α = λγmθ (γmθ)α − 3 ξm(γmθ)α − 3χα ,

U
(2)α
3 = λγmθ λγnθ (γmnθ)

α + 3 ξm(λγnθ)(γmnθ)
α (7.9)

+3 (λγmθ)(γmχ)α + 6 ξmξn(γmnθ)
α − 6 ξm(γmχ)α ,
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U
(2)m
4 = λγnθ λγrθ (θγmnrθ) + 6 ξnλγrθ(θγrmnθ)

+9 ξnξr(θγrmnθ) + 6λγrθ(θγrγmχ) + 18 ξr(θγrγmχ) + 9χγmχ ,

U
(3)
5 = λγmθλγnθ λγrθ (θγmnrθ) + 8 ξm(λγnθ)(λγrθ)(θγmnrθ)

+21 ξmξn(λγrθ)(θγrmnθ) + 6 (λγmθ)(λγrθ)(θγrmχ)

+2 ξmξnξr(θγrmnθ) + 18 (λγmθ)ξr(θγrmχ) + 18 ξmχγmχ .

Note that the first and the last vertex operator are spacetime scalars; this
suggests that there are no operators with ghost number larger than 3.12 All
the operators have again vanishing conformal spin.

8 Acknowledgements

We thank N. Berkovits, W. Siegel, M. Roček, R. Stora and C. Vafa for useful
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