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GEOMETRY OF ISOPARAMETRIC HYPERSURFACES IN
RIEMANNIAN MANIFOLDS∗

JIANQUAN GE† AND ZIZHOU TANG†

Abstract. In our previous work, we studied isoparametric functions on Riemannian manifolds,
especially on exotic spheres. One result there says that, in the family of isoparametric hypersurfaces
of a closed Riemannian manifold, there exists at least one minimal isoparametric hypersurface. In
this paper, we show such a minimal isoparametric hypersurface is also unique in the family if the
ambient manifold has positive Ricci curvature. Moreover, we give a proof of Theorem D claimed by
Q.M.Wang (without proof) which asserts that the focal submanifolds of an isoparametric function on
a complete Riemannian manifold are minimal. Further, we study isoparametric hypersurfaces with
constant principal curvatures in general Riemannian manifolds. It turns out that in this case the
focal submanifolds have the same properties as those in the standard sphere, i.e., the shape operator
with respect to any normal direction has common constant principal curvatures. Some necessary
conditions involving Ricci curvature and scalar curvature are also derived.
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1. Introduction. A non-constant smooth function f : N → R defined on a
smooth connected Riemannian manifold N is called transnormal if there is a smooth
function b : J → R such that

(1) |∇f |2 = b(f),

where J = f(M) ⊂ R and ∇f is the gradient of f . If moreover there is a continuous
function a : J → R such that

(2) △f = a(f),

where △f is the Laplacian of f , then f is called isoparametric (cf. [Wa87], [GT09]).
Equation (1) means that the regular hypersurfaces Mt := f−1(t) (where t is a regular
value of f) are parallel and (2) says that these parallel hypersurfaces have constant
mean curvatures. These regular level hypersurfaces Mt := f−1(t) of an isoparametric
function f are called isoparametric hypersurfaces. A transnormal function f on a
complete Riemannian manifold has no critical value in Int(J) ([Wa87]). The preimage
of the maximum (resp. minimum), if it exists, of an isoparametric (or transnormal)
function f is called the focal variety of f , denoted by M+ (resp. M−).

1

A fundamental structural result given by [Wa87] says that the focal varieties M±
of a transnormal function on a complete Riemannian manifold are smooth submani-
folds and each regular level hypersurface Mt is a tubular hypersurface over either of
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1In our papers, for simplicity we always assume in the definition that b is smooth, i.e., C∞. In
fact, all the results go through when b is merely C2 as remarked in [Wa87]. In private discussions,
G. Thorbergsson pointed out that it should also work for b being a continuous function in the case
of both equations (1-2) are satisfied, since then there should exist some other function f̃ with the
same level sets as f such that it satisfies equations (1-2) for some smooth (C2) function b.
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M±. In our previous work [GT09], we called an isoparametric (or transnormal) func-
tion proper if each component of M± has codimension not less than 2. For a properly
isoparametric function, M± are just the focal sets of each regular level hypersurface
Mt and all level sets are connected. Moreover, there we proved that at least one prop-
erly isoparametric hypersurface is minimal if the ambient space N is closed. In this
paper, by using the Riccati equation, we observe that such a minimal isoparametric
hypersurface is also unique in its family if N has positive Ricci curvature. Next, we
express the shape operator S(t) of Mt as a power series with respect to the distance
between Mt and M±. As an immediate consequence, we can give a complete proof to
Theorem D of [Wa87] (without proof there):

Theorem 1.1. 2 The focal varieties M± of an isoparametric function f on a
complete Riemannian manifold N are minimal submanifolds.

In fact, by combining Wang’s structural result [Wa87], one can see that under an
additional assumption that N and M± are all compact, Mazzeo and Pacard [MP05]
have essentially proved the above theorem as a special case in their Theorem 6.1 by
an argument from geometric measure theory which is not fit for the noncompact case.
In private communications, we learned that Miyaoka (cf. [Mi12]) is also concerned
with a complete proof of Theorem 1.1. Further study of the power series expression
establishes

Theorem 1.2. Suppose that each isoparametric hypersurface Mt has constant
principal curvatures3 with respect to the unit normal vector field in the direction of
∇f . Then each of the focal varieties M± has common constant principal curvatures
in all normal directions, i.e., the eigenvalues of the shape operator are constant and
independent of the choices of the point and unit normal vector of M±.

As a corollary, the principal curvatures of such focal varieties occur as pairs of
opposite signs and thusM± are austere (minimal) submanifolds in the sense of [HL82].
As byproducts, we obtain some necessary curvature conditions for a manifold to admit
(certain) isoparametric functions in Corollary 3.1 and Corollary 3.2 in Section 3.

Submanifolds with constant principal curvatures are regarded as the analogue
in submanifold geometry to locally symmetric spaces in Riemannian geometry in
[BCO03] where the normal holonomy theory takes important role in the studies of such
submanifolds in space forms. It is worth mentioning that the normal holonomy theory
for submanifolds in general Riemannian manifolds has not been fully developed though
it seems fruitful in many areas (cf. [Br99], [CDO08], etc.). Note that Theorem 1.1 and
Theorem 1.2 generalize corresponding results in the classical theory of isoparametric
hypersurfaces in real space forms (cf. [No73], [Mü80]), recalling that, a hypersurface
Mn in a real space form Nn+1(c) with constant sectional curvature c is said to be
isoparametric if it has constant principal curvatures. Cartan ([Car38],[Car39]) and
Münzner ([Mü80]) showed that such an isoparametric hypersurface belongs to a family
of parallel hypersurfaces of constant mean curvature which consists of regular level
sets of a homogeneous polynomial (called isoparametric polynomial) satisfying the so-
called Cartan-Münzner equation. Provided with the “good symmetry” of space forms,
Münzner [Mü80] could obtain more specific properties about principal curvatures of

2Note added in proof: Very recently we happened to see an unpublished paper by Ni [Ni97] from
internet which gave another different proof of Theorem 1.1.

3When Mt is disconnected, we assume that all connected components have common constant
principal curvatures, or equivalently, the principal curvatures of Mt depend only on f |Mt = t.
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the focal varieties and isoparametric hypersurfaces than Theorem 1.2 does, on which
they were heavily depended in the proof of his splendid result about the number g of
distinct principal curvatures of isoparametric hypersurfaces in spheres (For the theory
of isoparametric hypersurfaces in the model space forms, see [Th00] for an excellent
survey and see [CCJ07], [Imm08], [GX10] for recent progresses and applications).

2. The shape operator of Tubes. In this section we use similar definitions and
notations as in [Gr04] and [MMP06]. Let Pm ⊂ Mn be an m-dimensional embedded
submanifold of an n-dimensional Riemannian manifold M . For a given p ∈ P , we now
introduce Fermi coordinates in a neighborhood U ′ of p in M . First we choose normal
geodesic coordinates (y1, · · · , ym) centered at p in a neighborhood U of p in P . Then
in U we fix an orthonormal sections Em+1, · · · , En of the normal bundle V of P in M
such that they are parallel with respect to the normal connection along any geodesic
ray from p in P . The Fermi coordinates (x1, · · · , xn) of (U ⊂ P ⊂) U ′ ⊂ M centered
at p are defined by

xa

expp′

 n∑
j=m+1

tjEj(p
′)

 = ya(p
′) (a = 1, · · · ,m),

xi

expp′

 n∑
j=m+1

tjEj(p
′)

 = ti (i = m+ 1, · · · , n),

for p′ ∈ U and any sufficiently small numbers tm+1, · · · , tn. From the definitions, it
is easily seen that the coordinates vector fields ∂x1, · · · , ∂xn satisfy

∇∂xa∂xb|p ∈ VpP, ∇∂xa∂xi|p ∈ TpP, ∇∂xi∂xj |U = 0,(3)

⟨∂xα, ∂xβ⟩|p = δαβ , ⟨∂xa, ∂xi⟩|U = 0, ⟨∂xi, ∂xj⟩|U = δij ,(4)

where ∇ denotes the covariant derivative in M , ⟨·, ·⟩ denotes the metric, and the
indices convention is that indices a, b, c, · · · ∈ {1, · · · ,m}, indices i, j, k, · · · ∈ {m +
1, · · · , n} and indices α, β, γ, · · · ∈ {1, · · · , n}.

In terms of Fermi coordinates, the distance function, say σ, to P in M and the
(outward) unit normal vector field, sayN , of any tubular hypersurface Pt at a distance
σ = t > 0 from P can be written as

σ(q′) =

√√√√ n∑
i=m+1

x2
i and N(q′) =

n∑
i=m+1

xi

σ

∂

∂xi
, ∇σ,

for q′ = expp′

(∑n
j=m+1 xjEj(p

′)
)
∈ Pt ⊂ U ′ − P , where the last equality (,) is just

the Generalized Gauss Lemma.
The shape operator S(t) of Pt with respect to N at q′ ∈ Pt is just the restriction

to Pt of the tensorial operator S : T (U ′ − P ) → T (U ′ − P ) defined by

(5) SU = −∇UN,

for U ∈ Tq′(U ′−P ). It is easily seen that S is symmetric and SN = 0. Then covariant
derivative of S(t) along normal geodesic of Pt gives the Riccati equation:

S′(t) = S(t)2 +R(t),
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where R(t)U = RNUN = (∇[N,U ] − [∇N ,∇U ])N for U ∈ Tq′Pt. Taking trace shows
that

(6) H ′(t) =∥ S(t) ∥2 +ρM (N,N),

where H(t) = Trace(S(t)) is the mean curvature of Pt, ρ
M is the Ricci curvature of

M and ∥ · ∥ is the norm induced from the metric. Therefore, if the Ricci curvature
ρM is positive, H(t) is a strictly increasing function as t grows. Recall that in [GT09],
we showed that at least one is minimal among a family of properly isoparametric
hypersurfaces in a closed Riemannian manifold. Combining these with the structural
result of [Wa87], we get

Corollary 2.1. There exists a unique minimal isoparametric hypersurface
among a family of properly isoparametric hypersurfaces in a closed Riemannian man-
ifold of positive Ricci curvature.

Remark 2.1. In Proposition 4.1 of [GT09], we found isoparametric functions
which are proper on each Milnor sphere, and Remark 4.2 of [GT09] told that in that
situation the Milnor spheres could carry metrics of positive Ricci curvature (even non-
negative sectional curvature). So the above corollary tells that there is one and only
one minimal isoparametric hypersurface in each family.

Now we come to derive the power series expansion formula for S(t) with respect
to t. For any normal vector v ∈ VpP , the shape operator Tv of P in direction v at p
is defined by

⟨Tv(X), Y ⟩ = ⟨∇XY, v⟩ = −⟨∇XV, Y ⟩|p ,

for any vector fields X,Y tangent to P , where V is any normal vector field with
V |p = v. Let {T v

ab} denote the coefficients of Tv under the coordinate vector fields,
i.e.,

Tv(∂xa|p) =
m∑
b=1

T v
ab∂xb|p, or T v

ab = ⟨Tv(∂xa), ∂xb⟩|p.

Then we will also write Tv = (T v
ab) (as a matrix), and Ti = T∂xi|p = (T i

ab) for
simplicity. For any unit normal vector v =

∑n
j=m+1 vj∂xj |p ∈ VpP , s.t.,

∑n
j=m+1 v

2
j =

1, we denote by ηv(t) = expp(tv) the unique geodesic in direction v through p in M .
Obviously, the Fermi coordinates of ηv(t) ∈ Pt are (0, · · · , 0, tvm+1, · · · , tvn), and

N |ηv(t) = η′v(t) =
n∑

j=m+1

vj∂xj |ηv(t).

Let gαβ = ⟨∂xα, ∂xβ⟩ be the metric coefficients. Then we recall their power series
expansion in preparation for that of the shape operator.

Lemma 2.1. At the point ηv(t) = expp(tv) ∈ Pt, the following expansions hold

gab(t) = δab − 2T v
abt+

(
−⟨Rv∂xav, ∂xb⟩+

∑
c
T v
acT

v
cb

)
t2 +O(t3),

gai(t) = −2
3 ⟨Rv∂xa

v, ∂xi⟩t2 +O(t3),
gij(t) = δij − 1

3 ⟨Rv∂xiv, ∂xj⟩t2 +O(t3).
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Proof. Though these formulas can be derived by standard calculations and some
of them have occurred in the literature (cf.[MMP06]), we briefly prove the second here
for the reader’s convenience.

By formulas (3-4), gai(0) = 0,

g′ai(0) = v(⟨∂xa, ∂xi⟩) = ⟨∇v∂xa, ∂xi⟩+ ⟨∂xa,∇v∂xi⟩ = 0,

and

g′′ai(0) =
d

dt
(⟨∇N∂xa, ∂xi⟩|ηv(t) + ⟨∂xa,∇N∂xi⟩|ηv(t))|t=0

= v(⟨∇Ñ∂xa, ∂xi⟩+ ⟨∂xa,∇Ñ∂xi⟩) (where Ñ =
n∑

j=m+1

vj∂xj)

= ⟨∇v∇Ñ∂xa, ∂xi⟩+ ⟨∂xa,∇v∇Ñ∂xi⟩

= −⟨Rv∂xav, ∂xi⟩ −
1

3
⟨Rv∂xiv, ∂xa⟩ (by Lemma 9.20 in [Gr04])

= −4

3
⟨Rv∂xav, ∂xi⟩,

where Lemma 9.20 in [Gr04] shows (by properties of Fermi coordinates and polariza-
tion)

∇∂xi
∇∂xj

∂xa|p = −R∂xi∂xa
∂xj |p ,

∇∂xi∇∂xj∂xk|p = −1

3
(R∂xi∂xj∂xk +R∂xi∂xk

∂xj)|p .

Therefore, by Taylor formula, we get the second expansion formula. The other
two can also be derived similarly.

Lemma 2.2. At the point ηv(t) = expp(tv) ∈ Pt, the following expansions hold

∇∂xa∂xj =
∑
b

−T j
ab∂xb − t

∑
b

(
⟨Rv∂xa∂xj , ∂xb⟩+

∑
c

T j
acT

v
cb

)
∂xb

−t
∑
k

⟨Rv∂xa∂xj , ∂xk⟩∂xk +
∑
α

O(t2)α∂xα,

∇∂xl
∂xj = − t

3

∑
b

(⟨Rv∂xl
∂xj , ∂xb⟩+ ⟨Rv∂xj∂xl, ∂xb⟩)∂xb

− t

3

∑
k

(⟨Rv∂xl
∂xj , ∂xk⟩+ ⟨Rv∂xj∂xl, ∂xk⟩)∂xk +

∑
α

O(t2)α∂xα.

Proof. By definitions,

⟨∇∂xa∂xj , ∂xb⟩|p = −T j
ab, ⟨∇∂xa∂xj , ∂xk⟩|p = 0.

Similarly as in the proof of Lemma 2.1, we have

v⟨∇∂xa∂xj , ∂xb⟩ = ⟨∇v∇∂xa∂xj , ∂xb⟩+ ⟨∇∂xa∂xj ,∇v∂xb⟩

= −⟨Rv∂xa∂xj , ∂xb⟩+
∑
c

T j
acT

v
cb,
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v⟨∇∂xa∂xj , ∂xk⟩ = ⟨∇v∇∂xa∂xj , ∂xk⟩+ ⟨∇∂xa∂xj ,∇v∂xk⟩
= −⟨Rv∂xa∂xj , ∂xk⟩.

Suppose that

∇∂xa∂xj |ηv(t) =
∑
α

ξα(t)∂xα.

Then

⟨∇∂xa∂xj , ∂xβ⟩|ηv(t) =
∑
α

ξα(t)gαβ(t),

and thus by Lemma 2.1, we get

ξb(t) = −T j
ab − t

(
⟨Rv∂xa∂xj , ∂xb⟩+

∑
c
T j
acT

v
cb

)
+O(t2),

ξk(t) = −t⟨Rv∂xa∂xj , ∂xk⟩+O(t2),
which completes the proof of the first formula of the lemma.

The second formula can also be derived similarly.
Now we are ready to give the power series expansion of the shape operator. From

Lemma 2.2, one can immediately deduce the following.

Lemma 2.3. At the point ηv(t) = expp(tv) ∈ Pt, the following expansions hold

∇∂xaN =
∑
b

−T v
ab∂xb − t

∑
b

(
⟨Rv∂xav, ∂xb⟩+

∑
c

T v
acT

v
cb

)
∂xb

−t
∑
k

⟨Rv∂xav, ∂xk⟩∂xk +
∑
α

O(t2)α∂xα,

∇∂xl
N =

1

t
∂xl −

vl
t
N − t

3

(∑
b

⟨Rv∂xl
v, ∂xb⟩∂xb +

∑
k

⟨Rv∂xl
v, ∂xk⟩∂xk

)
+
∑
α

O(t2)α∂xα.

Notice that along the geodesic ηv(t) one can always choose a system of Fermi co-
ordinates (x1, · · · , xn) such that it satisfies a further property (Lemma 2.5 in [Gr04]):

∂xn|ηv(t) = η′v(t) = N |ηv(t).

Then we denote by (Sαβ) the coefficients of the operator S defined by (5) under such

Fermi coordinates, i.e., S(∂xα) =
n∑

β=1

Sαβ∂xβ . Note that S(∂xn)|ηv(t) = S(N)|ηv(t) =

0 and ∂xn|ηv(0) = η′v(0) = v (which implies vm+1 = · · · = vn−1 = 0, vn = 1).
Therefore, from Lemma 2.3, we obtain

Proposition 2.1. At the point ηv(t) = expp(tv) ∈ Pt, the following expansion
holds

(7) S = (Sαβ) =

 Tv + tA+O(t2) tB +O(t2) O(t2)
tC +O(t2) −1

t I + tD +O(t2) O(t2)
0 0 0

 ,
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where A = (⟨Rv∂xav, ∂xb⟩ +
∑
c
T v
acT

v
cb) is a matrix with indices a, b ∈ {1, · · · ,m};

D = ( 13 ⟨Rv∂xl
v, ∂xk⟩) is a matrix with indices l, k ∈ {m + 1, · · · , n − 1}; B =

(⟨Rv∂xav, ∂xk⟩); C = ( 13 ⟨Rv∂xl
v, ∂xb⟩); O(t2) denotes matrices with elements of order

not less than 2.

Recall that S(t) is the restriction to Pt of the operator S and as a unit normal
vector of Pt, ∂xn|ηv(t) = N is an eigenvector of S with corresponding eigenvalue 0.
Thus the expansion (7) implies

Corollary 2.2. The principal curvatures of Pt at ηv(t) are just the eigenvalues
of the matrix (with notations as above)

S̄(t) :=

(
Tv + tA+O(t2) tB +O(t2)

tC +O(t2) − 1
t I + tD +O(t2)

)
.

3. Proof of Theorems and curvature restrictions. In this section, we apply
the expansion formula of the shape operator (Corollary 2.2) to prove the theorems
stated in the introduction. As byproducts, there are some curvature restrictions
necessary for a Riemannian manifold to admit (certain) isoparametric functions.

Proof of Theorem 1.1. By the structural result of [Wa87], each regular level
hypersurface Ms = f−1(s) of a transnormal function f is a tubular hypersurface of
either of the focal varieties M± (if non-empty). Then we could apply the results of
last section here with P = M− (alternatively M+) and its tubular hypersurface Pt at
distance t (0 < t < dist(M−,M+)) from P is just some regular level hypersurface of
f . Since now f is an isoparametric function, Pt has constant mean curvature H(t),
which implies, by Corollary 2.2,

(8) Trace(S̄(t)) = Trace(Tv)−
n−m− 1

t
+t(Trace(A)+Trace(D))+O(t2) = H(t)

is independent of the choices of point p ∈ P and unit normal vector v ∈ VpP . There-
fore, comparing the coefficients of tλ’s, we know that Trace(Tv) is a constant inde-
pendent of the choices of unit normal vector v ∈ VpP and thus must vanish, since
by linearity, Trace(Tv) = Trace(T−v) = −Trace(Tv). This completes the proof of
Theorem 1.1.

Formula (8) in the proof above also implies

(9) ΓP := Trace(A) + Trace(D) =
1

3

(
ρN (v, v) + 2

m∑
a=1

KN (v, ∂xa) + 3 ∥ Tv ∥2
)

is a constant independent of the choices of point p ∈ P and unit normal vector
v ∈ VpP , where ρN (v, v), KN (v, ∂xa) are the Ricci curvature in direction v and the
sectional curvature of the plane spanned by (v, ∂xa) of N respectively. Moreover, by
taking the Trace of (9) with respect to v and by Gauss equation,

(10)
1

3

n∑
ij=m+1

KN
ij +

m∑
ab=1

KN
ab +

∑
ia

KN
ia −RP = (n−m)ΓP
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is a constant function on P , where KN
αβ := KN (∂xα, ∂xβ), and RP denotes the scalar

curvature of P . In particular, if dimP = n − 1, or equivalently, if the isoparametric
function f is not proper, then (10) reduces to

RN − ρN (ν, ν)−RP = ΓP ,

where ν is the unit normal vector of P . If in addition N is an Einstein manifold, i.e.,
ρN ≡ Const, then P has constant scalar curvature. In conclusion, we get:

Corollary 3.1. On the unit normal bundle of the focal varieties M± of an
isoparametric function f on a complete Riemannian manifold N , the function ΓP

defined in (9) is constant and the equality (10) holds. If in addition N is Einstein
and f is isoparametric and not proper, then the “non-singular” focal variety is a
minimal hypersurface with constant scalar curvature.

Proof of Theorem 1.2. As before, we can apply Corollary 2.2 in our case with P =
M− (alternatively M+). Now by assumption, Pt has constant principal curvatures,
say λ1(t), · · · , λn−1(t), with respect to the unit normal vector field in the direction
of ∇f . All λi(t)’s depend only on t > 0, regardless of whether Pt is connected or
not. Indeed, when P has codimension 1, as a level hypersurface Pt may still be
disconnected. However, by Footnote 1.2, λi(t)’s depend only on f |Pt which is a one-
parameter function of t. Then by Corollary 2.2,

(11) S̄(t) =

(
Tv 0
0 −1

t I

)
+ t

(
A B
C D

)
+O(t2)

has λ1(t), · · · , λn−1(t) as its eigenvalues. Let µ1(v), · · · , µm(v) be the eigenvalues of
Tv. Then without loss of generality, by (11) we can assume

λa(t) = µa(v)+O(t), λk(t) = −1

t
+O(t), for a = 1, · · · ,m; k = m+1, · · · , n−1.

Taking limit of t to 0, we have

(12) µa(v) = lim
t→0+

λa(t) =: λa (const)

for any p ∈ P and unit normal vector v ∈ VpP , which completes the proof.

Note that for any unit normal vector v ∈ VpP , Tv has the same constant eigen-
values λ1, · · · , λm, while by linearity, T−v = −Tv. Thus the constants λa must occur
in pairs of opposite signs, i.e., κ1,−κ1, · · · , κq,−κq, 0, · · · , 0. Such submanifold with
principal curvatures in any direction occurring in pairs of opposite signs is called aus-
tere submanifold in [HL82]. On the other hand, by the Riccati equation (6), we know
that the Ricci curvature ρN (ν, ν) is constant on each Pt (where ν is the unit normal
vector field) and thus

ρN (v, v) = lim
t→0+

ρN (ν, ν)

is constant on P for any unit normal vector field v, which together with formulas (9,
12) imply:

(13)
m∑

a=1

KN (v, ∂xa) ≡ const.
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Thus if N has constant scalar curvature on P , so does P by formulas (10, 13) and the
constancy of ρN (v, v). In conclusion, we obtain:

Corollary 3.2. Suppose that each isoparametric hypersurface Mt has constant
principal curvatures. Then the Ricci curvature ρN of N is constant on each Mt and
the focal varieties M± in their normal directions. Moreover, the curvature identity
(13) holds on the focal varieties. If in addition the scalar curvature of N is constant
on M±, then the focal varieties also have constant scalar curvature.

The curvature restrictions above could also be derived by analyzing the expan-
sion formula (11) which may imply some subtler curvature relations (perhaps explicit
higher order terms would be required).
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