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Abstract

The double triangle algebra(DTA) associated to an ADE graph is
considered. A description of its bialgebra structure based on a recon-
struction approach is given. This approach takes as initial data the
representation theory of the DTA as given by Ocneanu’s cell calculus.
It is also proved that the resulting DTA has the structure of a weak
*-Hopf algebra. As an illustrative example, the case of the graph A3 is
described in detail.
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1 Introduction

This paper deals with the correspondence between rational conformal field
theories(RCFT) of SU(2)-type and ADE graphs [4, 5, 22]. More precisely we
focus on the construction of the so-called double triangle algebra(DTA)[20]
associated to an ADE graph. The DTA is a bialgebra and the “algebra of
quantum symmetries” describes the tensor product of representations asso-
ciated with one of its product structures (the same name sometimes denotes
the bialgebra itself). Aside from its interest as a mathematical structure, the
motivation in considering the DTA stems from the fact that its knowledge
makes it possible to construct the modular invariant partition function, as
well as other objects, in particular the so-called twisted partition functions
[6, 7, 8, 23, 25] associated with the corresponding RCFT – actually [23] one
has to take into account existence of boundaries and defects.

The present work contributes to the understanding of the DTA in two re-
spects. First, it provides a precise description of the DTA. To the knowledge
of the authors such a description is not available in the literature. Further-
more our approach is constructive in the sense that, given an ADE graph,
one can construct the corresponding DTA1. This is done starting from the
calculus of Ocneanu’s cells and connections. More precisely, the approach
we employ amounts essentially to take the above mentioned calculus as de-
scribing the representation theory of an algebraic structure to be found: the
DTA. In this paper2, the DTA has a product called · which is determined
from the cell calculus. It has also a coproduct ∆. This coproduct determines
a product on the dual D̂TA that corresponds to the composition of endo-
morphisms. In other references this later product is called ”composition
product” whereas the product · that we study here is called ”convolution
product”. We decided to focus the present paper on the convolution prod-
uct since this operation is the non-trivial one3: the other operation is simply
the composition of endomorphisms stemming from the definition of the un-
derlying vector space structure of the DTA (this vector space is defined as
Endgr(E), the graded vector space E will be defined later).

The second subject we address is the assertion that the DTA has the
structure of a weak *-Hopf algebra (WHA) [3]. This assertion is not new, it
is given in ref.[23] that gives arguments based on considering solutions of the

1The main computational effort is to compute the connections associated with the
corresponding Ocneanu cell systems.

2A very simple example is analysed in [9] but notations are not the same (and the point
of view is quite different).

3These properties could be discussed in terms of nets of subfactors [1, 2], a notion that
we do not use here.
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so-called [3, 19] ”big pentagon equation”(BPE). In contrast to ref.[23] we do
not assume any a priori knowledge of such a solution. In our work, each
structural map of the corresponding WHA is constructed in terms of the
available data, i.e. connections on cell systems, and all the WHA properties
of these maps are proved using properties of the cell calculus (which was
introduced in [18] and described for instance in [11] and [24]). In order
to make contact with ref.[23], it would be desirable to establish a precise
connection between the present results and solutions of the BPE .

The paper is organized as follows. Section II gives generalities about
graphs and specify the requirements we want the DTA to fulfill. These re-
quirements deal mainly with the representation theory of a ”searched for”
C∗-algebra, that we call DTA. The remaining sections uncover the structure
maps of the DTA out of the data given in section II. Section III deals with
the algebra structure taking advantage of the fact that the DTA is a finite
dimensional C∗-algebra. Section IV gives in terms of connections, what we
may call ”the weak bialgebra structure maps of the DTA”, that is, prod-
uct, coproduct and counit in terms of connections. Section V considers the
antipode. The main sections are supplemented by four appendices. All the
general results are exemplified in detail for the case of the graph A3.

2 The double triangle algebra

2.1 Preliminaries

Let us consider a graph G with nv vertices. One can characterize a graph by
its adjacency matrix M . Its size is nv×nv and its (v1, v2) matrix element is an
integer n if vertex v1 is connected to vertex v2 by n edges. The normalized4

eigenvector with maximum eigenvalue β of the adjacency matrix M is called
the Perron-Frobenius eigenvector and its components will be denoted by
µvi , i = 1, · · · , nv.

We can define over G a vector space P whose elements are paths. An
elementary path of length n is a ordered n-uple of contiguous vertices in
G. Two vertices are contiguous if there exists an edge connecting them. A
path is a linear combination over C of elementary paths. Therefore these
elementary paths provide a preferred basis of P.

This vector space is graded by the length of paths. There is a subspace
E of P given by ”essential paths”, that is paths that are annihilated by all

4Set a smallest component to be equal to 1.
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the Ocneanu’s operators ck, k ∈ N. The operator ck acting on a path of
length n ≤ k gives zero, otherwise (n > k) it is given by,

ck(v0, v1, · · · , vk−1, vk, vk+1, · · · , vn) =
√

µvk

µvk+1

δvk−1,vk+1

(v0, v1, · · · , vk−1, vk+2, · · · , vn) (2.1)

where (v0, v1, v2, · · · , vk−1, vk, vk+1, · · · , vn) denotes an elementary path of
length n passing through the vertices v0 to vn of G. That is the operator ck

eliminates any one-step backtracking sub-path that starts at step k of the
path to which the operator is applied and multiplies the result by a number
given in terms of the components of the Perron-Frobenius eigenvector.

There is a natural product in P defined by concatenation of paths. The
concatenation product of two paths is zero if the ending vertex of the first
path is not equal to the starting vertex of the second path. If the above
holds then the product path is simply the extension of the first path by the
second. In symbols take ξi = (vi

0, · · · , vi
n) and ξj = (vj

0, · · · , vj
m) then the

concatenation product ξi � ξj of ξi and ξj is given by,

ξi � ξj = δ
vi

nvj
0
(vi

0, · · · , vi
n, vj

1, · · · , vj
m) . (2.2)

We shall restrict to graphs where the dimension of E is finite. This
restriction is very strong and essentially5 reduces the family of admissible
graphs to those belonging to the ADE series [20].

The basis of elementary paths restricted to the maximum length of essen-
tial path will be denoted by {ξi}. We are interested in the length preserving
endomorphisms of E that we denote Endgr(E). We denote the dual vector
space of E by Ê and by {ξi} the dual basis to the {ξi} . Hence a basis of
Endgr(E) is given by the objects {ξi ⊗ ξj}.

Example 2.1 (The case of A3.). The graph G = A3 and its corresponding
adjacency matrix M are,

0 1 2• • • , M =

⎛
⎝ 0 1 0

1 0 1
0 1 0

⎞
⎠ (2.3)

5One could be more accurate, but such a discussion is not needed for our present
purpose. Notice that an extension of the results described here to other types of graphs,
for example to graphs belonging to higher Coxeter-Dynkin systems related to SU(N)-type
RCFTs [12, 13, 21, 26, 27] requires an appropriate modification of the definition of essential
paths.
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where rows and columns are ordered as 0, 1, 2 (the values for vertex v can be
0, 1 or 2). The maximum eigenvalue is β =

√
2 and the Perron-Frobenius

eigenvector is (1,
√

2, 1). There are ten essential paths in this graph. Denot-
ing them by the corresponding succession of vertices, they are the following,

(0) = 0 (1) = 1 (2) = 2
(01) = r0 (12) = r1 (10) = l1 (20) = l2

(012) = d (210) = g (121)−(101)√
2

= γ
(2.4)

where we have also included a shorthand notation. From (2.4) we see that
the dimension of Endgr(E) is 32 + 42 + 32 = 34.

2.2 The double triangle algebra(DTA)

As mentioned in the introduction the strategy adopted in this paper is to
reconstruct an algebraic structure out of certain requirements that we want
to be fulfilled. They will involve information about the representation theory
but not directly about the product structure. Indeed one of the results of
this analysis will be the product · for this algebra. Requirements:

1. Vector space structure: It is given by Endgr(E).

We emphasize that this requirement is only relative to the choice of
the underlying vector space structure and not the product itself since
the product law that we study on the vector space Endgr(E) is (not )
the composition of endomorphisms but another product that we call
·. Rather than giving this product explicitly we shall obtain it by
describing all its representations.

2. It is a C∗-algebra6.

3. Fundamental 7irreps of the product ·: These are matrix ∗-representations

6Being a C∗-algebra it is semisimple, and is therefore graded for this product · (simple
blocks) but this grading differs from the one given by the length of paths in Endgr(E).

7Fundamental in the sense that they generate any other irrep by taking adequate linear
combinations of tensor products of them. See item (4) for the definition of tensor product
representations.
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8f whose matrix element αβ is given by 9,

Φf
αβ(ξ ⊗ ξ′) =

ξ
• n�•

f•α � �•β�
ξ′

(2.5)

where the matrix indices α, β label length-one paths on G. If it does
not happen that,

s(α) = s(ξ) , r(α) = s(ξ′) , s(β) = r(ξ) , r(β) = r(ξ′) (2.6)

then (2.5) vanishes10. The symbol on the r.h.s. of (2.5), is a complex
number and is by definition the connection associated to that cell in a
fundamental representation. These values should satisfy the following
conditions,

(0) Zero length paths:

If #ξ = #ξ′ = 0 then,

ξ
• n�•

f•α � �•α�
ξ′

= δs(α)ξδr(α)ξ′ (2.7)

(i) Unitarity11:

∑
α, ξ′

ξ
• n�•

f•α � �•β�
ξ′

λ• n�•
f•α � �•η�
ξ′

= δβηδξλ (2.9)

8By this we mean that the star operation in the DTA corresponds to hermitian conju-
gation of matrices in these representations

9In the drawing (2.5) the labels for horizontal paths ξ and ξ′ denote generic elements
of E and Ê respectively.

10In (2.6) we have denoted by s(α) the starting vertex of path α and by r(α) its final
vertex.

11Using (2.9) and (2.10) the following relation is obtained,

∑
β, ξ

ξ
• n�•

f•α ��•β�
ξ′

ξ
• n�•

f•α′
��•β�

λ

= δαα′δξ′λ (2.8)

conditions (2.9) and (2.8) are called ”bi”unitarity in ref.[20].
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(ii) Reflection:

ξ
• n�•

f•α � �•β�
ξ′

=

√√√√µξ
fµξ′

i

µξ
iµ

ξ′
f

ξ̃
• n�•

f•β � �•α�
ξ̃′

=

√√√√µξ
fµξ′

i

µξ
iµ

ξ′
f

ξ′
• n�•

f•α̃ � �•β̃�
ξ

(2.10)
where α̃ denotes the path that is obtained from α reversing the
arrow.

(iii) Concatenation properties:

ξ1 � ξ2• n �•
f•α � �•β�

ξ′1 � ξ′2

=

ξ1• n�•
f•α � �•γ�
ξ′1

ξ2• n�•
f•γ � �•β�
ξ′2

(2.11)

where the length one path γ is determined by the ending(starting)
vertices of ξ1(ξ2) and ξ′1(ξ′2).
Remark 2.2. It is very important to realize at this stage that,
although connections have been defined in eq.(2.5) for elements
in Endgr(E), property (iii) allows to define them for elements in
Endgr(P). This is so since by concatenation as in eq.(2.11) it is
possible to build any path out of length-zero and length-one paths
that are necessarily essential.

4. The tensor product representation is given by,

Φf⊗f ′
α�β,α′�β′(ξ ⊗ ξ′) =

∑
ξi

Φf
α,α′(ξ ⊗ ξi) Φf ′

β,β′(ξi ⊗ ξ′) . (2.12)

where f, f ′ can be any of the fundamentals and where the dually paired
basis vectors ξi and ξi have been defined at the end of section 2.1.

Example 2.3 (The case of A3.). In this case there is only one fundamental
representation that according to what is shown in appendix A can be chosen
as,

0 r0 1• �•
f•r0 � �•l1�

1 l1 0

= 1 ,

0 r0 1• �•
f•r0 � �•r1�

1 r1 2

= 1 ,

2 l2 1• �•
f•l2 � �•l1�

1 l1 0

= 1 ,

2 l2 1• �•
f•l2 � �•r1�

1 r1 2

= −1 ,

1 l1 0• �•
f•l1 � �•r0�

0 r0 1

=
1√
2

,

1 r1 2• �•
f•l1 � �•l2�

0 r0 1

=
1√
2

,
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1 l1 0• �•
f•r1 � �•r0�

2 l2 1

=
1√
2

,

1 r1 2• �•
f•r1 � �•l2�

2 l2 1

=
−1√

2
(2.13)

where for the sake of completeness we have included the corresponding vertex
labels in each cell. Using (iii) it is possible to compute the value of cells for
longer horizontal paths, for example,

0 r0 � r1 2• �•
f•r0 � �•l2�

1 γ 1

=
1√
2

⎛
⎜⎝

0 r0 � r1 2• �•
f•r0 � �•l2�

1 r1 � l2 1

−
0 r0 � r1 2• �•

f•r0 � �•l2�
1 l1 � r0 1

⎞
⎟⎠

=
1√
2

⎛
⎜⎝

0 r0 1• �•
f•r0 � �•r1�

1 r1 2

1 r1 2• �•
f•r1 � �•r0�

2 l2 1

−
0 r0 1• �•

f•r0 � �•l1�
1 l1 0

1 r1 2• �•
f•l1 � �•l2�

0 r0 1

⎞
⎟⎠ = 1 (2.14)

which, as we see, corresponds to a horizontal ”concatenation” of basic cells.
Using 4. we can compute the value of cells in tensor product representation,
for example,

Φf⊗f
r0�l1,r1�l2

(r0 ⊗ r0) =

0 r0 1• �•
f ⊗ f•r0 � l1 � �•r1 � l2�

0 r0 1

0 r0 1• �•
f•r0 � �•r1�

1 r1 2

1 r1 2• �•
f•l1 � �•l2�

0 r0 1
= 1/

√
2 = Φx

r0,r1
(r0 ⊗ r1) Φy

l1,l2
(r1 ⊗ r0) (2.15)

which, as we see, corresponds to a vertical ”concatenation” of basic cells.

3 Algebra structure of the DTA

Proposition 3.1. There exists a basis of the DTA denoted by Ex
ηη′ , where

the index x labels the irreducible representations of the DTA and η, η′ are
indices in the irrep x. In this basis the product is given by,

Ex1

η1η′
1
· Ex2

η2η′
2

= δη′
1η2

δx1x2E
x1

η1η′
2

(3.1)

The identity for this product is given by,

11 =
∑
x,η

Ex
ηη (3.2)

The matrix *-representations (2.5) are homomorphisms Φx in the following
way,

Φx
αγ(Ex1

η1η′
1
· Ex2

η2η′
2
) =

∑
β

Φx
αβ(Ex1

η1η′
1
)Φx

βγ(Ex2

η2η′
2
) (3.3)
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The star structure takes the following form,

(Ex
ηη′)∗ = Ex

η′η (3.4)

The scalar product is given by,

< Ex1

η1η′
1
|Ex2

η2η′
2

>= δx1x2δη1η2δη′
1η′

2
(3.5)

Proof. Since we are restricting to graphs where the dimension of E is finite
and using 2. we conclude that the DTA we are considering are finite dimen-
sional C∗-algebras. Hence they are isomorphic to a direct sum of matrix
algebras corresponding to their irreps. Since we are dealing with matrix
algebras we can take a basis consisting of matrix units,

(Ex
ηη′ )αβ = δηαδη′β (3.6)

in this basis of matrix units, matrix multiplication corresponds to (3.1). That
11 in eq.(3.2) is the identity for this product is very simple to verify. As we
mentioned above, the terms of this direct sum decomposition12 correspond
to the irreducible representations of the DTA

Φy
αβ(Ex

ηη′) = δxyδαηδβη′ (3.7)

Replacing (3.7) in (3.3) you verify that the later holds. Regarding the star
structure using 3. we have,

Φy
αβ((Ex

ηη′ )∗) = Φy
βα(Ex

ηη′ ) = δxyδβηδαη′ = Φy
αβ(Ex

η′η) ∀x, y, η, η′, α, β
(3.8)

which leads to (3.4). Regarding the scalar product in the basis {Ex
ηη′} we

note that since there is a unique correspondence between C∗-algebras and
operator algebras and since the scalar product (3.5) leads to the operator
norm, it must be that one.

3.1 Relation between basis

Let us adopt the notation that matrix irreps are represented by similar
symbols as in the case of the fundamentals, i.e.,

Φx
αβ(ξ ⊗ ξ′) =

ξ
• n�•

x•α � �•β�
ξ′

(3.9)

12The discussion concerning the direct sum decomposition of tensor product represen-
tations can be rephrased in graphical terms by using the notion of cell systems associated
with representations[10].
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where x runs over all the irreps of the DTA(not only the fundamentals)
as in proposition (3.1). It is worth noting that condition (2.6) should be
fulfilled also in the case where x is not one of the fundamentals. This is so
because the fundamentals tensorially generate any other irrep, recalling the
definition (2.12) of tensor product representation we see that condition (2.6)
is also fulfilled in any tensor product of fundamentals.

We have introduced two basis for the DTA, one in terms of endomor-
phisms of essential paths and another in terms of matrix units for the prod-
uct in the DTA, there is a relation between them as stated by the following
proposition,

Proposition 3.2. The two basis {ξ ⊗ ξ′} and {Ex
αβ} are related by,

ξ ⊗ ξ′ =
∑

x,η,η′

ξ
• n�•

x•η � �•η
′

�
ξ′

Ex
ηη′ (3.10)

where n is the length of the essential paths ξ and ξ′.

Proof. In general we have the following relation between these basis,

ξ ⊗ ξ′ =
∑

x,η,η′
B(n, ξ, ξ′, x, η, η′)Ex

ηη′ (3.11)

applying Φy
αβ to both sides of (3.11) and using (2.5) and (3.7)we get,

B(n, ξ, ξ′, x, η, η′) =

ξ
• n�•

x•η � �•η
′

�
ξ′

. (3.12)

Defining the inverse cells by,

∑
x,α,β

ξ1• n�•
x−1

•η � �•η
′

�
ξ′1

ξ2• n�•
x•η � �•η

′
�

ξ′2

= δξ1ξ2δξ′1ξ′2 (3.13)

we have,

Ex
ηη′ =

∑
ξ,ξ′

ξ
• n�•

x−1

•η � �•η
′

�
ξ′

ξ ⊗ ξ′ (3.14)
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replacing (3.10) in (3.14) the following also holds,

∑
ξ,ξ′

ξ
• n�•

x−1

•η � �•η
′

�
ξ′

ξ
• n�•

y•ρ � �•ρ
′

�
ξ′

= δxyδηρδη′ρ′ (3.15)

The result that follows will be very useful for further developments,

Proposition 3.3. For any (ξ ⊗ ξ′)P ∈ Endgr(P) there exists a unique ele-
ment in Endgr(E) given by,

(ξ ⊗ ξ′)E =
∑
x,α,β

ξ
• n�•

x•α � �•β�
ξ′

Ex
αβ (3.16)

in such a way that13 ,

Φx
αβ((ξ ⊗ ξ′)P) = Φx

αβ((ξ ⊗ ξ′)E )
Φx

αβ((ξ1 ⊗ ξ′1)E · (ξ2 ⊗ ξ′2)E) = Φx
αβ((ξ1 ⊗ ξ′1)P � (ξ2 ⊗ ξ′2)P) (3.18)

Proof. The first equation in (3.18) is a consequence of the definition of (ξ ⊗
ξ′)E in (3.16) and the remark, following eq.(2.11), about the extension of the
definition of connections for elements in Endgr(P). For the second equation
in (3.18) we have,

Φx
αβ((ξ1 ⊗ ξ′1)E · (ξ2 ⊗ ξ′2)E ) =

=
∑

x1,α1,β1,x2,α2,β2

ξ1• n�•
x1•α1 � �•β1�
ξ′1

ξ2• n�•
x2•α2 � �•β2�
ξ′2

= Φx
αβ(Ex1

α1β1
· Ex2

α2β2
)

=
∑
β1

ξ1• n�•
x•α � �•β1�
ξ′1

ξ2• n�•
x•β1 � �•β�
ξ′2

= Φx
αβ((ξ1 ⊗ ξ′1)P � (ξ2 ⊗ ξ′2)P) (3.19)

where we have employed eq.(3.1) and (3.7) to write the second equality and
(2.11) for the last equality.

13In eq. (3.18) we use the following definition for the concatenation product of elements
in Endgr(P),

(ξ1 ⊗ ξ′1)P � (ξ2 ⊗ ξ′2)P = (ξ1 � ξ2)P ⊗ (ξ′1 � ξ′2)P (3.17)
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Proposition 3.4. The following holds,

< Ex
ηη′ |ξ ⊗ ξ′ > =

ξ
• n�•

x•η � �•η
′

�
ξ′

(3.20)

< ρ ⊗ ρ′|ξ ⊗ ξ′ >=
∑

x,η,η′
< ρ ⊗ ρ′|Ex

ηη′ >< Ex
ηη′ |ξ ⊗ ξ′ >=

=
∑
x,η,η′

ρ
• n�•

x•η � �•η
′

�
ρ′

ξ
• n�•

x•η � �•η
′

�
ξ′

(3.21)

Proof. Taking scalar products in both sides of (3.10) and using (3.5) you get
the first equality. The other follows from orthogonality and completeness of
the |Ex

ηη′ > basis.

Furthermore as shown in appendix B the form of the scalar product is
restricted to,

Proposition 3.5.
< ρ ⊗ ρ′|ξ ⊗ ξ′ >∝ δρξδρ′ξ′ (3.22)

4 Weak bialgebra structure

4.1 Product

The expression of the product in the basis of endomorphisms of essential
paths is given by the following.

Proposition 4.1. We have,

ξ1 ⊗ ξ′1 · ξ2 ⊗ ξ′2 =
∑

n3,ξ3,ξ′3

P ξ1ξ2ξ3
ξ′1ξ′2ξ′3

ξ3 ⊗ ξ′3 (4.1)

where,

P ξ1ξ2ξ3
ξ′1ξ′2ξ′3

=
∑

x,η1,η2,η3

ξ1• n1
�•

x•η1 � �•η2�
ξ′1

ξ2• n2
�•

x•η2 � �•η3�
ξ′2

ξ3• n�•
x−1

•η1 � �•η3�
ξ′3

(4.2)

Proof. Replacing (3.10) in the l.h.s. of (4.1), using (3.1) and employing
(3.11) you get the r.h.s. of (4.1) and (4.2).
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4.2 Coproduct

The definition of a tensor product representation, as given by (2.12), can be
rephrased in terms of a coproduct.

Proposition 4.2. The following coproduct,

∆(ξ ⊗ ξ′) =
∑
ξi

(ξ ⊗ ξi)E ⊗ (ξi ⊗ ξ′)E (4.3)

where ξi(ξi) are elements of the (dual)elementary paths basis of E(Ê) respec-
tively. This coproduct implies (2.12), it is a coassociative algebra morphism
and it satisfies,

∆((ξ ⊗ ξ′)∗) = ∆(ξ ⊗ ξ′)∗ (a ⊗ b)∗ = a∗ ⊗ b∗ (4.4)

Proof. Replacing eq.(4.3) in the r.h.s. of,

Φx⊗y
α1◦α2,β1◦β2

(ξ ⊗ ξ′) = Φx1
α1β1

⊗ Φx2
α2β2

(∆(ξ ⊗ ξ′)) (4.5)

using (2.5) and (3.18) you get the same as the r.h.s. of (2.12). Coassociativity
is a simple verification. . In order to verify eq. (4.4) note that using (3.10)
and (3.4) you obtain,

(ξ ⊗ ξ′)∗ =
∑

x,η,η′

ξ
• n2

�•
x•η � �•η

′
�

ξ′
Ex

η′η (4.6)

on the other hand using (3.10) and reflection you have.

ξ̃ ⊗ ξ̃′ =
∑

x,η′,η

ξ̃
• n2

�•
x•η′ � �•η�
ξ̃′

Ex
η′η =

∑
x,η′,η

√√√√µξ
iµ

ξ′
f

µξ
fµξ′

i

ξ
• n2

�•
x•η � �•η

′
�

ξ′
Ex

η′η =

=

√√√√µξ
iµ

ξ′
f

µξ
fµξ′

i

(ξ ⊗ ξ′)∗ (4.7)

where in the last equality we have used (4.6). Using (4.7) it is simple to verify
(4.4). The morphism property of the coproduct is dealt with in appendix
C.

The coproduct can be expressed in the basis {Ex
αβ} as stated below.
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Proposition 4.3. We have,

∆(Ex
ηη′) =

∑
x1,η1,η′

1x2,η2,η′
2

P̃
x η1η′

1 η2η′
2

ηη′x1 x2
Ex1

η1η′
1
⊗ Ex2

η2η′
2

(4.8)

where,

P̃
x η1η′

1 η2η′
2

ηη′x1 x2
=

∑
n,ξ1,ξ2,ξ3

ξ1• n1
�•

x−1

•η � �•η
′

�
ξ3

ξ1• n1
�•

x1•η1 � �•η
′
1�

ξ2

ξ2• n1
�•

x2•η2 � �•η
′
2�

ξ3

(4.9)

Proof. Replacing (3.14) in the l.h.s. of (4.8), employing (4.3) and using
(3.10) two times you get the result.

4.3 Counit

Regarding the counit the following holds.

Proposition 4.4. A counit satisfying the property,

(ε ⊗ 11)∆ = 11 = (11 ⊗ ε)∆ (4.10)

is given by,
ε(ξ ⊗ ξ′) = δξξ′ (4.11)

Proof. Just replace (4.11) in (4.10).

It is important to note that the relation ∆(11) = 11 ⊗ 11 does not hold
in the DTA, which is therefore not a Hopf algebra. The structure of the
DTA appearing up to this part corresponds to a weak bialgebra in the ter-
minology of [17] definition 2.1. As we shall see in the next section there is
also an antipode and the DTA is actually a weak Hopf algebra or ”quantum
groupöıd” (this general notion is discussed in [3, 14, 15, 16, 17]).

5 Weak *-Hopf algebra structure. Antipode

According to Theorem 8.7 of [17], we have
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Theorem 5.1 (Nill). Let (A, 11,∆, ε) be a weak bialgebra and S : A → A
be a bialgebra antiautomorphism. If there exists a non-degenerate linear
functional λ : A → C such that 14,

a(1)λ(ba(2)) = S(b(1))λ(b(2)a) ,∀a, b ∈ A (5.2)

then S is an antipode and A is a weak Hopf algebra.

Below we prove the following result,

Theorem 5.2. The DTA algebra has the structure of a weak ∗-Hopf alge-
bra with product given by (3.1), unit given by (3.2), coproduct (4.3), counit
(4.11) , star (3.4) and antipode,

S(ξi ⊗ ξj) = ξ̃j ⊗ ξ̃i (5.3)

Proof. Take,
λ(Ex

ηη′ ) = δx0δηη′ (5.4)

where 0 denotes the trivial representation as described in appendix D. Let,

a = ξ1 ⊗ ξ′1 , b = ξ2 ⊗ ξ′2 (5.5)

in (5.2). Using (4.3) we obtain,

∆(a) =
∑
ρ1

(ξ1 ⊗ ρ1) ⊗ (ρ1 ⊗ ξ′1) ∆(b) =
∑
ρ2

(ξ2 ⊗ ρ2) ⊗ (ρ1 ⊗ ξ′1) (5.6)

therefore consider,

A =
∑
ρ1

(ξ1 ⊗ ρ1) λ((ξ2 ⊗ ξ′2) · (ρ1 ⊗ ξ′1))

−
∑
ρ2

S((ξ2 ⊗ ρ2)) λ((ρ2 ⊗ ξ′2) · (ξ1 ⊗ ξ′1)) (5.7)

so that eq.(5.2) becomes A = 0. Now in order to evaluate the products in
the arguments of λ we rewrite (5.7) in terms of the basis {Ex

ηη′} to obtain,

A =
∑

x1,η1,η′
1,x2,η2,η′

2

⎡
⎢⎣∑

ρ1

(ξ1 ⊗ ρ1)

ξ2• n�•
x1•η1 � �•η

′
1�

ξ′2

ρ1• n�•
x2•η2 � �•η

′
2�

ξ′1

−

−
∑
ρ2

S(ξ2 ⊗ ρ2)

ρ2• n�•
x1•η1 � �•η

′
1�

ξ′2

ξ1• n�•
x2•η2 � �•η

′
2�

ξ′1

⎤
⎥⎦λ(Ex

η1η′
1
· Ex

η2η′
2
)(5.8)

14In eq.(5.2) we employed Sweedler’s notation for the coproduct, i.e.,

∆(a) = a(1) ⊗ a(2) ∆(b) = b(1) ⊗ b(2) (5.1)
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now we use (3.1) and (5.4) to obtain λ(Ex2

η2η′
2
· Ex1

η1η′
1
) = δx10δx1x2δη′

1η2
δη1η′

2
,

replacing in (5.8) and using reflection we obtain,

A =
∑
η1,η2

⎡
⎢⎢⎢⎣

∑
ρ1

√√√√√µξ2
f µ

ξ′2
i

µξ2
i µ

ξ′2
f

(ξ1 ⊗ ρ1)

ξ̃2• n�•
0•η1 � �•η2�

ξ̃′2

ρ1• n�•
0•η1 � �•η2�
ξ′1

−

√√√√√µρ2

f µ
ξ′2
i

µρ2

i µ
ξ′2
f

S((ξ2 ⊗ ρ2))

ρ̃2• n�•
0•η1 � �•η2�

ξ̃′2

ξ1• n�•
0•η1 � �•η2�
ξ′1

⎤
⎥⎥⎦

=

√√√√√µξ2
f µ

ξ′2
i

µξ2
i µ

ξ′2
f

∑
ρ1

(ξ1 ⊗ ρ1) < ξ̃2 ⊗ ξ̃′2|ρ1 ⊗ ξ′1 >0

−
∑
ρ2

√√√√√µρ2

f µ
ξ′2
i

µρ2

i µ
ξ′2
f

S((ξ2 ⊗ ρ2)) < ρ̃2 ⊗ ξ̃′2|ξ1 ⊗ ξ′1 >0 (5.9)

where we have employed (3.5) and the definition of scalar product in a rep-
resentation appearing in Appendix B. Using the results in appendix B and
noting, as shown in appendix D, that in the representation 0 the only non-
vanishing cells are those with equal upper and lower horizontal paths we
conclude that there is the following factorization in eq.(5.9),

A =

√√√√√µξ2
f µ

ξ′2
i

µξ2
i µ

ξ′2
f

< ξ′1 ⊗ ξ′1|ξ′1 ⊗ ξ′1 > (ξ1 ⊗ ξ̃2 δξ′1ξ̃′2
−S((ξ2 ⊗ ξ̃1)) δξ′1ξ̃′2

) (5.10)

hence A = 0 implies,
S(ξ ⊗ ξ′) = ξ̃′ ⊗ ξ̃ (5.11)

Next we show S is a bialgebra antiautomorphism, i.e.,

S(a · b) = S(b)S(a) (5.12)

In order to do this we first express the antipode in the {Ex
ηη′} basis. Replac-

ing (3.10) in (5.11) we obtain,

∑
x,η,η′

ξ
• n�•

x•η � �•η
′

�
ξ′

S(Ex
ηη′ ) =

∑
y,ρ,ρ′

ξ̃′
• n�•

y•ρ � �•ρ
′

�

ξ̃

Ey
ρρ′ (5.13)
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multiplying this equation by,

ξ
• n�•

z−1

•λ � �•λ
′

�

ξ̃′
(5.14)

summing up over ξ and ξ′ and using (3.15) we have,

S(Ez
λλ′) =

∑
y,ρ,ρ′

∑
ξξ′

ξ
• n�•

z−1

•λ � �•λ
′

�

ξ̃′

ξ̃′
• n�•

x•ρ � �•ρ
′

�

ξ̃

Ey
ρρ′ (5.15)

now using two times reflection we have that,

ξ̃′
• n�•

x•ρ � �•ρ
′

�

ξ̃

=

ξ
• n�•

x•ρ̃′ � �•ρ̃�
ξ′

(5.16)

replacing in (5.15) and using once more (3.15) we obtain,

S(Ez
λλ′) = Ez

λ̃′λ̃ (5.17)

hence,

S(Ex1
η1η1

′ · Ex2
η2η2

′) = δη1
′η2δx1x2S(Ex1

η1η2
′) = δη1

′η2δx1x2E
x1

η̃′
2η̃1

(5.18)

on the other hand,

S(Ex1
η1η1

′) · S(Ex2
η2η2

′) = Ex2

η̃′
2η̃2

· Ex1

η̃′
1η̃1

= δη1
′η2δx1x2E

x1

η̃′
2 η̃1

(5.19)

that proves (5.12).

Example 5.3 (The case of A3). For the case of the fundamental rep-
resentation, that we denote in this case by 1, using (3.10) we can express
elements of Endgr(E) in terms of matrix units. The connections involved
can be calculated from the basic ones and horizontal concatenation of cells.
This can be summarized in the following matrix,

01
10
12
21

⎛
⎜⎜⎝

01 r0l1 r0r1 −dγ

l1r0/
√

2 10 −γd r1r0/
√

2
l1l2/

√
2 −γg 12 −r1l2/

√
2

−gγ l2l1 −l2r1 21

⎞
⎟⎟⎠ (5.20)

that should be interpreted in the following way. The matrix representing the
element ξi ⊗ ξj in the representation f is the one obtained from (5.20) by
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replacing in it ξi ξ
j by 1 and all the others by 0. Now we consider the tensor

product representation 1⊗ 1. Taking into account (2.12) and with the same
conventions as in (5.20) you obtain the following matrix,

010
212
101
121
012
210

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

00 dd 1√
2
r0r0

1√
2
r0r0 0 0

gg 22 1√
2
l2l2

1√
2
l2l2 0 0

1√
2
l1l1

1√
2
r1r1 11 γγ 1√

2
l1r1

1√
2
r1l1

1√
2
l1l1

1√
2
r1r1 γγ 11 − 1√

2
l1r1

1√
2
r1l1

0 0 1√
2
r0l2 − 1√

2
r0l2 02 dg

0 0 1√
2
l2r0 − 1√

2
l2r0 gd 20

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.21)

Note that the labels of files and columns are two step paths (not in gen-
eral essential) in the graph A3. In order to decompose this tensor product
representation in direct sum of irreps it is worth noting that,

1. In many instances of elements in Endgr(E) say ξi ⊗ ξj , the indices
corresponding to non-vanishing entries in the irrep under study are
completely determined because there is only one possibility for them.
For example take the element 0 ⊗ 0 then the only possibility for the
step two vertical paths is α = (010) and β = (010) That is the only
possible non-zero cell is,

0 0• �•
f•(010) � �•(010)�

0 0

= 1 (5.22)

In other words, the end points of the horizontal essential paths give
only one possibility for the vertical (not necessarily essential) paths.

2. Note that in the case of A3 if the two initial or final points of the
horizontal paths are 1 then in general the associated vertical paths are
not fixed and they can be a linear combination of (101) and (121). This
combination should be determined in such a way that one gets a block
decomposition of the matrix (5.21).

From the above remarks one reduces in this case the block diagonalization
problem to the one of 2× 2 matrix. It is a simple calculation to see that the
right vertical labels are the following combinations of (101) and (121),

γ = 1/
√

2((121) − (101)) , γ′ = 1/
√

2((121) + (101)) (5.23)
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with these horizontal labels one gets for the matrix (5.21) the following,

010
212
γ′

γ
012
210

⎛
⎜⎜⎜⎜⎜⎜⎝

00 dd r0r0 0 0 0
gg 22 l2l2 0 0 0
l1l1 r1r1 11 + γγ 0 0 0
0 0 0 11 − γγ −l1r1 −r1l1
0 0 0 −r0l2 02 dg
0 0 0 −l2r0 gd 20

⎞
⎟⎟⎟⎟⎟⎟⎠

(5.24)

the first block in (5.24) corresponds to the trivial representation 0 that is de-
scribed in appendix D. The other block is denoted by 2 and the following table
of tensor product representations decomposition in irreps is easily obtained
by employing analogous methods as in the case of 1 ⊗ 1,

0⊗ 1 = 1

0⊗ 2 = 2

1⊗ 2 = 1

1⊗ 1 = 0 ⊕ 2

(5.25)

this table itself can be represented by a graph. In this graph each vertex
corresponds to an irrep of the DTA of A3. If a line joins two vertices, it
means that one irrep can be obtained from the another one by taking tensor
product with the fundamental 1. Notice that the trivial representation 0 is
not 1-dimensional (this is a usual feature of weak Hopf algebras). In this
case this graph coincides with the graph A3. In the literature this graph is
referred to as Ocneanu’s graph of quantum symmetries.

In general, the fusion algebra –that describes the tensor product of rep-
resentations for the composition product in the dual– has no reason to be
isomorphic with the algebra of quantum symmetries – that describes the ten-
sor product of representations for the convolution product ·. However, in the
case of An graphs (and only in such cases), these two algebras are isomor-
phic. For these particular Dynkin diagrams, the block decomposition of the
two products (the convolution product · in the DTA and the composition of
endomorphisms in its dual) have the same number of direct summands and
these summands have also the same dimensions.

A General form of ADE connections

Proposition A.1. Given a cell system where the four sides of the cells
correspond to length-one paths on the same ADE graph G, the following
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two “basic” connections15, 16 (we only give one of the two, but the other is
obtained by taking the complex conjugate of the first) satisfy unitarity and
reflection,

vi vl• �•
f•� �•�

vk vj

= δvkvl
ε + δvivj

√
µvk

µvl

µviµvj

ε̄ (A.1)

where ε = ieiπ/2N with N the Coxeter number of G.

Proof. Reflection is a simple check. The unitarity conditions is,

A =
∑
vl

vi vl• �•
f•� �•�

vk vj

vi vl• �•
f•� �•�

vm vj

= δvkvm (A.2)

Consider now the case when vi �= vj. In this case the only term of (A.1) that
contributes is the first and replacing in (A.2) you get,

A =
∑
vl

δvkvl
ε δvmvl

ε̄ = δvkvm (A.3)

as claimed. In the other case vi = vj you have,

A =
∑

l

(
√

µvk
µvl

µ2
vi

ε̄ + δvkvl
ε)(

√
µvmµvl

µ2
vi

ε + δvkvl
ε̄)

= δvkvm +
√

µvmµvl

µ2
vi

[ε2 + ε̄2 +
1

µvi

∑
<vlvi>

µvl
] (A.4)

where < vlvi > in (A.4) indicates that the summation is over the vertices vl

in G that are connected with the vertex vi. This summation can therefore be
expressed in terms of the adjacency matrix M of G and its Perron-Frobenius
eigenvector vpf as follows,∑

<vlvi>

µvl
=< row vi of M, vpf >=< êviM,vpf > (A.5)

where {êvi} is a basis vector associated to the vertex vi of G. The scalar
product <,> in this vector space CNv (where Nv is the number of vertices
in G) that appears in (A.5) is the Euclidean one in this basis and the ma-
trix elements Mvivj of the adjacency matrix M vanish unless vertex vi is
connected to vertex vj . Now since M is hermitian we have,∑

<vlvi>

µvl
=< êviM,vpf >=< êvi ,Mvpf >= β µvi (A.6)

15In the drawing below we omit the path indices.
16These expressions were given by A. Ocneanu in various seminars (unpublished)
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replacing (A.6) in (A.4) and noting that for ADE graphs

β = 2cos π/N (A.7)

the second term in (A.4) cancels since ε2 + ε̄2 + β = 0 leading to (A.2).

Furthermore, regarding the uniqueness of connections we have the fol-
lowing result whose proof is a simple check.

Proposition A.2 (Gauge freedom). If,

vi vl• �•
f•� �•�

vk vj

(A.8)

satisfies unitarity and reflection then,
vi vl• �•

f ′
•� �•�
vk vj

= ei(αvi+αvj−αvk
−αvl

)

vi vl• �•
f•� �•�

vk vj

(A.9)

also satisfies them with αvi , αvj , αvk
, αvl

real numbers associated to the ver-
tices of G.

Example A.3 (The case of A3). From example (2.1) we know that β =
√

2
for A3 hence taking into account (A.7) we have N = 4 for this case. Thus
ε = ei5π/8. Using (A.1) and making a gauge transformation as in (A.9) with
α0 = 15

16π , α1 = 0 , α2 = 7
16π you get the results appearing in (2.13).

B The scalar product.

We first remark that the scalar product (3.5) can be written as,

< Ex
αβ |Ey

γδ >= Tr[(Ex
αβ)∗Ey

γδ] (B.1)

this can easily be verified by using (3.4), (3.1) and (3.6). Using (B.1) we can
write the scalar product (3.21) as,

< ρ ⊗ ρ′|ξ ⊗ ξ′ >=
∑

x irrep.

< ρ ⊗ ρ′|ξ ⊗ ξ′ >x (B.2)

where in general for a representation R irreducible or not,

< ρ ⊗ ρ′|ξ ⊗ ξ′ >R= TrR[(ΦR(ρ ⊗ ρ′))†ΦR(ξ ⊗ ξ′)] (B.3)

In order to prove proposition 3.2 we first show that,
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Proposition B.1.
< ρ ⊗ ρ′|ξ ⊗ ξ′ >R∝ δρξδρ′ξ′ (B.4)

with R = f1 ⊗ · · · ⊗ fn for any n, where f1, · · · , fn can be any of the funda-
mentals.

Proof. We will use induction. For R = f (B.4) holds. This can be seen by
recalling the expression of the scalar product (B.3) in terms of cells,

< ρ ⊗ ρ′|ξ ⊗ ξ′ >f=
∑
η,η′

ρ
• n�•

f•η � �•η
′

�
ρ′

ξ
• n�•

f•η � �•η
′

�
ξ′

(B.5)

so that given for example ξ and ξ′ the side path η and η′ are uniquely
determined17 thus determining ρ and ρ′ to be equal to ξ and ξ′. The constant
of proportionality being the modulus of the cell. The induction hypothesis
is,

< ρ ⊗ ρ′|ξ ⊗ ξ′ >f1⊗···⊗fn−1=

= Trf1⊗···⊗fn−1 [(Φ
f1⊗···⊗fn−1(ρ ⊗ ρ′))†Φf1⊗···⊗fn−1(ξ ⊗ ξ′)]

= δρξδρ′ξ′ (B.6)

we prove it for the case of R = f1 ⊗ · · · ⊗ fn(= f1 · · · fn) we have,

< ρ ⊗ ρ′|ξ ⊗ ξ′ >f1···fn Trf1···fn [(Φf1···fn(ρ ⊗ ρ′))†Φf1···fn(ξ ⊗ ξ′)] =

=
∑
λ,ω

Trf1···fn [Φf1···fn−1(λ ⊗ ρ′)Φfn(ρ ⊗ λ)†Φf1···fn−1(ω ⊗ ξ′)Φfn(ξ ⊗ ω)]

=
∑
λ,ω

Trfn [(Φfn(ρ ⊗ λ))†Φfn(ξ ⊗ ω)] ×

× Trf1···fn−1 [(Φ
f1···fn−1(λ ⊗ ρ′))†Φf1···fn−1(ω ⊗ ξ′)]

=
∑
λ,ω

δρξδλωδρ′ξ′ ∝ δρξδρ′ξ′ (B.7)

Now since any representation appears in the decomposition of tensor
products of the fundamentals, proposition B.1 implies proposition 3.2.

17Recall that for the fundamentals all the paths involved in the corresponding cells are
of length 1.
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C Morphism property of the coproduct.

Proposition C.1.

Φx1
α1β1

⊗ Φx2
α2β2

[∆((ξ1 ⊗ ξ′1) · (ξ2 ⊗ ξ′2))] =

= Φx1
α1β1

⊗ Φx2
α2β2

[∆((ξ1 ⊗ ξ′1)) · ∆((ξ2 ⊗ ξ′2))] (C.1)

Proof. We split the proof in some steps,

(i)

Φx1
α1β1

⊗ Φx2
α2β2

(
∆((ξ1 ⊗ ξ′1)) · ∆((ξ2 ⊗ ξ′2))

)
=

= Φx1
α1β1

⊗ Φx2
α2β2

(
∆P((ξ1 ⊗ ξ′1)) � ∆P((ξ2 ⊗ ξ′2))

)
(C.2)

Proof.

Φx1
α1β1

⊗ Φx2
α2β2

(
∆((ξ1 ⊗ ξ′1)) · ∆((ξ2 ⊗ ξ′2))

)
=

=
∑
ξi,ξj

Φx1
α1β1

⊗ Φx2
α2β2

(ξ1 ⊗ ξi)E ⊗ (ξi ⊗ ξ′1)E · (ξ2 ⊗ ξj)E ⊗ (ξj ⊗ ξ′2)E

=
∑
ξi,ξj

Φx1
α1β1

((ξ1 ⊗ ξi)E · (ξ2 ⊗ ξj)E )Φx2
α2β2

((ξi ⊗ ξ′1)E · (ξj ⊗ ξ′2)E)

=
∑
ξi,ξj

Φx1
α1β1

((ξ1 ⊗ ξi)P � (ξ2 ⊗ ξj)P )Φx2
α2β2

((ξi ⊗ ξ′1)P � (ξj ⊗ ξ′2)P)

= Φx1
α1β1

⊗ Φx2
α2β2

(
∆P((ξ1 ⊗ ξ′1)) � ∆P((ξ2 ⊗ ξ′2))

)
(C.3)

where we have defined ∆P by,

∆P(ξ ⊗ ξ′) =
∑
ξi

(ξ ⊗ ξi)P ⊗ (ξi ⊗ ξ′)P (C.4)

(ii)

∆P((ξ1 ⊗ ξ′1)) � ∆P((ξ2 ⊗ ξ′2)) = ∆P((ξ1 ⊗ ξ′1) � (ξ2 ⊗ ξ′2)) (C.5)

Proof.

∆P((ξ1 ⊗ ξ′1)) � ∆P((ξ2 ⊗ ξ′2)) =

=
∑

ξi,ξj ,#ξi=#ξ1,#ξj=#ξ2

[(ξ1 ⊗ ξi)P ⊗ (ξi ⊗ ξ′1)P ] � [(ξ2 ⊗ ξj)P ⊗ (ξj ⊗ ξ′2)P ]

=
∑

ξi,ξj ,#ξi=#ξ1,#ξj=#ξ2

[(ξ1 � ξ2) ⊗ (ξi � ξj)]P ⊗ [(ξi � ξj) ⊗ (ξ′1 � ξ′2)]P

= ∆P((ξ1 ⊗ ξ′1) � (ξ2 ⊗ ξ′2)) (C.6)
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where in the last equality we have used that a summation over ele-
mentary paths of length n with fixed extreme vertex is equal to the
summation over any pair of paths of length n1 and n2 of the concate-
nation of them if n1 + n2 = n and the starting(ending) vertex of the
first(last)path coincide with the ones of the length n path.

Finally we have,

(iii)

Φx1
α1β1

⊗ Φx2
α2β2

(∆P ((ξ1 ⊗ ξ′1) � (ξ2 ⊗ ξ′2))) =

= Φx1
α1β1

⊗ Φx2
α2β2

(∆((ξ1 ⊗ ξ′1) · (ξ2 ⊗ ξ′2))) (C.7)

Proof.

Φx1
α1β1

⊗ Φx2
α2β2

(∆P((ξ1 ⊗ ξ′1) � (ξ2 ⊗ ξ′2))) =

= Φx1
α1β1

⊗ Φx2
α2β2

(∆P
∑
x,α,β

ξ1 � ξ2• n �•
f•α � �•β�

ξ′1 � ξ′2

Ex
αβ)

= Φx1
α1β1

⊗ Φx2
α2β2

(
∑

x,α,β,ξ,ξ′

ξ1 � ξ2• n �•
x•α � �•β�

ξ′1 � ξ′2

ξ
• n�•

x−1

•α � �•β�
ξ′

∆P(ξ ⊗ ξ′))

=
∑

x,α,β,ξ,ξ′,ξi

ξ1 � ξ2• n �•
x•α � �•β�

ξ′1 � ξ′2

ξ
• n�•

x−1

•α � �•β�
ξ′

Φx1
α1β1

(ξ ⊗ ξi)Φx2
α2β2

(ξi ⊗ ξ′)

=
∑

ξ,ξ′,ξi

P ξ1ξ2ξ
ξ′1ξ′2ξ′

ξ
• n�•

x1•α1 � �•β1�

ξi

ξi• n�•
x2•α2 � �•β2�
ξ′

= Φx1
α1β1

⊗ Φx2
α2β2

(∆((ξ1 ⊗ ξ′1) · (ξ2 ⊗ ξ′2))) (C.8)

D The trivial representation 0.

Consider a map Φ0
α0β0

: Endgr(E) → C defined such that for any irrep x of
the DTA and indices αx, βx in x there exist unique subscripts α0β0 in 0 such
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that,
Φ0⊗x

α0�αx,β0�βx
(ξ ⊗ ξ′) = Φx

αx,βx
(ξ ⊗ ξ′) (D.1)

using eqs. (4.3) and (2.5), eq. (D.1) implies,

∑
λ

ξ• �•
0•α0 � �•β0�
λ

=

λ• �•
x•αx � �•βx�
ξ′

ξ• �•
x•αx � �•βx�
ξ′

(D.2)

multiplying this last equation by,

ρ• �•
x−1

•αx � �•βx�
ρ′

summing up over x, αx, βx and using (3.13) we obtain,

ξ• �•
0•α0 � �•β0�
ξ′

= δξξ′ (D.3)

Note that this last equation implies that for ξ1, ξ
′
1, ξ2, ξ

′
2 such that #ξ1 = #ξ′1,

#ξ2 = #ξ′2 and r(ξ1) = s(ξ2), r(ξ′1) = s(ξ′2) we have,

ξ1 � ξ2• �•
0•α0 � �•β0�

ξ′1 � ξ′2

=

ξ1• �•
0•α0 � �•γ0�
ξ′1

ξ2• �•
0•γ0 � �•β0�
ξ′2

(D.4)

To show that this is indeed a representation note that eq.(3.15) implies,

∑
ξ,ξ′

ξ• �•
0−1

•α � �•β�
ξ′

ξ• �•
0•α0 � �•β0�
ξ′

=
∑

ξ

ξ• �•
0−1

•α � �•β�
ξ

= δαα0δββ0 (D.5)

hence,

Φ0
α0β0

(E0
αβ) =

∑
ξξ′

ξ• �•
0−1

•α � �•β�
ξ′

Φ0
α0β0

(ξ ⊗ ξ′) =
∑

ξ

ξ• �•
0−1

•α � �•β�
ξ

= δαα0δββ0

(D.6)
hence Φ0

α0β0
(E0

α0β0
) is of the form (3.7) thus being a homomorphism for the

matrix product to which the product in the DTA reduces in this basis.



214 ON QUANTUM SYMMETRIES OF ADE GRAPHS. . .

References
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