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DYNAMIC EQUIVALENCE OF CONTROL SYSTEMS VIA INFINITE
PROLONGATION∗

MATTHEW W. STACKPOLE†

Abstract. In this paper, we put the issue of dynamic equivalence of control systems in the
context of pullbacks of coframings on infinite jet bundles over the state manifolds. While much
attention has been given to differentially flat systems, i.e. systems dynamically equivalent to linear
control systems, the advantage of this approach is that it allowed us to consider control affine systems
as well. Through this context we are able to classify all control affine systems of three states and
two controls under dynamic equivalence of the type (x,u) 7→ y(x,u).
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1. Introduction. A control system refers to any dynamic (time-varying) de-
vice in which an operator manages that device’s output through certain inputs. Math-
ematically this may be modelled using a system of ordinary differential equations
(ODEs) with more variables than equations. The degree of freedom in the system of
equations represents the operator’s control of the device. For the remainder of this
paper, we will use the phrase “control system” to refer to an underdetermined system
of n ODEs,

ẋ = f(x,u).(1.1)

Control systems show up in the design of electrical and mechanical systems, among
other things. The variables x whose time evolution is determined by the ODEs are
called state variables, while the “free parameters” u are called control variables. A
control system can be viewed as a submanifold Σ of the tangent bundle of the state
space in the following way: given a manifold M and a curve x : I →M , we say that
x is a solution to the system Σ ⊂ TM if (x(t), ẋ(t)) lies in Σ for all t ∈ I. The map
Rs → TxM given by u 7→

(
x, f(x,u)

)
is a parametrization of Σx = Σ∩TxM with the

parameters u seen as local coordinates on Σx.
A dynamic equivalence takes trajectories of one system, ẋ = f(x,u), to those of

another, ẏ = g(y,v), and back again via maps between jet spaces which allow state
derivatives to get mixed in:

(x,u, u̇, . . . ,u(J)) 7→ y(x,u, u̇, . . . ,u(J)).

Through the defining equation (1.1), derivatives of state variables can be expressed in
terms of control variables and their derivatives as well. Static (feedback) equivalence,
which is a diffeomorphism of the state space, is a special case where y = y(x).

Up to dynamic equivalence at the first jet level (J = 0), i.e. x = x(y,v) and
y = y(x,u), my results classify all control affine systems,

ẋ = f0(x) + uif
i(x),

of at most three states and two controls through the use of Cartan’s method of equiv-
alence. The main result of this paper is that every control affine system of three
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states and two controls falls into one of three classes under dynamic equivalence. The
numbered rows represent these three classes. The entries in each row are systems
that, while dynamically equivalent, are not statically equivalent.

1 ẋ1 = u1 ẋ1 = u1 ẋ1 = u1

ẋ2 = u2 ẋ2 = u2 ẋ2 = u2

ẋ3 = x2 ẋ3 = x2u1 ẋ3 = 1 + x2u1

2 ẋ1 = u1

ẋ2 = u2

ẋ3 = 0
3 ẋ1 = u1

ẋ2 = u2

ẋ3 = 1

2. Control systems. Locally a control system with n+ s variables and n equa-
tions can be written in the form

ẋ1 = f1(x1, . . . , xn, u1, . . . , us),

ẋ2 = f2(x1, . . . , xn, u1, . . . , us),

...

ẋn = fn(x1, . . . , xn, u1, . . . , us).

For our purposes, we will consider the functions fi, 1 ≤ i ≤ n, to be C∞.
Here, xi : R → R and uj : R → R. We will use t as our independent variable,

and derivatives with respect to t will be denoted by a dot: dxi

dt = ẋi. This system
of equations can be abbreviated with the single vector equation ẋ = f(x,u) where
x = (x1, . . . , xn)T , u = (u1, . . . , us)

T , and f = (f1, . . . , fn)T . This type of control
system is called time independent since there is no explicit t dependence in the fi.

In general, quantities that are vectors or matrices, like x above, will be written
in bold face to distinguish them from scalars, like xi.

The variables xi are known as the state variables, while the variables uj are
known as the control variables. To explain the terminology, imagine a hovercraft
on the surface of a two-dimensional lake. The state variables would be those needed
to describe the state of the hovercraft on the lake: position of the hovercraft, which
direction the hovercraft is turned, and the translational and rotational velocities of the
hovercraft. The time evolution of state variables is predetermined, in this case by the
Newton-Euler equations of motion, which are given explicitly in the example below.
The control variables allow external influence of the state variables’ time evolution.
In the hovercraft scenario, control variables could describe the hovercraft’s motor:
the magnitude and direction of its thrust. Control variables are exactly what the
hovercraft operator uses to control the system.

3. Dynamic equivalence. Geometrically, a control system can be viewed as a
submanifold Σ = R×Σ of R× TM in the following manner: Given local coordinates
x on M , the control system Σ is a manifold with local coordinates (x,u). With local
coordinates (x, ẋ) on TM , there is an embedding

ι : R× Σ→ R× TM

given in coordinates by

(t,x,u) 7→ (t,x, f(x,u)).
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This embedding ι pulls back the contact forms {dxi− ẋi dt | i = 1, . . . , n } on R×TM
to the forms { ωi = dxi − fi(x,u) dt | i = 1, . . . , n } on R× Σ.

A solution to a control system also has a geometric interpretation. Let x(t) be
a curve in M , i.e. x : R → M , and define p1x(t) = (x(t), ẋ(t)) ∈ TM . Such a curve
x(t) is a solution to the control system Σ if there exists a map σ : R→ Σ that makes
the following diagram commute:

Σ
ι|Σ // TM

��
R x

//

p1x

>>||||||||||||||||

σ

OO�
�
�
�
�
�

M

In particular,

p1x(t) = (ι|Σ ◦ σ) (t),

or in other words, p1x(t) ∈ Σ for all t. Note that ωi(σ̇) = 0 for i = 1, . . . , n.
We will use the convention in this paper that a control system with a bar over it,

for example Σ, is a subbundle of R×TM , while a control system without the bar, Σ,
is a subbundle of TM which is the projection of Σ. In fact, since we will be requiring
that time be preserved through our equivalences, we will have Σ = R× Σ.

3.1. Jet spaces. Since the idea of dynamic equivalence is to allow a “change
of variables” using higher order derivatives, we need a setting in which these higher
order derivatives can be dealt with, much like the tangent bundle lets us work with
first order derivatives. This setting is a jet space. We will say that curves a, b : R→ R
with a(0) = b(0) = 0 have the same K-jets at 0 if

da

dt
(0) =

db

dt
(0),

d2a

dt2
(0) =

d2b

dt2
(0), . . . ,

dKa

dtK
(0) =

dKb

dtK
(0).

Given n-dimensional differentiable manifolds U and V and maps a, b : U → V with
a(x) = b(x) = q, we will say that a and b have the same K-jets at x if for any
differentiable maps φ : R→ U , ψ : V → R with φ(0) = x, ψ ◦ a ◦ φ and ψ ◦ b ◦ φ have
the same K-jets at 0.

Note that having the same K-jets at x is an equivalence relation among maps
from U to V . Define the Kth-order jet bundle of M , denoted by JK(M), to be
the bundle over M whose fiber JK(M)x over a point x ∈ M is the space of curves
a : R → M modulo the equivalence relation of having the same K-jets at x. Notice
that with this definition, J 0(M) = M and J 1(M) = TM , where the equality here is
actually a bundle-preserving diffeomorphism.

Define the prolongation map pj,k which takes lifts of C∞ curves from M in
J j(M) to lifts of C∞ curves from M in J k(M) (j < k) as follows.

pj,k(x(t), ẋ(t), ẍ(t), . . . ,x(j)(t)) = (x(t), ẋ(t), ẍ(t), . . . ,x(j)(t), . . . ,x(k)(t) )

We will denote p0,j simply as pj .

3.2. Definition of dynamic equivalence. Let M and N be smooth manifolds
(state spaces) and

Σ : ẋ = f(x,u),
Λ : ẏ = g(y,v),

(3.1)
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be control systems over their respective state spaces.
We say control systems (3.1) on M and N are dynamically equivalent over

open sets U ⊂ J J+1(M) and V ⊂ JK+1(N) for nonnegative integers J and K if
there exist smooth maps Φ : U → N and Ψ : V → M so that when restricted to the
appropriate open sets:

1. for any solution x(t) of ẋ = f(x,u), (Φ ◦ pJ+1)(x(t)) is a solution to ẏ =
g(y,v),

2. for any solution y(t) of ẏ = g(y,v), (Ψ ◦ pK+1)(y(t)) is a solution to ẋ =
f(x,u),

3. the following diagram commutes for solutions,

J J+1(M)

��

Φ

$$IIIIIIIIIIIIIIIIIIII
JK+1(N)

��

Ψ
uuuuuuuuu

zzuuuuuuuuu

R x //

pJ+1x

CC���������������
J 0(M) J 0(N) R

yoo

pK+1y

\\888888888888888

i.e. Ψ ◦ pK+1 ◦ Φ ◦ pJ+1(x(t)) = x(t) whenever x(t) is a solution of Σ, and
Φ ◦ pJ+1 ◦Ψ ◦ pK+1(y(t)) = y(t) whenever y(t) is a solution of Λ.

Note that this means

y = Φ
(
x, ẋ, . . . ,x(J+1)

)
,

x = Ψ
(
y, ẏ, . . . ,y(K+1)

)
.

We will use the same notation for maps between jet spaces as we did for control
systems, namely ϕ : J j(M) → J k(N) and ϕ̄ : R × J j(M) → R × J k(N) with
ϕ̄ = id × ϕ. Also note that in the definition of dynamic equivalence, we are using
maps ϕ : J j(M)→ J k(N), so they are defined in terms of the coordinates:

( x, ẋ, ẍ, . . . , x(j) ) 7→ ( y, ẏ, ÿ, . . . , y(k) ).

However, in practice we will be concerned only with the restrictions of these maps
to the prolongations of control systems (defined below). Therefore, by way of the
defining equations ẋ = f(x,u) and ẏ = g(y,v) of the control systems, we will be
looking at the restriction of ϕ to the appropriate submanifolds with the following
coordinates:

( x, u, u̇, . . . , u(j−1) ) 7→ ( y, v, v̇, . . . , v(k−1) ).

The proof of the following theorem should be clear from the definition, which is
the same definition given in [10].

Theorem 1. Dynamic equivalence is an equivalence relation of control systems.

Static (feedback) equivalence is a special case of dynamic equivalence for
which J = K = −1, i.e. Φ : M → N is a diffeomorphism with Ψ = Φ−1. For
static equivalence, we have Φ̄∗Σ = Λ and Ψ̄∗Λ = Σ. We say two systems are locally
static equivalent over U ⊂M and V ⊂ N if there exist coverings U =

⋃
α∈A Uα and

V =
⋃
α∈A Vα such that the systems are static equivalent over each Uα and Vα.

From an engineering point of view, equivalence can be achieved through the ad-
dition of a feedback loop in the control system. In Figure 1, the system Σ has input
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u and output x. By adding a feedback loop, the new system Λ has input v and
output y. In the case of static equivalence, the feedback loop only incorporates the
old output x so that the new input v is only a function of x and u. Including one
or more integrators to the feedback loop allows v to be a function of x, u, and some
number of derivatives of u, and this is dynamic equivalence.

Fig. 1. Control system with feedback

3.3. Prolongation. A key ingredient in dynamic equivalence is the notion of
prolongation of a control system. For integers k ≥ 1, define the prolongation
of the system Σ to the kth order, denoted by Σk, to be the subbundle of J k(M) that
corresponds to the prolongations of solutions of Σ, i.e. for any x : I →M ,

p1(x(t)) ∈ Σ ∀t ∈ I ⇐⇒ pk(x(t)) ∈ Σk ∀t ∈ I.

Obviously Σ1 = Σ. In the same way that Σ is a control system with s control variables
with state manifold M of dimension n, we can view Σ2 as a control system with s
control variables with state manifold Σ of dimension n+ s. An important fact is that
Σ is strictly dynamically equivalent, i.e. dynamically equivalent but not static
equivalent, to Σ2, as can be seen in the diagram below.

Σ2
OO

p1,2

Φ ΣOO

p1

��

J 0(M)
yy

Ψ

Example 1. The system

Σ : ẋ1 = u1,

ẋ2 = u2,
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has two states and two controls. Σ is dynamically equivalent to Σ2:

Σ2 : ẏ1 = y3,

ẏ2 = y4,

ẏ3 = v1,

ẏ4 = v2,

where

x1 = y1, x2 = y2, u1 = y3,
u2 = y4, u̇1 = v1, u̇2 = v2.

(3.2)

We have increased the number of states from two to four by viewing the controls as new
state variables. The relations in (3.2) give the equivalence map. This is an example
of what we will call a total prolongation.

In general, a total prolongation of the system ẋ = f(x, u) is the system(
ẋ
u̇

)
=

(
f(x,u)

0

)
+
∑
i

Eiu̇i,(3.3)

where Ei is the vector with a 1 in the (i+n)th entry and zeros elsewhere. Here (x,u)
are the new state variables and u̇ are the new control variables. This system has a
special form. A control system of the form

ẋ = f(x,u) = f0(x) +
∑
i

f i(x)ui(3.4)

is called control affine. In particular, (3.3) is control affine. Thus we have the
following theorem.

Theorem 2. Every control system Σ is dynamically equivalent to a control affine
system, namely Σ2.

Similar to a total prolongation, some, but not all, of the control variables can be
made into new state variables, as we see in the following example.

Example 2. The system

Σ : ẋ1 = u1,

ẋ2 = u2,

is dynamically equivalent to Λ:

Λ : ẏ1 = y3,

ẏ2 = v1,

ẏ3 = v2,

where

x1 = y1, x2 = y2, u1 = y3,
u2 = v1, u̇1 = v2.
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We have increased the number of states from two to three by viewing only one of the
controls as a new state variable. This process is called a partial prolongation. Every
control system is dynamically equivalent to any partial prolongation of that system.

We will assume, without loss of generality, that the two systems in a dynamic
equivalence have the same number of state variables (m = n). If m < n, perform
repeated prolongations, either partial or total, until the number of states are equal
and consider this new system.

A method for constructing a potential dynamic equivalence which is not a partial
prolongation was mentioned briefly in a paper by Pomet [9]. Below we give a specific
example of how the method works. This example incorporates both partial prolonga-
tion and changes of variables (a.k.a. static equivalences) to give not only two control
systems that are strictly dynamically equivalent but also the equivalence map.

Example 3. Start with an affine linear control system: ẋ1

ẋ2

ẋ3

 =

 1
0
x2

u1 +

 0
1
0

u2.(3.5)

Partially prolong the three state system to a four state system.

z1 = x1 z2 = x2

z3 = x3 z4 = u2

w1 = u1 w2 = u̇2


ż1

ż2

ż3

ż4

 =


0
z4

0
0

+


1
0
z2

0

w1 +


0
0
0
1

w2

By the nature of this partial prolongation, the w2 vector must be of the form (0 0 0 1)T .
The systems (x,u) and (z,w) are dynamically equivalent. Through a change of basis,
transform the w1 vector into (0 0 0 1)T .

−z2 −z1 1 0
0 1 0 0
0 0 0 1
1 0 0 0




1
0
z2

0

 =


0
0
0
1


This corresponds to the change of coordinates

(z̃1, z̃2, z̃3, z̃4) = ( z3 − z1z2, z2, z4, z1 ).

The change of coordinates is a static equivalence between (z,w) and (z̃,w), and so
we have yet another system dynamically equivalent to (x,u).

˙̃z1

˙̃z2

˙̃z3

˙̃z4

 =


−z̃3z̃4

z̃3

0
0

+


0
0
0
1

w1 +


0
0
1
0

w2
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The (z̃,w) will be a partial prolongation of a three state system. In this case,

z̃1 = ỹ1, z̃2 = ỹ3,

z̃3 = ỹ2, z̃4 = ṽ1,

w1 = ˙̃v1, w2 = ṽ2.

The numberings were chosen so that the final equations of the control system end up
in this particularly nice form. ˙̃y1

˙̃y2

˙̃y3

 =

 0
0
ỹ2

+

 −ỹ2

0
0

 ṽ1 +

 0
1
0

 ṽ2

By construction, the systems (x,u) and (ỹ,v) are dynamically equivalent. What
the process does not tell us is if this equivalence is strictly dynamic, for it could easily
be static equivalent as well. In this example, however, the (x,u) system is one of
the classes of static equivalence given in Elkin [2] and Wilkens [13], while the (ỹ,v)
system is clearly static equivalent to a distinct class (y,v) ẏ1

ẏ2

ẏ3

 =

 0
0
y2

+

 1
0
0

 v1 +

 0
1
0

 v2(3.6)

following the transformation

ỹi = yi, for i = 1, 2, 3,

v1 = −ỹ2ṽ1, ṽ2 = v2.

It is interesting to note that unlike the original system (3.5) in our equivalence,
(3.6) decouples into two smaller and separate systems: the first equation involves
just y1, v1, while the other two equations involve only y2, y3, v2. This equivalence
also converts a nonlinear system (x,u) into a linear one (y,v). Both decoupling of
equations and linearity greatly simplify the analysis of solutions of control systems.

Not only does the process presented above tell us that (x,u) and (y,v) are dy-
namically equivalent, but through some backtracking, it gives us the explicit equivalence
maps of the form

(x1, x2, x3, u1, u2, . . .) 7→ (x3 − x1x2, u2, x2, −x1u2, u̇2, . . .),

(y1, y2, y3, v1, v2, . . .) 7→ (−v1

y2
, y3, y1 −

y3v1

y2
,
v1v2 − y2v̇1

y2
2

, y2, . . .).

This simple example also shows why it is necessary to consider dynamic equiva-
lence on open sets. In this case, we would need to restrict our equivalence to the open
set where y2 6= 0.

4. Previous results. The first theorem of this section is one of the most impor-
tant, yet simplest to state, properties of dynamic equivalence. It can be found stated
in a compatible form in [3], but the following theorem and its proof, which are more
in line with the terminology of this paper, can be found in [9].



DYNAMIC EQUIVALENCE VIA INFINITE PROLONGATIONS 661

Theorem 3. The number of control variables is an invariant of dynamic equiv-
alence.

Note that while this theorem states that dynamically equivalent systems must
have the same number of control variables, they may have different numbers of state
variables. This is most obviously illustrated by Theorem 2. A system with n states
and s controls is equivalent to its prolongation, which has n+ s states and s controls.
Thus the number of states in a system dynamically equivalent to a given system is
unbounded.

Recall that a submanifold of an affine space is called ruled if, given any point of
the submanifold, there is a line that passes through that point and that is contained
completely within the submanifold. Classic examples of ruled submanifolds are planes,
cylinders, and the hyperboloid of one sheet. We will abuse this terminology slightly
and still call a submanifold ruled if it is the intersection of a ruled submanifold with
a possibly bounded open set. A control system is called ruled if, when viewed as a
subbundle Σ of the tangent bundle TM , it defines at every point x a ruled submanifold
Σx of the tangent space TxM at that point.

To state what is probably the most significant result to date in dynamic equiv-
alence, some notation must be established. For j < k, let πk,j be the canonical
projection from J k(M) to J j(M). Obviously πk,k is the identity. For any open set
Ω ⊂ J k(M), define the subset Ωl ⊂ J l(M) by

Ωl =

{
πk,l(Ω) if l ≤ k,
πl,k
−1(Ω) if k ≤ l.

The following is due to Pomet [10].

Theorem 4. (Pomet) Let Σ and Λ be control systems with state manifolds
M and N of dimension m and n, J , K two positive integers, and U ⊂ J J+1(M),
V ⊂ JK+1(N) two open sets satisfying

U1 ∩ Σ ⊂ (U ∩ ΣJ+1)1 and V1 ∩ Λ ⊂ (V ∩ ΛK+1)1.(4.1)

If Σ and Λ are dynamic equivalent over U and V, then
• if m > n, then Σ is ruled in U1.
• if n > m, then Λ is ruled in V1.
• if m = n, then

– (real analytic case) if U1 ∩ Σ and V1 ∩ Λ are connected, either Σ and Λ
are ruled in U1 and V1, respectively, or they are locally static equivalent
over U1 and V1.

– (C∞ case) there are open sets R,S ⊂ U1 and R,S ⊂ V1 with
1. U1 = R̄ ∪ S = R ∪ S̄,
2. V1 = R̄ ∪ S = R∪ S̄,
3. Σ and Λ are ruled over R and R,
4. Σ and Λ are static equivalent over S and S.

The condition 4.1 basically says that nothing is lost when either prolonging the
control system up or projecting the open set down in the jet spaces. In fact this
containment is an equality; the reverse inclusion follows directly from the definitions.

Recall that every system Σ is dynamically equivalent to its prolongation Σ2. Since
the dimension of the state space of Σ2 is larger than the dimension of the state space
of Σ, this theorem guarantees that Σ2 is ruled. Of course we already know that Σ2 is
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affine linear, so in this case the result is trivial. A natural question that arises from
this, and one that is partially answered by this paper, is this:

Given an affine linear control system, when is it the prolongation of a smaller
system?

At the moment, this question has not been answered in its full generality, here
or elsewhere. In an attempt to partially address this issue, this paper will classify
control systems of low dimension that are affine linear up to dynamic equivalence in
Section 12. The methods used to do this rely on a previous classification of affine linear
control systems under static equivalence. Gardner and Shadwick first classified control
systems with two state variables and one control variable under static equivalence [5].
Wilkens then solved the problem for three states and two controls [12]. For the
complete classification of affine linear systems under static equivalence with at most
three states, which I present here without proof, see [2].

In the following theorem, n represents the number of state variables xi, and uj
are control variables. Given a control system Σ : ẋ = f(x,u) with state space M , we
say that a point p ∈M is regular if there is a neighborhood of p on which the rank
of Σ, defined to be the rank of ∂f

∂u , is constant.

Theorem 5. (Elkin) An affine linear control system (3.4) with n ≤ 3 states is
locally static equivalent at a regular point p to one of the following systems:

• n = 1

ẋ1 = 0,ẋ1 = 1, ẋ1 = u1.

• n = 2 {
ẋ1 = 0
ẋ2 = 0

,

{
ẋ1 = 1
ẋ2 = 0

,

{
ẋ1 = u1

ẋ2 = 0
,{

ẋ1 = u1

ẋ2 = 1
,

{
ẋ1 = u1

ẋ2 = x1
,

{
ẋ1 = u1

ẋ2 = u2
,

• n = 3 ẋ1 = 0
ẋ2 = 0
ẋ3 = 0

,

 ẋ1 = 1
ẋ2 = 0
ẋ3 = 0

,

 ẋ1 = u1

ẋ2 = 0
ẋ3 = 0

,

 ẋ1 = u1

ẋ2 = 1
ẋ3 = 0

, ẋ1 = u1

ẋ2 = x1

ẋ3 = 0
,

 ẋ1 = u1

ẋ2 = x1

ẋ3 = 1
,

 ẋ1 = u1

ẋ2 = x1

ẋ3 = x2

,

 ẋ1 = u1

ẋ2 = H(x)u1

ẋ3 = 1+x2u1

,

where H(x) is an arbitrary function with ∂H
∂x3

is nonzero. ẋ1 = u1

ẋ2 = u2

ẋ3 = 0
,

 ẋ1 = u1

ẋ2 = u2

ẋ3 = 1
,

 ẋ1 = u1

ẋ2 = u2

ẋ3 = u3

,

 ẋ1 = u1

ẋ2 = u2

ẋ3 = x2

,

 ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1

,

 ẋ1 = u1

ẋ2 = u2

ẋ3 = 1 + x2u1

.

The following theorem takes the problem of classifying control systems with one
control variable under dynamic equivalence and reduces it to the simpler case of
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static equivalence. While this theorem has been known for some time (see [9] for one
example), a new proof of this theorem in the framework of this paper will be given in
Section 8.

Theorem 6. Let the control systems Σ, Λ in (3.1) be dynamically equivalent
with s = 1 control variable and m, n state variables, respectively. If m = n, then the
systems are in fact static equivalent. If m < n (m > n), then the systems are static
equivalent after a finite number of prolongations of the smaller system Σ (Λ).

5. The equivalence problem. Given a manifold M , a framing on M is a
collection {Xi}ni=1 of smooth sections of the tangent bundle TM such that for every
p ∈ M , the collection of vectors {(Xi)p}ni=1, called a frame, forms a basis for TpM .
A coframing is simply the dual of this notion, i.e. a collection of 1-forms {ωj}nj=1

(smooth sections of the cotangent bundle T ∗M) such that {(ωj)p}nj=1 forms a basis

for T ∗pM for every p ∈ M . Every coframing ωj has a corresponding framing Xi for

which ωj(Xi) = δji . A local framing/coframing is simply a framing/coframing
defined on an open set U ⊂M .

An equivalence problem [4] can be stated in the following way: Let Mn and
Nn be smooth n-dimensional manifolds and G ⊂ GL(n,R) a subgroup. Let ωU =
(ω1
U , . . . , ω

n
U )T and ΩV = (Ω1

V , . . . ,Ω
n
V )T be local coframings of U ⊂ M and V ⊂ N ,

respectively, chosen in some geometrically natural way. We wish to find necessary
and sufficient conditions that there exists a diffeomorphism ϕ : U → V such that

ϕ∗ΩV = γV UωU ,

where γV U : U → G. A common abuse of notation, one which will be used in this
paper, is to drop the pullback from the notation where the map ϕ is clear from context:
ΩV = γV UωU .

For example, suppose we are given manifolds M and N with Riemannian metrics
ds2 and dS2, respectively. We can locally diagonalize the metrics on open sets U ⊂M
and V ⊂ N such that

ds2 =
∑
i

(ωiU )2, dS2 =
∑
i

(ΩiV )2.

The problem then is to find necessary and sufficient conditions such that a diffeomor-
phism ϕ : M → N exists such that ϕ∗ΩV = γV UωU , where γV U is an element of the
orthogonal group O(n).

The goal of this paper is to adapt the framework of an equivalence problem
to dynamic equivalence. Then, using methods of exterior differential systems, we
will classify a collection of control systems. What makes the dynamic equivalence
problem tricky is the unboundedness of the size of the potentially equivalent state
manifold, and hence also the lack of diffeomorphisms. A diffeomorphism ϕ : M → N
cannot exist due to differences in dimension. In fact, strict dynamic equivalences
are defined in terms of submersions rather than diffeomorphisms. This difficulty due
to submersions persists through any finite number of prolongations. To solve this
problem with submersions, in the next section we will simply make everything the
same size: infinite.

6. Infinite prolongations. The trick to dealing with our submersion woes is
through prolongation, an idea introduced in section 3. Recall that a control system



664 M. W. STACKPOLE

on M

Σ :ẋi = fi(x,u), 1 ≤ i ≤ n,(6.1)

can be represented by

X =
∂

∂t
+

n∑
i=1

fi(x,u)
∂

∂xi

as a parametrization of Σ inside R× TM . A basis for the space X⊥ is

ωi = dxi − fi(x,u) dt, 1 ≤ i ≤ n.

The forms ωi are the pullback to Σ by the inclusion map of the contact forms dxi −
ẋi dt on R× TM , where R× TM has coordinates (t, xi, ẋi).The collection of 1-forms
{dt, ωi, duj} forms a coframing on Σ that encodes the information of the control
system.

Prolongation of (6.1) yields a system Σ2 given by the equations

ẋ = f(x,u),

u̇ = ū,

with state variables x,u and control variables ū. Thus a suitable coframing on Σ2

that encodes the information of the original control system and Σ2 is
ω−1 = dt,
ω0
i = dxi − fi(x,u) dt, 1 ≤ i ≤ n,
ω1
j = duj − ūj dt, 1 ≤ j ≤ s,
ω2
j = dūj , 1 ≤ j ≤ s.


Define the infinite jet bundle J∞(M) as the projective limit of the finite jet

bundles J∞(M) = lim←−
K

JK(M), endowed with the projective limit topology. Let Σ∞

and Λ∞ be the projective limits of the prolongations of the control systems Σ and
Λ, respectively. By repeated iterations of the prolongation process above, a suitable
choice for preferred coframings on Σ∞ and Λ∞ with coordinates (t,x,u, u̇, ü, . . .) and
(t,y,v, v̇, v̈, . . .), respectively, which encodes the information of the respective control
systems is as follows:

ω =


ω−1

ω0

ω1

ω2

 =


dt

dx− f(x,u)dt
du− u̇dt
du̇− üdt

...

 ,

Ω =


Ω−1

Ω0

Ω1

Ω2

...

 =


dt

dy − g(y,v)dt
dv − v̇dt
dv̇ − v̈dt

...

 .

(6.2)
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The covectors ωi and Ωi are n-dimensional for i = 0 and s dimensional for i > 0.
Now we should take a closer look at what happens to the mappings involved in

the definition of dynamic equivalence under this infinite prolongation process. Given
a map Φ : ΣJ+1 → N , as in the definition of dynamic equivalence, define the kth

prolongation of the map, denoted Φ[k] as the map that makes the following diagram
commute on solutions.

ΣJ+k+1

��

Φ[k]

((PPPPPPPPPPPPP

ΛkOO

pkΣJ+1

��

Φ

((PPPPPPPPPPPPPP

I
x //

pJ+1x
;;xxxxxxxxx

pJ+k+1x

77

M N
In other words,

(pk ◦ Φ)
(
pJ+1x(t)

)
= Φ[k]

(
pJ+k+1x(t)

)
for solutions x(t) ∈M .

Now define Φ∞ : Σ∞ → Λ∞ by Φ∞ = lim←−k Φ[k] in the obvious fashion, i.e. for

projection the projection map πk that takes an infinite jet to the kth jet,

πk ◦ Φ∞ = Φ[k] ◦ πJ+k+1.

Let Ψ : ΛK+1 → M be the map used in section 3 in the definition of dynamic
equivalence, and define Ψ∞ similarly. From the definitions of dynamic equivalence
and prolongation, it is simple to show that

Ψ ◦ Φ[K+1] ◦ pJ+K+2 = Id0

is the identity on curves in M . Finite prolongation of this relation shows

Ψ[k] ◦ Φ[K+1+k] ◦ pk,J+K+2+k = Idk(6.3)

is the identity on curves in Σk. Taking the limit of (6.3) as k tends to infinity tells
us that

Ψ∞ ◦ Φ∞ = Id∞

is the identity on Σ∞. Similarly

Φ∞ ◦Ψ∞ = Id∞

is the identity on J∞(N), and we can conclude that Φ∞
−1 = Ψ∞ and that Φ∞ is a

diffeomorphism.
To recap, in order to pose an equivalence problem for dynamic equivalence, we

need a diffeomorphism between spaces. The problem with dynamic equivalence is that
the maps used in the definition of the equivalence can never give us a diffeomorphism
at any finite level (unless the equivalence is actually static). By passing to the infinite
prolongation, the submersions become diffeomorphisms. We obtain the nice transfor-
mations we wanted, and now the issue is that we have to work on infinite-dimensional
spaces.
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7. Group action on the infinite prolongations. Now that we have our dif-
feomorphism between infinite jet bundles, we would like to know the form of our
group action G. Instead of working with a subgroup of GL(n,R), what we have now
is a group of transformations that take local coframings of T ∗Σ∞ to local coframings
of T ∗Λ∞. In an equivalence problem of finite dimensional objects, ϕ∗ω = γΩ, γ is
essentially the pointwise Jacobian of the diffeomorphisms ϕ. The same is true in the
case of infinite prolongations.

Suppose we have a transformation (t,x,u, u̇, . . .) 7→ (t,y,v, v̇, . . .) such that t 7→
t. Suppose y = y(x,u, u̇, . . . ,u(J)), i.e. yu(J) is nonzero and yu(k) = 0 for all k > J .
If v = v(x,u, u̇, . . . ,u(J1)), we need to know first of all how J1 is related to J .

On the one hand, we can directly compute the time derivative of y using the
chain rule.

dy

dt
=

d

dt
y(x,u, u̇, . . . ,u(J))

= yx(x,u, u̇, . . . ,u(J))f(x,u) + yu(x,u, u̇, . . . ,u(J))u̇

+ . . . yu(J)(x,u, u̇, . . . ,u(J))u(J+1)

On the other hand, ẏ = g(y,v).

dy

dt
= g

(
y(x,u, u̇, . . . ,u(J)),v(x,u, u̇, . . . ,u(J1))

)
Comparing these two versions of dy

dt shows that v = v(x,u, u̇, . . . ,u(J+1)). Thus we
have the following theorem.

Theorem 7. yu(J) is nonzero and yu(k) = 0 for all k > J if and only if vu(J+1)

is nonzero and vu(k) = 0 for all k > J + 1.

This relation and its repeated derivatives with respect to t show that

v(i) = v(i)(x,u, u̇, . . . ,u(J+i+1)).

Theorem 7 relates to our coframing as follows. Here we are omitting the pullbacks
from our notation.

dy = d
(
y(x,u, u̇, . . . ,u(J))

)
=
∂y

∂x
dx +

J∑
i=0

∂y

∂u(i)
du(i)

dy − g(y,v)dt =
∂y

∂x
dx +

J∑
i=0

∂y

∂u(i)
du(i) − g

(
x,u, . . . ,u(J+1)

)
dt

= A0
0(dx− f(x,u)dt) +

J∑
i=0

A0
i+1

(
du(i) − u(i+1)dt

)
where A0

j , 0 ≤ j ≤ J + 1, are matrices of functions of x,u, . . . ,u(J+1). The fact that
dynamic equivalence is time independent and takes solutions to solutions implies that
there is no additional A0

−1 dt here.

Similar calculations for dv(i)−v(i+1)dt imply that our preferred coframings (6.2)
transform in the following way,

Φ∗∞Ω = Aω,
(
Φ∞
−1
)∗

ω =
(
Φ∞
−1A

)−1
Ω,(7.1)
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where Ω, A, ω have the form

Ω =


Ω−1

Ω0

Ω1

Ω2

...

 ,ω =



ω−1

ω0

ω1

ω2

...
ωJ+1

ωJ+2

...


,

A =


1 01×n 01×s 01×s · · · 01×s 01×s 01×s 01×s · · ·

0n×1 A0
0 A0

1 A0
2 · · · A0

J+1 0s×s 0s×s 0s×s · · ·
0s×1 A1

0 A1
1 A1

2 · · · A1
J+1 A1

J+2 0s×s 0s×s · · ·
0s×1 A2

0 A2
1 A2

2 · · · A2
J+1 A2

J+2 A2
J+3 0s×s · · ·

...

 .

The Ai
j are submatrices of the following sizes.

matrix A0
0 A0

j Ai
0 Ai

j (i, j ≥ 1)

size n× n n× s s× n s× s

A matrix A of the above form for a fixed J may have an inverse matrix similar
to the above form with arbitrarily large K. For example, composition of dynamic
equivalence maps leads to arbitrarily large J and K.

For the rest of the paper, for any statement or theorem about A, an analogous
statement or theorem also holds for A−1 unless otherwise noted. These have been
omitted for brevity. Submatrices of A (A−1) will be denoted by uppercase Ai

j (lower-

case aij). Individual entries of these submatrices will denoted by (Aij)
k
l ((aij)

k
l ), which

are functions and thus not bolded. If a particular submatrix is in fact a scalar, which
happens when s = 1, then no bold face type will be used: Aij .

Theorem 8. Given a dynamic equivalence Φ∗∞Ω = Aω with adapted coframings
(6.2), Ai

J+i+1 = A1
J+2 for all i ≥ 1.

Proof. This proof is by induction on i. The case of i = 1 is obvious. For i ≥ 1,
consider d(Ωi). Where an equivalence sign ≡ is present below, it is because we are
considering the equation modulo the linear span of {ω0, . . . ,ωJ+i+1}. Keep in mind
that we are working with vector equations here. Recall that ω0 = dx − f(x,u)dt is
n × 1, and ωj = du(j−1) − u(j)dt, Ωj = dv(j−1) − v(j)dt are s × 1 for j ≥ 1. It is
straightforward to verify in coordinates that dωj = −ωj+1∧dt and dΩj = −Ωj+1∧dt
for j ≥ 1.

On the one hand,

d(Ωi) = d
(
dv(i−1) − v(i)dt

)
= −dv(i) ∧ dt
= −Ωi+1 ∧ dt
≡ −Ai+1

J+i+2ω
J+i+2 ∧ dt.



668 M. W. STACKPOLE

On the other hand,

d(Ωi) = d(

J+i+1∑
j=0

Ai
jω

j)

=

J+i+1∑
j=0

[
d(Ai

j) ∧ ωj + Ai
jd(ωj)

]
=

J+i+1∑
j=0

[
d(Ai

j) ∧ ωj −Ai
jω

j+1 ∧ dt
]

≡ −Ai
J+i+1ω

J+i+2 ∧ dt.

Since the ωj form a coframing, they are linearly independent. Thus we can conclude
that

Ai
J+i+1 = Ai+1

J+i+2.

While this does not completely characterize the group action of dynamic equiva-
lence, it will be sufficient to prove a result in the next section that classifies dynamic
equivalence in the case of one control variable. Later sections will narrow down what
this group A looks like; however, we will never completely characterize it. What we
do prove about A will be sufficient for some non-existence results.

8. Scalar control. The following theorem about dynamic equivalence in the
case of one control variable has been known for some time. What is presented here
is a proof based on Pomet’s work [9] that has been adapted to this framework of
coframings on infinite jet bundles. It reduces all dynamic equivalences of control
systems with just one control variable to the case of static equivalence.

Theorem 9. Let the control systems Σ, Λ in (3.1) be dynamically equivalent
with s = 1 control variable and m, n state variables, respectively. If m = n, then the
systems are in fact static equivalent. If m < n, then the systems are static equivalent
after a finite number of prolongations of the smaller system Σ.

Proof. Let A = (Ai
j) and A−1 = (aij) as before.

If m < n, prolong Σ until m = n. Suppose the coframings of Σ, Λ in (3.1) pull
back as in (7.1). Suppose there exist nonnegative integers J and K such that xv(J)

and yu(K) are nonzero. In Theorem 11 in the next section, it is shown that it is not
possible for just one of J or K to be −1, i.e. Ai

j = 0 for all j > i if and only if aij = 0
for all j > i. So both J and K must be nonnegative for a strict dynamic equivalence
to exist.

By the computations in the previous section, A0
J+1 is a nonzero n × 1 matrix.

Likewise, aiK+i+1 is a nonzero function for all i ≥ 1. Because A0
J+1 is a nonzero n× 1

vector, and aJ+1
K+J+2 is a nonzero function, their product A0

J+1a
J+1
K+J+2 is a nonzero

n× 1 vector. However AA−1 is the identity. Therefore A0
J+1a

J+1
K+J+2, which is an off

diagonal n× 1 entry since 0 < K + J + 2, must be an all zero n× 1 vector.

This is a contradiction. Thus J and K cannot exist, and xv(J) = yu(K) = 0 for
all J,K ≥ 0. This shows that the equivalence is in fact static.
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9. Group adaptations for two controls. The last section dealt with the case
of a scalar control, in which dynamic and static equivalence are one and the same.
Now we will work on the next simplest case of two controls (s = 2) with J = K = 0.
In the case of one control variable, there is essentially no “room for freedom” to allow
a true dynamic equivalence, aside from prolongations. With two control variables,
there is now “room” to have a strict dynamic equivalence, but just barely. While
larger values of J and K increase the flexibility of possible dynamic equivalences, in
this section we will show that there is really only one way to have a strict dynamic
equivalence of two systems with J = K = 0.

9.1. Nonautonomous static equivalence. Recall the notation we have de-
veloped thus far for the pullbacks of our preferred coframings. Note the equivalent
submatrices Ai

i+1, i ≥ 1, from Theorem 8.

Φ̄∗∞


Ω−1

Ω0

Ω1

Ω2

...

 =


1 01×n 01×2 01×2 01×2 01×2 · · ·

0n×1 A0
0 A0

1 0n×2 0n×2 0n×2 · · ·
02×1 A1

0 A1
1 A1

2 02×2 02×2 · · ·
02×1 A2

0 A2
1 A2

2 A1
2 02×2 · · ·

...





ω−1

ω0

ω1

ω2

ω3

...



(
Φ̄−1
∞
)∗


ω−1

ω0

ω1

ω2

...

 =


1 01×n 01×2 01×2 01×2 01×2 · · ·

0n×1 a0
0 a0

1 0n×2 0n×2 0n×2 · · ·
02×1 a1

0 a1
1 a1

2 02×2 02×2 · · ·
02×1 a2

0 a2
1 a2

2 a1
2 02×2 · · ·
...





Ω−1

Ω0

Ω1

Ω2

Ω3

...


In what follows, we will refer to a group element g,

g =


1 01×n 01×2 01×2 01×2 01×2 · · ·

0n×1 g0
0 0n×2 0n×2 0n×2 0n×2 · · ·

02×1 g1
0 g1

1 02×2 02×2 02×2 · · ·
02×1 g2

0 g2
1 g2

2 02×2 02×2 · · ·
...

 ,

that acts on our coframings as nonautonomous static equivalence, meaning gij =
0 for all i < j. This terminology arises from the fact that such g arise as the Jacobian
of a time-dependent static equivalence x̃ = x(x, t) on the contact system of the infinite
prolongation Σ∞. Unlike the matrix representing a true static equivalence, g allows
changes of variables such as xi 7→ xi+t. Note that such equivalences take a coframing
on Σ∞ to another coframing on Σ∞ (or Λ∞ to Λ∞).

As in the case of dynamic equivalence, we wish to require that the following
structure equations are preserved by nonautonomous static equivalence.

dΩi ∈ span {Ωi+1 ∧Ω−1} mod Ωj , 0 ≤ j ≤ i.(9.1)

This additional condition allows us to simplify the form of g much like we did for A
in Theorem 8. The proof is identical to that of Theorem 8 with J = −1.
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Theorem 10. Given a nonautonomous static equivalence g that preserves the
structure equations (9.1), gii = g1

1 for all i ≥ 1.

A straightforward calculation in coordinates shows that every static equivalence
is a nonautonomous static equivalence, but of course the converse is not true.

Later we will be showing that every dynamic equivalence with J = K = 0 can be
factored into a constant matrix composed with nonautonomous static equivalences.
This result will be key in proving the main classification results of this paper.

Theorem 11. A is a nonautonomous static equivalence, i.e. Ai
j = 0 for all

i < j, if and only if A−1 is also a nonautonomous static equivalence.

Proof. If A0
1 = 0, then A0

0 is a rank n matrix, hence invertible. Let the subma-
trices of A−1 be denoted by aij . Since AA−1 = Id, the off diagonal element A0

0a
0
1

must be zero. Because A0
0 is invertible, this means a0

1 = 0. By Theorem 7, a0
1 is zero

if and only if a1
2 is too. Theorem 8 completes the proof since aii+1 = a1

2 for all i ≥ 1
and aij = 0 for all j > i. Therefore A−1 is a nonautonomous static equivalence.

9.2. Factoring A. In the following section, we will prove several theorems about
the rank of certain submatrices of A. This section will culminate in the final theorem,
theorem (14), which states that we can factor our dynamic equivalence in a special
way: A = gSG. The g and G are two nonautonomous static equivalences which
encapsulate the traditional change of variables, as in static equivalence. The S is a
fixed constant orthogonal matrix which incorporates the mixing of higher derivatives
into dynamic equivalence.

Theorem 12. Given a strictly dynamic equivalence A with s = 2 and J = K = 0,
A1

2 (a 2× 2 submatrix) has rank 1.

Proof. We know that A1
2 cannot have rank zero by Theorem 11. Assume the rank

of A1
2 is two. Then through a change of coframing ω̃ = Gω via static equivalence G,

it can be arranged that the elements of Ã = AG−1 have the form

Φ̃∗∞


Ω−1

Ω0

Ω1

Ω2

...

 =


1 01×n 01×2 01×2 01×2 01×2 · · ·

0n×1 Ã0
0 Ã0

1 0n×2 0n×2 0n×2 · · ·
02×1 02×2 02×2 Id2×2 02×2 02×2 · · ·
02×1 02×2 02×2 02×2 Id2×2 02×2 · · ·

...





ω̃−1

ω̃0

ω̃1

ω̃2

ω̃3

...


.

We have Φ̃∗∞Ωj = ω̃j+1 for j ≤ 1. By the nature of pullbacks, this also means(
Φ̃−1
∞

)∗
ω̃j+1 = Ωj . However this means that A−1 now has the form

(
Φ̃−1
∞

)∗

ω̃−1

ω̃0

ω̃1

ω̃2

...

 =


1 01×n 01×2 01×2 01×2 01×2 · · ·

0n×1 ã0
0 ã0

1 0n×2 0n×2 0n×2 · · ·
02×1 ã1

0 ã1
1 ã1

2 02×2 02×2 · · ·
02×1 02×2 Id2×2 02×2 02×2 02×2 · · ·

...





Ω−1

Ω0

Ω1

Ω2

Ω3

...


.

In particular, 0 = ã2
3 = ã1

2. By the above argument this means that ã0
1 = 0 and the

equivalence is static. This contradicts J = K = 0. Therefore the rank of A1
2 must be

one.
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Theorem 13. Given a dynamic equivalence A with s = 2 and J = K = 0, A0
1

(an n× 2 submatrix) has rank 1.

Proof. The rank of A0
1 is either 0, 1, or 2. If the rank is zero, then the equivalence

is static. Consider (AA−1)0
2 = A0

1a
1
2 = 0n×2. If rank of A0

1 is two, then A0
1 has a

2 × n left inverse, and we conclude a1
2 = 02×2. However this again implies a static

equivalence, so the rank is not two.

The plan now is to use this knowledge of the ranks to normalize A via non-
autonomous static group actions to ω and Ω. This will isolate the dynamic part of
the mapping to one very specific form Ω̄ = Sω̄, where Ω̄ = g−1Ω, ω̄ = Gω, ω and Ω
are our preferred coframings (to be determined later), and g, G are non-autonomous
static group elements. An explicit example of how this is done will follow in the next
section.

Starting with the fact that A0
1 has rank one, we know it can be normalized

to the following form through Gauss-Jordan elimination, which in this context is
nonautonomous static equivalences applied to the coframings ω and Ω:

A0
1 =


0 1
0 0
...

...
0 0

 .

Recall that all ωi = (ωij) and Ωi = (Ωij) are vectors. If we add multiples of ω0
i to ω1

1 ,

we can eliminate the first row of A0
0 so that it now has the form

A0
0 =


0 · · · 0
∗ · · · ∗
...

...
∗ · · · ∗

 .

Note that this can be accomplished by a static group action. Since the n × (n + 2)
matrix (A0

0 |A0
1) must have rank n for A to be invertible, the last n − 1 rows of A0

0

must have rank n − 1. This allows us to normalize the rest of A0
0 via a static group

action to this simplified form:

A0
0 =

(
0 01×(n−1)

0 Id(n−1)×(n−1)

)
.

The first n+ 1 rows of A have now been reduced to ones and zeros.
Since the rank of Ai

i+1 is one, there exists a non-autonomous static equivalences
applied to both coframings ω and Ω that yields a new coframing with

Ai
i+1 =

(
0 0
0 1

)
.

Everything to the left of the ones in each Ai
i+1 can be eliminated by a nonautonomous

static equivalence that redefines ωii+1. In fact anything to the left of or below a one
in the matrix A can essentially be absorbed by a non-autonomous static equivalence
that redefines either ω̄ (horizontal zeros) or Ω̄ (vertical zeros). For ease of notation,
these newly redefined coframings, which differ from the original preferred coframings
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by non-autonomous static equivalences, will be still be denoted with Ω and ω. This
leaves A in the simplified form

1 0 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 1 0 0 0 0 0 0 · · ·
0 0 Id(n−1)×(n−1) 0 0 0 0 0 0 0 0 · · ·
0 (A1

0)
1
1 0 (A1

1)
1
1 0 0 0 0 0 0 0 · · ·

0 0 0 0 0 0 1 0 0 0 0 · · ·
0 (A2

0)
1
1 0 (A2

1)
1
1 0 (A2

2)
1
1 0 0 0 0 0 · · ·

0 0 0 0 0 0 0 0 1 0 0 · · ·
0 (A3

0)
1
1 0 (A3

1)
1
1 0 (A3

2)
1
1 0 (A3

3)
1
1 0 0 0 · · ·

0 0 0 0 0 0 0 0 0 0 0 · · ·
...


.

Now if (A1
0)1

1 is zero, one of the other (Ai
0)1

1, i > 1, must be nonzero. This follows
from the fact that A−1A = Id, in particular ((A−1A)0

0)1
1 = 1. If (A1

0)1
1 is zero,

there is an i > 1 such that (a0
i )

1
1(Ai

0)1
1 is nonzero. But (a0

i )
1
1 being nonzero implies

K + 1 ≥ i > 1. Since we are restricting our consideration to K = 0, this cannot
happen. Therefore (A1

0)1
1 must be nonzero. Since (A1

0)1
1 is nonzero, it can be scaled

to unity through a nonautonomous static group action. All of the other (Ai
0)1

1 can
then be eliminated through non-autonomous static group actions (adding multiples
of rows in this case).

It can similarly be shown that when J = K = 0, (Ai+1
i )1

1 is nonzero and can be
scaled to unity. All entries below them can be made zero. By examining A−1A = Id
one can also check that any of the (Ai

i)
1
1 being nonzero leads to K + 1 ≥ 2, and

therefore (Ai
i)

1
1 = 0.

Finally all the group freedom of A has been utilized through non-autonomous
static group actions on ω and Ω, and what is left is the constant matrix

(9.2) S =

1 01×n 0 0 0 0 0 0 · · ·

0n×1
0 01×(n−1)

0 Id(n−1)×(n−1)

0
0(n−1)×1

1
0(n−1)×1

0n×1 0n×1 0n×1 0n×1 · · ·

0 1 01×(n−1) 0 0 0 0 0 0 · · ·
0 0 01×(n−1) 0 0 0 1 0 0 · · ·
0 01×n 1 0 0 0 0 0 · · ·
0 01×n 0 0 0 0 0 1 · · ·

...


.

It is easy to check that S is orthogonal, i.e. S−1 = ST . Thus we have proved the
following theorem.

Theorem 14. Given preferred coframings ω and Ω (6.2) on Σ∞ and Λ∞ for
control systems Σ and Λ, respectively, with s = 2 and a dynamic equivalence Φ∞ with
J = K = 0 taking Σ∞ to Λ∞, the coframing pulls back as follows:

Φ̄∗∞Ω = g S G ω,

where g and G are nonautonomous static equivalences and S is given by (9.2) above.

This theorem means that, up to nonautonomous static equivalence, a dynamic
equivalence with J = K = 0 has a very specific form which is encoded in this spe-
cific orthogonal matrix S. Most of the apparent complexity of dynamic equivalence
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actually arises from static equivalence on either side, and the essence of dynamic
equivalence is actually quite simple.

10. Factoring the dynamic equivalence: An example. What we have
shown so far is that, given a dynamic equivalence Ω = Aω where J = K = 0 and
s = 2 (n is still arbitrary), we can decompose the group action A = gSG where S is
defined by (9.2) and G and g are non-autonomous static equivalent group elements,
i.e.

G =


1 01×n 01×2 01×2 01×2 01×2 · · ·

0n×1 G0
0 0n×2 0n×2 0n×2 0n×2 · · ·

02×1 G1
0 G1

1 02×2 02×2 02×2 · · ·
02×1 G2

0 G2
1 G2

2 02×2 02×2 · · ·
...

 .

Recall that nonautonomous static equivalence is not a true static equivalence

(x,u) 7→ (y(x),v(x,u)).

Unlike static equivalence, which is autonomous (time-independent), nonautonomous
static equivalence can have explicit time dependence, for example, xi 7→ xi + t. Its
group action does not preserve the algebraic ideal {dx}, just the ideal {dx−f(x,u) dt}.
This equivalence is more general than static equivalence.

Let us phrase the problem now as follows. Dynamic equivalence looks like Ω =
Aω where A = gSG. We can attack this problem in steps. First we will consider the
coframing Ω̄ = SGω. Then what remains will be the non-autonomous static problem
Ω = gΩ̄.

Example 4.

Let us consider the following two dynamically equivalent systems:

ẋ1 = u1, ẏ1 = v1,

ẋ2 = u2, ẏ2 = v2,

ẋ3 = x2u1, ẏ3 = y2.

An example of a dynamic equivalence is given by the following maps between the
infinite jet bundles:

Φ∞(x,u, u̇, . . .) = ( x1x2 − x3, u2, x2, x1u2, u̇2, . . . ),

Φ−1
∞ (y,v, v̇, . . .) = ( v1/y2, y3, y3v1/y2 − y1, . . . ).

Here is a coframing for each of the infinite jet bundles. The choice of ω0
3 , while not

obvious, is not arbitrary. We will see why in a later section. For this example only
the dt piece of the coframing has been left out. Since t 7→ t, this would just add a one
and many zeros to the matrices.

ω0 =

 dx1 − u1dt
dx2 − u2dt

dx3 − x2u1dt− x2(dx1 − u1dt)

 Ω0 =

 dy1 − v1dt
dy2 − v2dt
dy3 − y2dt


ω1 =

(
du1 − u̇1dt
du2 − u̇2dt

)
Ω1 =

(
dv1 − v̇1dt
dv2 − v̇2dt

)
ω2 =

(
du̇1 − ü1dt
du̇2 − ü2dt

)
Ω2 =

(
dv̇1 − v̈1dt
dv̇2 − v̈2dt

)
...

...
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The pullback of Φ̄∞ is straightforward to calculate. For the rest of this section the
pullback notation will be suppressed in order to emphasize and clarify the methods
being used.

Ω0
1 = dy1 − v1dt

= d(x1x2 − x3)− (x1u2) dt

= x2 dx1 + x1 dx2 − dx3 − (x1u2) dt− (x2u1) dt+ (x2u1) dt

= − [dx3 − x2u1dt− x2(dx1 − u1dt)] + x1 (dx2 − u2 dt)

= −ω0
3 + x1ω

0
2

Ω0
2 = dy2 − v2dt

= du2 − u̇2 dt

= ω1
2

Ω0
3 = dy3 − y2dt

= dx2 − u2dt

= ω0
2

Ω1
1 = dv1 − v̇1 dt

= d(x1u2)− (u1u2 + x1u̇2) dt

= u2 (dx1 − u1 dt) + x1 (du2 − u̇2 dt)

= u2ω
0
1 + x1ω

1
2

Ω1
2 = dv2 − v̇2 dt

= du̇2 − ü2 dt

= ω2
2

...

The pullback put in matrix form is



Ω0
1

Ω0
2

Ω0
3

Ω1
1

Ω1
2

Ω2
1

Ω2
2
...


=



0 x1 −1 0 0 0 0 0 0 · · ·
0 0 0 0 1 0 0 0 0 · · ·
0 1 0 0 0 0 0 0 0 · · ·
u2 0 0 0 x1 0 0 0 0 · · ·
0 0 0 0 0 0 1 0 0 · · ·
u̇2 0 0 u2 u1 0 x1 0 0 · · ·
0 0 0 0 0 0 0 0 1 · · ·
...

...
...

...
...

...
...

...
...





ω0
1

ω0
2

ω0
3

ω1
1

ω1
2

ω2
1

ω2
2

ω3
1

ω3
2
...


.

We will now follow the algorithm for producing S. This amounts to a series
of row or column operations which are static equivalences on the Ω or ω coframes
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respectively. We will use the notation of a typical introduction to linear algebra course
to represent these operations, i.e. R2 → R2 + R3 means to replace row 2 with row
2 plus row 3. Note that not every row operation is a legal static equivalence. For
example, R1 → R1 +R4 amounts to x 7→ x+ u, which is dynamic, not static.

First perform the following permutation

R1 → R3 → R2 → R1,

which results in the following coframing:



Ω0
2

Ω0
3

Ω0
1

Ω1
1

Ω1
2

Ω2
1

Ω2
2
...


=



0 0 0 0 1 0 0 0 0 · · ·
0 1 0 0 0 0 0 0 0 · · ·
0 x1 −1 0 0 0 0 0 0 · · ·
u2 0 0 0 x1 0 0 0 0 · · ·
0 0 0 0 0 0 1 0 0 · · ·
u̇2 0 0 u2 u1 0 x1 0 0 · · ·
0 0 0 0 0 0 0 0 1 · · ·
...

...
...

...
...

...
...

...
...





ω0
1

ω0
2

ω0
3

ω1
1

ω1
2

ω2
1

ω2
2

ω3
1

ω3
2
...


.

Next perform the operation

R3 → x1R2 −R3

to get the new coframing



Ω0
2

Ω0
3

x1Ω0
3 − Ω0

1

Ω1
1

Ω1
2

Ω2
1

Ω2
2
...


=



0 0 0 0 1 0 0 0 0 · · ·
0 1 0 0 0 0 0 0 0 · · ·
0 0 1 0 0 0 0 0 0 · · ·
u2 0 0 0 x1 0 0 0 0 · · ·
0 0 0 0 0 0 1 0 0 · · ·
u̇2 0 0 u2 u1 0 x1 0 0 · · ·
0 0 0 0 0 0 0 0 1 · · ·
...

...
...

...
...

...
...

...
...





ω0
1

ω0
2

ω0
3

ω1
1

ω1
2

ω2
1

ω2
2

ω3
1

ω3
2
...


.

The first three rows of the transformation now look like the first three rows of S.
Continue by letting

R4 →
R4 − x1R1

u2
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to yield the coframing below.



Ω0
2

Ω0
3

x1Ω0
3 − Ω0

1(
Ω1

1 − x1Ω0
2

)
/u2

Ω1
2

Ω2
1

Ω2
2
...


=



0 0 0 0 1 0 0 0 0 · · ·
0 1 0 0 0 0 0 0 0 · · ·
0 0 1 0 0 0 0 0 0 · · ·
1 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 1 0 0 · · ·
u̇2 0 0 u2 u1 0 x1 0 0 · · ·
0 0 0 0 0 0 0 0 1 · · ·
...

...
...

...
...

...
...

...
...





ω0
1

ω0
2

ω0
3

ω1
1

ω1
2

ω2
1

ω2
2

ω3
1

ω3
2
...


Now the first five rows match S. One more operation,

R6 →
R6 − (u̇2R4 + u1R1 + x1R5)

u2
,

puts the coframing in the following form



Ω0
2

Ω0
3

x1Ω0
3 − Ω0

1(
Ω1

1 − x1Ω0
2

)
/u2

Ω1
2(

Ω2
1 −

(
u̇2

(
u2Ω1

1 + x1Ω0
2

)
+ u1Ω0

2 + x1Ω1
2

) )
/u2

Ω2
2
...



=



0 0 0 0 1 0 0 0 0 · · ·
0 1 0 0 0 0 0 0 0 · · ·
0 0 1 0 0 0 0 0 0 · · ·
1 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 1 0 0 · · ·
0 0 0 1 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 1 · · ·
...

...
...

...
...

...
...

...
...





ω0
1

ω0
2

ω0
3

ω1
1

ω1
2

ω2
1

ω2
2

ω3
1

ω3
2
...


,

and all visible rows now match those of S. Continuing this process ad infinitum gives
us new coframings that transform via S. At present, this transformation looks like

g−1Ω = SGω,

where G is the identity Id. To put it in the desired form, we simply invert the action
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on the left hand side. This results in the following factored transformation.

Ω =



0 x1 −1 0 0 0 0 · · ·
1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
x1 0 0 u2 0 0 0 · · ·
0 0 0 0 1 0 0 · · ·

−x1u̇2 − u1 0 0 u2u̇2 x1 u2 0 · · ·
0 0 0 0 0 0 1 · · ·
...

...
...

...
...

...
...


S Id ω

Note that this decomposition using non-autonomous group elements is not unique,
however it was chosen so that the second non-autonomous group element of the latter
equation was particularly simple (the identity in this case). Any problem with three
states and two controls can be simplified in a similar way, as we will see below.

11. Three states and two controls.

11.1. Preferred structure equations. In the method of equivalence, de-
scribed in Section 5, one important step is to work with an initial, preferred coframing
that encapsulates the problem at hand and satisfies some particularly nice relations
that ought to be preserved by the equivalence in question. In this section we will make
one final refinement to our coframings (6.2) so that they satisfy some particularly nice
structure equations that ought to be preserved by dynamic equivalence.

Note that for a control system ẋ = f(x,u) with n state variables and s ≤ n
control variables, the vector

f(x,u) =

 f1(x,u)
...

fn(x,u)


must have rank ∂f∂u = s. Therefore, by the implicit function theorem, a static equiva-

lence always exists so that the above system is equivalent to ˙̃x = f̃(x̃, ũ), where

f̃(x̃, ũ) =



ũ1

...
ũs

f̃s+1(x̃, ũ)
...

f̃n(x̃, ũ)


,

x̃i = xi for 1 ≤ i ≤ n up to reordering, and ũj = fj(x,u) for 1 ≤ j ≤ s.
We will now, and for the rest of the paper, concern ourselves with the case of three

state variables and two control variables. The above adaptation suggests altering (6.2)
for the case of three states and two controls to the coframing
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ω̃−1 = dt,

ω̃0
1 = dx1 − u1 dt,

ω̃0
2 = dx2 − u2 dt,

ω̃0
3 = dx3 − f(x,u) dt,

ω̃1
1 = du1 − u̇1 dt,

ω̃1
2 = du2 − u̇2 dt,

. . . .

Here f(x,u) is a scalar function. Note that in this coframing, dω̃ij = −ω̃i+1
j ∧ ω̃−1

for i ≥ 0 and j = 1, 2. The outlier in this nice pattern of exterior derivatives is, of
course,

dω̃0
3 = −

3∑
i=1

fxi
(x, u)ω̃0

i ∧ ω̃−1 −
2∑
i=1

fui
(x, u)ω̃1

i ∧ ω̃−1.

With one more adaptation of the coframing, we can make even this structure equation
easier to work with. Let the following be our preferred coframing for the case of n = 3
state variables, s = 2 control variables:

ω−1 = dt,
ω0

1 = dx1 − u1 dt,
ω0

2 = dx2 − u2 dt,
ω0

3 = dx3 − f dt− fu1
(dx1 − u1 dt)− fu2

(dx2 − u2 dt),
ω1

1 = du1 − u̇1 dt,
ω1

2 = du2 − u̇2 dt,
. . . .

(11.1)

Note that this coframing satisfies the particularly nice structure equations

dω0
1 = −ω1

1 ∧ ω−1,
dω0

2 = −ω1
2 ∧ ω−1,

dω0
3 ≡ 0 mod ω0,

dωjk = −ωj+1
k ∧ ω−1 (j > 0, k = 1, 2).

We will take this coframing, along with the analogous coframing Ω in (y,v) coordi-
nates, as our starting point. Let ω̄ = Gω and Ω̄ = Sω̄ so that Ω = gΩ̄. In addition,
we will require that at every step of our transformation of the coframes, ω̄, Ω̄ preserves
the following nice properties of the structure equations and their algebraic ideals:

dω0
1 ≡ −ω1

1 ∧ ω−1

dω0
2 ≡ −ω1

2 ∧ ω−1

dω0
3 ≡ 0

 mod ω0,

dωjk ≡ −ω
j+1
k ∧ ω−1 mod { ωi | 0 ≤ i ≤ j }, (j > 0, k = 1, 2).

(11.2)

11.2. Reducing G. Consider the coframing Ω̄ = SGω. Since we plan on
applying a generic g in the non-autonomous problem Ω = gΩ̄, G does not have
to be completely generic. It can be simplified to remove some redundancies. For
example, since ω̄0

3 7→ Ω̄0
3 under S, there is no need to add an arbitrary multiple of ω̄0

3
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to any other form through G since this can be taken care of with g. What follows
will illustrate this more explicitly.

We have coframings ω̄ = Gω and Ω̄ = Sω̄ = SGω. Recall that Gii = G1
1 for all

i ≥ 1 by Theorem 8. Consider the identities

Ω̄0
1 = (G1

0)2
1 ω

0
1 + (G1

0)2
2 ω

0
2 + (G1

0)2
3 ω

0
3 + (G1

1)2
1 ω

1
1 + (G1

1)2
2 ω

1
2 ,

Ω̄0
2 = (G0

0)2
1 ω

0
1 + (G0

0)2
2 ω

0
2 + (G0

0)2
3 ω

0
3 ,

Ω̄0
3 = (G0

0)3
1 ω

0
1 + (G0

0)3
2 ω

0
2 + (G0

0)3
3 ω

0
3 ,

Ω̄1
1 = (G0

0)1
1 ω

0
1 + (G0

0)1
2 ω

0
2 + (G0

0)1
3 ω

0
3 ,

Ω̄1
2 = (G2

0)2
1 ω

0
1 + (G2

0)2
2 ω

0
2 + (G2

0)2
3 ω

0
3 + (G2

1)2
1 ω

1
1 + (G2

1)2
2 ω

1
2 ,

+ (G1
1)2

1 ω
2
1 + (G1

1)2
2 ω

2
2 ,

Ω̄2
1 = (G1

0)1
1 ω

0
1 + (G1

0)1
2 ω

0
2 + (G1

0)1
3 ω

0
3 + (G1

1)1
1 ω

1
1 + (G1

1)1
2 ω

1
2 ,

Ω̄2
2 = (G3

0)2
1 ω

0
1 + (G3

0)2
2 ω

0
2 + (G3

0)2
3 ω

0
3 + (G3

1)2
1 ω

1
1 + (G3

1)2
2 ω

1
2 ,

+ (G3
2)2

1 ω
2
1 + (G3

2)2
2 ω

2
2 + (G1

1)2
1 ω

3
1 + (G1

1)2
2 ω

3
2 ,

Ω̄3
1 = (G2

0)1
1 ω

0
1 + (G2

0)1
2 ω

0
2 + (G2

0)1
3 ω

0
3 + (G2

1)1
1 ω

1
1 + (G2

1)1
2 ω

1
2 ,

+ (G1
1)1

1 ω
2
1 + (G1

1)1
2 ω

2
2 ,

Ω̄3
2 = (G4

0)2
1 ω

0
1 + (G4

0)2
2 ω

0
2 + (G4

0)2
3 ω

0
3 + (G4

1)2
1 ω

1
1 + (G4

1)2
2 ω

1
2 ,

+ (G4
2)2

1 ω
2
1 + (G4

2)2
2 ω

2
2 + (G4

3)2
1 ω

3
1 + (G4

3)2
2 ω

3
2 + (G1

1)2
1 ω

4
1 + (G1

1)2
2 ω

4
2 ,

. . . .

Now g will add arbitrary multiples of Ω̄0
2 and Ω̄0

3 to every other part of the coframing
in order to get the final coframing Ω. Since they are linearly independent, they do not
need to be completely arbitrary. We will not lose anything by letting (G0

0)2
2 = (G0

0)3
3 =

1 and (G0
0)3

2 = (G0
0)2

3 = 0. In fact all of the other terms above involving ω0
2 and ω0

3

may as well be set to zero since g will take care of these through nonautonomous
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static equivalence.

Ω̄0
1 = (G1

0)2
1 ω

0
1 + (G1

1)2
1 ω

1
1 + (G1

1)2
2 ω

1
2

Ω̄0
2 = (G0

0)2
1 ω

0
1 + ω0

2

Ω̄0
3 = (G0

0)3
1 ω

0
1 + ω0

3

Ω̄1
1 = (G0

0)1
1 ω

0
1

Ω̄1
2 = (G2

0)2
1 ω

0
1 + (G2

1)2
1 ω

1
1 + (G2

1)2
2 ω

1
2 + (G1

1)2
1 ω

2
1 + (G1

1)2
2 ω

2
2

Ω̄2
1 = (G1

0)1
1 ω

0
1 + (G1

1)1
1 ω

1
1 + (G1

1)1
2 ω

1
2

Ω̄2
2 = (G3

0)2
1 ω

0
1 + (G3

1)2
1 ω

1
1 + (G3

1)2
2 ω

1
2 + (G3

2)2
1 ω

2
1 + (G3

2)2
2 ω

2
2

+ (G1
1)2

1 ω
3
1 + (G1

1)2
2 ω

3
2

Ω̄3
1 = (G2

0)1
1 ω

0
1 + (G2

1)1
1 ω

1
1 + (G2

1)1
2 ω

1
2 + (G1

1)1
1 ω

2
1 + (G1

1)1
2 ω

2
2

Ω̄3
2 = (G4

0)2
1 ω

0
1 + (G4

1)2
1 ω

1
1 + (G4

1)2
2 ω

1
2 + (G4

2)2
1 ω

2
1 + (G4

2)2
2 ω

2
2

+ (G4
3)2

1 ω
3
1 + (G4

3)2
2 ω

3
2 + (G1

1)2
1 ω

4
1 + (G1

1)2
2 ω

4
2

...

Of course we are keeping careful note that every group reduction we have made is
allowed due to the freedom we have in choosing g.

Now it is clear that we may as well choose (G0
0)1

1 = 1, and thus we may also set
any term involving ω0

1 below Ω̄1
1 to zero since g will be adding arbitrary multiples of

Ω̄1
1 to these.

Ω̄0
1 = (G1

0)2
1 ω

0
1 + (G1

1)2
1 ω

1
1 + (G1

1)2
2 ω

1
2

Ω̄0
2 = (G0

0)2
1 ω

0
1 + ω0

2

Ω̄0
3 = (G0

0)3
1 ω

0
1 + ω0

3

Ω̄1
1 = ω0

1

Ω̄1
2 = (G2

1)2
1 ω

1
1 + (G2

1)2
2 ω

1
2 + (G1

1)2
1 ω

2
1 + (G1

1)2
2 ω

2
2

Ω̄2
1 = (G1

1)1
1 ω

1
1 + (G1

1)1
2 ω

1
2

Ω̄2
2 = (G3

1)2
1 ω

1
1 + (G3

1)2
2 ω

1
2 + (G3

2)2
1 ω

2
1 + (G3

2)2
2 ω

2
2 + (G1

1)2
1 ω

3
1 + (G1

1)2
2 ω

3
2

Ω̄3
1 = (G2

1)1
1 ω

1
1 + (G2

1)1
2 ω

1
2 + (G1

1)1
1 ω

2
1 + (G1

1)1
2 ω

2
2

Ω̄3
2 = (G4

1)2
1 ω

1
1 + (G4

1)2
2 ω

1
2 + (G4

2)2
1 ω

2
1 + (G4

2)2
2 ω

2
2 + (G4

3)2
1 ω

3
1 + (G4

3)2
2 ω

3
2

+ (G1
1)2

1 ω
4
1 + (G1

1)2
2 ω

4
2

...

One entry in every Ω̄ij can be scaled to unity. Note that G1
1 is an invertible 2 × 2

matrix, so that either the pair (G1
1)1

1, (G1
1)2

2 or (G1
1)1

2, (G1
1)2

1 is nonzero. If the former
pair is zero, then g would allow us to switch the roles of every Ω̄i1 and Ω̄i2 for i ≥ 1.
Thus without loss of generality we can let (G1

1)1
1 = (G1

1)2
2 = 1. The arbitrariness of g
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will then let us cancel out any terms below these scaled terms. For example, adding
multiples of Ω̄0

1 and Ω̄1
1 to Ω̄1

2 will get rid of the ω1
2 term in all the Ω̄i, i ≥ 1. We can

also scale the ω2
2 term in Ω̄1

2 to unity, and thus every ω2
2 below can be eliminated. After

this process of scaling one term per Ω̄ij and using this to eliminate the appropriate
terms below, we are left with the identities

Ω̄0
1 = (G1

0)2
1 ω

0
1 + (G1

1)2
1 ω

1
1 + ω1

2 ,

Ω̄0
2 = (G0

0)2
1 ω

0
1 + ω0

2 ,

Ω̄0
3 = (G0

0)3
1 ω

0
1 + ω0

3 ,

Ω̄1
1 = ω0

1 ,

Ω̄1
2 = (G2

1)2
1 ω

1
1 + (G1

1)2
1 ω

2
1 + ω2

2 ,

Ω̄2
1 = ω1

1 ,

Ω̄2
2 = (G3

2)2
1 ω

2
1 + (G1

1)2
1 ω

3
1 + ω3

2 ,

Ω̄3
1 = ω2

1 ,

Ω̄3
2 = (G4

3)2
1 ω

3
1 + (G1

1)2
1 ω

4
1 + ω4

2 ,

. . . .

After all such redundancies are removed, this is what our group element, now
called G, is

G =



1 0 0 0 0 0 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 0 0 0 0 0 · · ·
0 (G0

0)2
1 1 0 0 0 0 0 0 0 0 0 · · ·

0 (G0
0)3

1 0 1 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 1 0 0 0 0 0 0 0 · · ·
0 (G1

0)2
1 0 0 (G1

1)2
1 1 0 0 0 0 0 0 · · ·

0 0 0 0 0 0 1 0 0 0 0 0 · · ·
0 0 0 0 (G2

1)2
1 0 (G1

1)2
1 1 0 0 0 0 · · ·

0 0 0 0 0 0 0 0 1 0 0 0 · · ·
0 0 0 0 0 0 (G3

2)2
1 0 (G1

1)2
1 1 0 0 · · ·

...



.

We will need to use the fact that ω̄ is a coframing. Therefore exterior derivatives
of the entries of G can be written as linear combinations of these. Note that as far as
we know, every d(Gij)

k
l could be linear combinations of ω̄r for some unknown r. We

will employ the following notation:

d(Gij)
k
l = (Gij)

k
l,−1ω

−1 +
∑
α

∑
β

(Gij)
k,β
l,α ω

α
β .

We will show below that r is not arbitrarily large by looking at structure equations.
By investigating dΩ̄, we can further reduce the entries of G. Until stated other-

wise, the following equivalences ≡ are modulo Ω̄0
i , i = 1, 2, 3. We will start with dΩ̄0

3.
Since

Ω̄0
3 = ω0

3 + (G0
0)3

1ω
0
1 ,
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we have

dΩ̄0
3 = dω0

3 + d(G0
0)3

1 ∧ ω0
1 + (G0

0)3
1 dω

0
1

≡
[(
u2fu1x2

− fx1
− (G0

0)3
1,−1 + u1fu1x1

+ fu1x3
f + fx3

(G0
0)3

1 − fx3
fu1

+ u̇1fu1u1
+ u̇2fu1u2

)
− (G0

0)2
1

(
u2fu2x2

+ u1fu2x1
+ u̇2fu2u2

− fx2

+ fu2x3
f + u̇1fu1u2

− fx3
fu2

)]
Ω̄1

1 ∧ Ω̄−1 +
[(
fu1u2

− fu2u2
(G1

1)2
1

)
(G0

0)2
1

−
(

(G0
0)3,1

1,2(G1
1)2

1 − fu1u2
(G1

1)2
1 + fu1u1

− (G0
0)3,1

1,1

)]
Ω̄2

1 ∧ Ω̄1
1

− (G0
0)3

1 Ω̄2
1 ∧ Ω̄−1.

Anything above that is not a multiple of Ω̄1
1 ∧ Ω̄−1 or Ω̄1

2 ∧ Ω̄−1 must have zero
coefficient. Of greatest interest at the moment is the term Ω̄2

1 ∧ Ω̄−1. Since this
cannot be here, its coefficient must be zero, and hence

(G0
0)3

1 = 0.(11.3)

There is also a Ω̄2
1 ∧ Ω̄1

1 term which must vanish. Through the above equation, this
simplifies to (

fu1u2
− fu2u2

(G1
1)2

1

)
(G0

0)2
1 +

(
fu1u2

(G1
1)2

1 − fu1u1

)
= 0.

Moving on, we will look at dΩ̄0
2. Since

Ω̄0
2 = ω0

2 + (G0
0)2

1 ω
0
1 ,

we have

dΩ̄0
2 = dω0

2 + d(G0
0)2

1 ∧ ω0
1 + (G0

0)2
1 dω

0
1

≡
(

(G1
0)2

1 − (G0
0)2

1,−1

)
Ω̄1

1 ∧ Ω̄−1 +
(

(G1
1)2

1 − (G0
0)2

1

)
Ω̄2

1 ∧ Ω̄−1

+

∞∑
i=1

(
(G0

0)2,1
1,i − (G0

0)2,2
1,i (G

1
1)2

1 − (G0
0)2,2

1,i+1(Gi+1
i )2

1

)
Ω̄i+1

1 ∧ Ω̄1
1

+

∞∑
i=1

(G0
0)2,2

1,i+1Ω̄i2 ∧ Ω̄1
1.

Similarly here it is the vanishing of the Ω̄2
1 ∧ Ω̄−1 term that tells us

(G1
1)2

1 = (G0
0)2

1.

The vanishing of the terms in the final two summations tells us

(G0
0)2,1

1,1 = (G0
0)2,1

1,2(G0
0)2

1,

(G0
0)2,1

1,i = 0,

(G0
0)2,2

1,i = 0

for all i ≥ 2. We knew that

d(G0
0)2

1 = (G0
0)2

1,−1ω
−1 +

∑
α

∑
β

(G0
0)2,β

1,αω
α
β



DYNAMIC EQUIVALENCE VIA INFINITE PROLONGATIONS 683

had to be a finite sum, and now we have a bound on where that sum must terminate
(α = 1).

Now consider dΩ̄0
1. Since

Ω̄0
1 = (G1

0)2
1 ω

0
1 + (G0

0)2
1 ω

1
1 + ω1

2 ,

we have

dΩ̄0
1 = d(G1

0)2
1 ∧ ω0

1 + (G1
0)2

1 dω
0
1 + d(G0

0)2
1 ∧ ω1

1 + (G0
0)2

1 dω
1
1 + dω1

2

≡
[(

(G0
0)2,2

1,0 − (G1
0)2,2

1,1

)
(G0

0)2
1 + (G1

0)2,1
1,1 − (G0

0)2,1
1,0 − (G1

0)2,2
1,2(G2

1)2
1

+ (G0
0)2,2

1,1(G1
0)2

1

]
Ω̄2

1 ∧ Ω̄1
1 − (G1

0)2
1,−1Ω̄1

1 ∧ Ω̄−1 − Ω̄1
2 ∧ Ω̄−1

− (G1
0)2,2

1,2Ω̄1
1 ∧ Ω̄1

2 +
(

(G2
1)2

1 − (G1
0)2

1 − (G0
0)2

1,−1

)
Ω̄2

1 ∧ Ω̄−1

+

∞∑
i=2

(
(G1

0)2,1
1,i − (G1

0)2,2
1,i (G

0
0)2

1 − (G1
0)2,2

1,i+1(Gi+1
i )2

1

)
Ω̄i+1

1 ∧ Ω̄1
1

+

∞∑
i=2

(G1
0)2,2

1,i+1Ω̄i2 ∧ Ω̄1
1.

The relations that come from this calculation are, for i ≥ 2,

(G2
1)2

1 = (G1
0)2

1 + (G0
0)2

1,−1,

(G1
0)2,1

1,1 = (G1
0)2,2

1,1(G0
0)2

1 + (G0
0)2,1

1,0 − (G0
0)2,2

1,0(G0
0)2

1 − (G0
0)2,2

1,1(G1
0)2

1,

(G1
0)2,2

1,i = 0,

(G1
0)2,1

1,i = 0.

Therefore we have found a bound on the sum for d(G1
0)2,2 as well.

Continuing this process for higher order terms yields the following important
result

(Gi+2
i+1)2

1 = (G1
0)2

1 + (i+ 1)(G0
0)2

1,−1

for i ≥ 1.
To review, G now has the following form.

(11.4) G =

1 0 00 0 0 0 0 0 0 0 0 · · ·
0 1 00 0 0 0 0 0 0 0 0 · · ·
0 (G0

0)2
1 10 0 0 0 0 0 0 0 0 · · ·

0 0 01 0 0 0 0 0 0 0 0 · · ·
0 0 00 1 0 0 0 0 0 0 0 · · ·
0 (G1

0)2
1 00 (G0

0)2
1 1 0 0 0 0 0 0 · · ·

0 0 00 0 0 1 0 0 0 0 0 · · ·
0 0 00 (G1

0)2
1+(G0

0)2
1,−1 0 (G0

0)2
1 1 0 0 0 0 · · ·

0 0 00 0 0 0 0 1 0 0 0 · · ·
0 0 00 0 0 (G1

0)2
1+2(G0

0)2
1,−1 0 (G0

0)2
1 1 0 0 · · ·

...


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What we have boiled the problem down to now is the equivalence Ω = gΩ̄, where
the coframing Ω̄ contains three functions f , (G0

0)2
1, and (G1

0)2
1.

Remark: An important but subtle point to take note of is the following: we have
singled out Ω̄0

1 through S as the piece of the coframing Ω̄0 that contains higher order
terms in ω, and we have also singled out Ω̄0

3 by choosing an adapted coframing with
dΩ̄0

3 ≡ 0 mod Ω̄0, and these two choices are compatible.

This fact is actually quite easy to see. In our coframings, note that Ω̄0
3 = ω0

3 .
Since g preserves the span of { Ω̄0

1, Ω̄
0
2, Ω̄

0
3 }, ω0

3 must be in the span of { Ω0
1,Ω

0
2,Ω

0
3 }.

Thus ω0
3 , which has the property that dω0

3 ≡ 0 mod ω0, does not also get bumped up
in the dynamically equivalent coframing to a higher order term.

12. Dynamic equivalence of control affine systems. Keep in mind at this
point that we are concerned with dynamic equivalence, which is a weaker equivalence
than static equivalence. The static equivalence case was dealt with first in the control
linear case of three states and two controls by Wilkens and later by Elkin in the affine
linear case up to four states. The representatives of the five distinct static equivalent
control affine systems with three states and two controls put forth by Elkin are

ẋ1 = u1,
ẋ2 = u2,
ẋ3 = f(x,u),

(12.1)

where f(x,u) is one of the five functions
0,
1,
x2,
x2u1,

1 + x2u1

 .

In this section, we will finally put to use our previous results involving infinite
prolongations and the factorization of coframing pullbacks. We show, using arguments
about certain ideals preserved under dynamic equivalence, that neither of the first
two systems listed above are dynamically equivalent to any other control system with
J = K = 0. The proof of the final theorem gives explicit dynamic equivalences
between the last three systems above.

Theorem 15. The control system corresponding to ẋ3 = 0 with two control
variables is not dynamically equivalent to any other control system with J = K = 0
to which it is not static equivalent.

Proof. Suppose Ω = gSGω, where G is given by (11.4), S is given by (9.2), g is
a generic nonautonomous static equivalence, and ω is the coframing for ẋ3 = 0

ω−1 = dt,

ω0
1 = dx1 − u1 dt,

ω0
2 = dx2 − u2 dt,

ω0
3 = dx3,

. . . .
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The coframing Ω̄ = SGω would then look as follows.

Ω̄−1 = ,

Ω̄0
1 =

(
(G1

0)2
1 dx1 + (G0

0)2
1 du1 + du2

)
−
(
(G1

0)2
1 u1 + (G0

0)2
1 u̇1 + u̇2

)
dt,

Ω̄0
2 =

(
dx2 + (G0

0)2
1 dx1

)
−
(
(G0

0)2
1 u1 + u2

)
dt,

Ω̄0
3 = dx3,

. . . .

Now notice that the algebraic ideal Ω̄0 is preserved by g. But all of our equiva-
lences also preserve t, and hence dt. Therefore, if Λ∞ has the coframing

Ω−1 = dt,

Ω0
1 = dy1 − g1(y, v) dt,

Ω0
2 = dy2 − g2(y, v) dt,

Ω0
3 = dy3 − g3(y, v) dt,

. . . .

we get that {Ω̄0
1, Ω̄

0
2, Ω̄

0
3} ≡ {dy1, dy2, dy3} mod dt. Since this is an integrable ideal

that contains Ω̄0
3 = dx3, we can arrange through the appropriate choice of g that

dy3 = dx3. Note that this automatically satisfies dΩ̄0
3 ≡ 0 mod Ω̄0

1, Ω̄
0
2, Ω̄

0
3 since dΩ̄0

3

is identically zero.
Therefore ẏ3 = ẋ3 = 0. What we have done is taken any strict dynamic equiv-

alence to the system ẋ3 = 0 with J = K = 0 and altered it via static equivalence
to a strict dynamic equivalence to itself. So any control system that is dynamically
equivalent to ẋ3 = 0 with J = K = 0 is in fact a dynamic equivalence to a system
that is static equivalent to ẋ3 = 0.

Theorem 16. The control system corresponding to ẋ3 = 1 with two control
variables is not dynamically equivalent to any other control system with J = K = 0
to which it is not static equivalent.

Proof. The proof is nearly identical to that of the previous theorem. Replace
ẋ3 = 0 with ẋ3 = 1, and proceed in the same fashion.

Note that the method used in the previous two theorems could also be applied
to the case of ẋ3 = x2. A difference occurs, however, when reaching the step ẏ3 =
ẋ3 = x2. Since x2 is not necessarily equal to y2, we see that the resulting system
may or may not necessarily be static equivalent to the original system ẋ3 = x2. It in
fact turns out, as stated in the next theorem, that this new system need not be static
equivalent to the original system.

Theorem 17. The control systems ẋ3 = x2, x2u1, 1 + x2u1 are strictly dynami-
cally equivalent to each other.

Proof. The following sets of maps between infinite jet bundles give explicit dy-
namic equivalences for the three systems. We will demonstrate that the maps take
solutions of one control system to solutions of the other. The fact that the maps
composed with their respective inverses are in fact the identity on solutions is simple
enough and is left to the reader.

ẋ1 = u1 ẏ1 = v1 ż1 = w1

ẋ2 = u2 ẏ2 = v2 ż2 = w2

ẋ3 = x2u1 ẏ3 = y2 ż3 = 1 + z2w1
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Equivalence maps: (x,u)↔ (y,v)

ϕ(x, u, u̇, . . .) = ( x1x2 − x3, u2, x2, x1u2, u̇2, . . . )

ϕ−1(y, v, v̇, . . .) = ( v1/y2, y3, y3v1/y2 − y1,
y2v̇1 − v1v2

y 2
2

, y2, . . . )

Verifying solutions:

ẏ1 = d
dt (x1x2 − x3)

= x1u2

= v1

ẋ1 =
d

dt

(
v1

y2

)
=

y2v̇1 − v1v2

y2
2

= u1

ẏ2 = u̇2

= v2

ẋ2 = ẏ3

= y2

= v2

ẏ3 = ẋ2

= u2

= y2

ẋ3 =
d

dt

(
y3v1

y2
− y1

)
= v1 + y3

y2v̇1 − v1v2

y2
2

− v1

= x2u1

Equivalence map: (z,w)↔ (y,v)

ψ(z, w, u̇, . . .) = ( z3 − z1z2, w2, z2, 1− z1w2, ẇ2, . . . )

ψ−1(y, v, ẇ, . . .) = (
1− v1

y2
, y3, y1 + y3

1− v1

y2
,
v1v2 − v2 − y2v̇1

y 2
2

, y2, . . . )

Verifying solutions:

ẏ1 =
d

dt
(z3 − z1z2)

= 1 + z2w1 − w1z2 − z1w2

= v1

ż1 =
d

dt

1− v1

y2

=
v1v2 − v2 − y2v̇1

y2
2

= w1

ẏ2 = ẇ2

= v2

ż2 = ẏ3

= y2

= w2

ẏ3 = ż2

= w2

= y2

ż3 =
d

dt

(
y1 + y3

1− v1

y2

)
= 1 + y3

(v1 − 1)v2 − y2v̇1

y2
2

= 1 + z2w1

Equivalence map: (x,u)↔ (z,w)

θ(x, u, u̇, . . .) = (
1

u2
− x1, x2,

x2

u2
− x3, −u1 −

u̇2

u 2
2

, u2, . . . )

θ−1(z, w, ẇ, . . .) = (
1

w2
− z1, z2,

z2

w2
− z3, −w1 −

ẇ2

w 2
2

, w2, . . . )

Note that θ = ψ−1 ◦ φ.
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Verifying solutions:

ẋ1 =
d

dt

(
1

w2
− z1

)
=
−ẇ2

w2
2
− w1

= u1

ż1 =
d

dt

(
1

u2
− x1

)
=
−u̇2

u2
2
− u1

= w1

ẋ2 = ż2

= w2

= u2

ż2 = ẋ2

= u2

= w2

ẋ3 =
d

dt

(
z2

w2
− z3

)
= z2

(
−w1 −

ẇ2

w2
2

)
= x2u1

ż3 =
d

dt

(
x2

u2
− x3

)
= 1 + x2

(
−u1 −

u̇2

u2
2

)
= 1 + z2w1

13. Conclusions. Wilkens showed that there are five equivalence classes of
affine linear control systems with three state variables and two control variables
under static equivalence. Below is a listing of how these classes combine using
dynamic equivalence through one prolongation, using the static class representations
presented in Elkin. Each equivalence class under dynamic equivalence is numbered.
These nontrivial equivalences (or non-equivalences) are the work of this paper.

1 ẋ1 = u1 ẋ1 = u1 ẋ1 = u1

ẋ2 = u2 ẋ2 = u2 ẋ2 = u2

ẋ3 = x2 ẋ3 = x2u1 ẋ3 = 1 + x2u1

2 ẋ1 = u1

ẋ2 = u2

ẋ3 = 0
3 ẋ1 = u1

ẋ2 = u2

ẋ3 = 1

Future avenues of research into the classification of affine linear control systems
under dynamic equivalence include looking at higher order equivalences (J and/or
K > 0) as well as increasing the number of state and control variables. One obstacle
to overcome with higher order equivalences and larger numbers of variables is that,
unlike the case presented here where a unique S exists, the problem may quickly
split into many cases with different S. In addition, this method relies on the fact
that affine linear systems in this dimension have already been classified under static
equivalence, and the static equivalence problem for affine control systems has only
been completed in a few low-dimensional cases. Nevertheless, the further exploration
of this decomposition may still yield new insights into the phenomenon of dynamic
equivalence in general.
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[3] M. Fleiss, J. Lévine, P. Martin, and P. Rouchon, Towards a new differential geometric
setting in nonlinear control, presented at “International Geometrical Colloquium”, Moscow
(May 1993).

[4] R. B. Gardner, The Method of Equivalence and Its Applications, CBMS-NSF Regional Con-
ference Series in Applied Mathematics 58, SIAM, Philadelphia, 1989.

[5] R. B. Gardner and W. F. Shadwick, Feedback equivalence of control systems, Systems and
Control Lett., 8 (1987), pp. 463–465.

[6] R. B. Gardner and W. F. Shadwick, Overdetermined equivalence problems with an ap-
plication to feedback equivalence, Differential Geometry: The Interface Between Pure and
Applied Mathematics, M. Lucksie, C. Martin, W. Shadwick (eds.) AMS, Providence (1987),
pp. 111–119.

[7] R. B. Gardner, W. F. Shadwick, and G. R. Wilkens, Feedback equivalence and symmetries
of Brunowski normal forms, Contemporary Mathematics, 97 (1989), pp. 115–130.

[8] T. A. Ivey and J. M. Landsberg, Cartan for Beginnner: Differential Geometry via Moving
Frames and Exterior Differential Systems, AMS, Providence, 2003.

[9] J.-B. Pomet, A Differential Geometric Setting for Dynamic Equivalence and Dynamic Lin-
earization, Geometry in Nonlinear Control and Differential Inclusions, Banach Center
Publ., 32 (1995), pp. 319–339.

[10] J.-B. Pomet, A Necessary Condition for Dynamic Equivalence, SIAM J., Control Optim., 48:2
(2009), pp. 925–940.

[11] W. M. Sluis, Absolute Equivalence and its Applications to Control Theory, PhD dissertation,
University of Waterloo, Waterloo, ON, 1992.

[12] G. R. Wilkens, Local feedback equivalence of control systems with 3 state and 2 control vari-
ables, PhD dissertation, University of North Carolina, Chapel Hill, NC, 1987.

[13] G. R. Wilkens, The method of equivalence applied to three state, two input control systems,
Proceedings of the 29th IEEE Conference on Decision and Control, 4 (December 1990),
pp. 2074–2079.


